Microbial Diversity, Survival and Recovery as Bioindicators in Soils from Different Parent Materials in Korea

생물학적 토양 지표로서의 모재별 미생물의 다양성과 복원율

  • Suh, Jang-Sun (National Institute of Agricultural Science and Technology) ;
  • Kwon, Jang-Sik (National Institute of Agricultural Science and Technology) ;
  • Kim, Sang-Hyo (National Institute of Agricultural Science and Technology)
  • Received : 2002.04.15
  • Accepted : 2002.07.19
  • Published : 2002.08.30

Abstract

To develop indicators for soil health evaluation, biological characteristics of native soils from the different parent materials were studied. Survival rate of fluorescent Pseudomonas in soils was the lowest as 0.1% while those of thermophilic Bacillus and alkaliphilic bacteria were over the 90% by the soil drying stress. There was positive relationship between soil microbial biomass and organic carbon exudated from the microbial biomass by the treatment. The average air-drying effect of soils was 39.7% with ranges of 9.7~95.0%. The propagules of mesophilic Bacillus and Gram negative bacteria were increased by the re-wetting of dried soils. Soil pH affected positively to the recovering rate of microbial number. Average recovering rate of microbes was 65.3%, and there was positive relationship between microbial biomass recovery and fluorescent Pseudomonas population.

토양생태계는 정량화하기 어려운 다양한 규칙이 다중적으로 조화되어 끊임없이 변하고있어 어떤 현상을 획일적으로 평가하기 어렵다. 그러나, 미생물은 환경에 대한 감수성이 빨라 토양의 생물적인 특성 변화를 가장 먼저 나타내기 때문에, 미생물은 생태계의 가변적 변동상의 지표가 될 수 있다. 또한 토양에 생명력을 부여해주는 기능을 가지고 있어 토양미생물의 작용 및 기능 평가는 토양 건전성 관리에 있어 중요한 역할을 한다. 따라서 본 연구는 생물학적 토양 건전성 평가 지표요인 개발하고자 주요 모재별 미경지 토양의 생물학적 토양특성을 평가하고자 수행하였다. 주요 모재별 미경지 토양의 미생물 밀도는 현무암유래 토양에서 낮고 석회암유래 토양에서 높은 경향이었으나, 그람 음성균은 비슷한 수준을 유지하고 있었다. 토양 건조처리시 미생물의 생존율은 형광성 Pseudomonas속이 0.1%로 가장 낮았으나 고온성 Bacillus속과 호알카리성균은 90%이상으로 높았다. 토양미생물체량과 미생물 유fo 유기탄소량 간에는 정의 상관관계를 나타냈으며, 토양 건조처리 효과는 토양별 9.7~95.0% 범위로 평균 39.8%였다. 건토를 재습윤하였을 때 중온성 Bacillus속은 원래 균수보다 높게 복원되는 토양이 많았다. 토양 pH는 미생물수 복원율에 정의 영향을 주었다. 건토의 재습윤화에 의한 토양 미생물체량 복원율은 평균 65.3%였으며, 재습윤토의 미생물체 복원량과 형광성 Pseudomonas속간에 유의한 정의 상관관계가 있었다.

Keywords

References

  1. Allison. L.E. 1965. Organic carbon. In methods of soil analysis. part I. Ed. CA Black. P. 1367-1376. Am. Soc. Agron. Inc. Publ .. Madison. WI
  2. Boyer. J.N. and P.M. Groffrnan, 1996. Bioavailability of water extractable organic carbon fractions in forest and agrtcultural soil profiles. Soil Biology & Biochemistry 28: 783-790 https://doi.org/10.1016/0038-0717(96)00015-6
  3. Burford. J.R. and J.M. Bremner. 1975. Relationships between the denitrification capacities of soils and total. water-soluble and readily decomposable soil organic matter. Soil Biology& Biochemistry. 7: 389-394 https://doi.org/10.1016/0038-0717(75)90055-3
  4. Cavigelli M. A. G. P. Robertson and M. J. Klug. 1995. Fatty acid methyl ester(FAME) profJ1es as measures of soil microbial community structure. Plant and soil. 170: 99-1I3 https://doi.org/10.1007/BF02183058
  5. Doran J.W. and M.R. Zeiss. 2000. Soil health and sustainability: managtng the biotic component of soil quality. Applied soil ecology. 15: 3-11 https://doi.org/10.1016/S0929-1393(00)00067-6
  6. Herrick. J. E. 2000. Soil quality: an indicator of sustainable land management? Applied soil ecology. 15: 75-83 https://doi.org/10.1016/S0929-1393(00)00073-1
  7. Hill. G.T.. NA Mitkowski. L. Aldrich-Wolfe, L.R. Emele, D.O. .Jurkonte, A Ficke, S. Maldonado-Ramirez. S.T. Lynch and E.B. Nelson. 2000. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology. 15: 25-36 https://doi.org/10.1016/S0929-1393(00)00069-X
  8. Kieft, T.L.. E. Soroker. and MK Firestone. 1987. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology & Biochemistry. 19: 119-126 https://doi.org/10.1016/0038-0717(87)90070-8
  9. Lundquist E.J.. L.E. Jackson and KM. Scow. 1999. Wetdry cycles affect dissolved organic carbon in two California agrtcultural soils. 31: 1031-1038
  10. Pankhurst C.E.. B.M. Daube and V.V.S.R. Gupta. 1997. Biological indicator of indicators of soil health. CAB International
  11. Rosacker, L.L. and T.L. Kieft. 1990. Biomass and adenylate energy charge of a grassland soil durtng drying. Soil Biology& Biochemistry. 22: 1121-1127 https://doi.org/10.1016/0038-0717(90)90038-2
  12. Rural Development Administration. 1988. Methods of soil chemical analysis. National Instituie of Agricultural Science and Technology. RDA Korea (In Korean)
  13. Sherwood S. and N. Uphoff. 2000. Soil health: research. practice and policy for a more regenerative agrtculture. Applied soil ecology. 15:85-97 https://doi.org/10.1016/S0929-1393(00)00074-3
  14. Suh, J.S. and J.S. Shin. 1997. Soil Microbial diversity of paddy fields in Korea. The journal of Korean Society of Soil Science and fertilizer. 30:(2)200-207
  15. Vance. E.D., P.C. Brookes and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry. 19: 703-707 https://doi.org/10.1016/0038-0717(87)90052-6
  16. Zelles L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere. 35: 275-294 https://doi.org/10.1016/S0045-6535(97)00155-0