DOI QR코드

DOI QR Code

Liquefaction Characteristics of PP by Pyrolysis

PP의 열분해에 의한 액화 특성

  • Yu, Hong-Jeong (Department of Chemical Engineering, Chungbuk Nat'l, Univ.) ;
  • Lee, Bong-Hee (Department of Chemical Engineering, Chungbuk Nat'l, Univ.) ;
  • Park, Su-Yul (Department of Chemical Engineering, Chungbuk Nat'l, Univ.)
  • 유홍정 (충북대학교 공과대학 화학공학과) ;
  • 이봉희 (충북대학교 공과대학 화학공학과) ;
  • 박수열 (충북대학교 공과대학 화학공학과)
  • Published : 2002.12.31

Abstract

Pyrolysis of polypropylene(PP) Was performed to find the effects of the pyrolysis temperature(425, 450, 475 and $500^{\circ}C$) and the pyrolysis time(35, 50 and 65minutes), respectively. Conversion and liquid yield obtained during PP pyrolysis continuously increased with the pyrolysis temperature( up to $500^{\circ}C$) and the pyrolysis time(up to 65minutes), especially these were more sensitive to the pyrolysis time at $425^{\circ}C$ than other pyrolysis temperatures. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The liquid products of PP pyrolysis up to $450^{\circ}C$ were almost same fractions($26{\pm}3$wt.% gasoline, $20{\pm}2$wt.% kerosene and $23{\pm}2$wt.% light oil) except wax($3{\sim}13$wt.%). On the other hand, the pyrolysis of PP from $475^{\circ}C$ to $500^{\circ}C$ produced $26{\pm}3$wt.% wax, $24{\pm}1$wt.% gasoline, $18{\pm}1$wt.% kerosene and $16{\pm}1$wt.% light oil. After all, the main liquid product changed from gasoline to wax with increasing pyrolysis temperature.

Keywords

References

  1. K. H. Kim, S. C. Chun, and K. O. Ryu, J. Kor Solid Wastes Eng. Soc., 13, 504 (1996)
  2. R. Miranda, J. Yang, C. Roy, and C. Vasile, Polym. Deg. Stab., 72, 469 (2001) https://doi.org/10.1016/S0141-3910(01)00048-9
  3. M. W. Shaub and W. Tsang, Environ. Sci. Technol., 17, 721 (1983) https://doi.org/10.1021/es00118a007
  4. K. Ramdoss and R. Tarrer, FueI, 77, 293 (1998)
  5. R. Miranda, H. Pakdel, C. Roy, and C. Vasile, Polym. Deg. Stab., 73, 47 (2001) https://doi.org/10.1016/S0141-3910(01)00066-0
  6. J. Hayashi, T. Nakahara, K. Kusakabe, and S, Morooka, Fuel Processing TechnoIogy, 55, 265 (1998) https://doi.org/10.1016/S0378-3820(98)00047-2
  7. M. V. S. Murty, E. A. Grulke, and D. Bhattacharyya, PoIym Deg. Stab., 61, 421 (1998) https://doi.org/10.1016/S0141-3910(97)00228-0
  8. S. J. Park, G. Y. Heo, and J. R. Lee, PoIymer(Korea), 26, 344 (2002)
  9. D. Mathew, C. P. R. Nair, K. Krishnan, and K. N. Ninan, Polym. Sci. Chem., 37, 1103 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990415)37:8<1103::AID-POLA7>3.0.CO;2-X
  10. S. L. Madorsky and S. Straus, J. Res. Bur. Stand, 53, 361 (1954) https://doi.org/10.6028/jres.053.044
  11. L. A. Wall and S. Straus, J. Polym. Sci., 44, 313 (1960) https://doi.org/10.1002/pol.1960.1204414404
  12. J. K. Y. Kiang, P. C. Uden, and J. C. W. Chien, Polym Deg. Stab., 2, 113 (1980) https://doi.org/10.1016/0141-3910(80)90033-6
  13. T. H. Risby, J. A. Yergey, and J. J. Scocca, AnaI Chem,54, 2228 (1982) https://doi.org/10.1021/ac00250a022
  14. H. Bockhorn, A. Hornung, U. Hornung, and D. Schawaller, J. Anal. AppI. Pyrol., 48, 102 (1999)
  15. B. J. Jung and H. G. Lee, J. Kor. Solid Wastes Eng. Soc., 17, 399 (2000)