DOI QR코드

DOI QR Code

Utilization of Pigments and Tunic Components of Ascidian as an Improved Feed Aids for Aquaculture -3. Functional Properties of Sulfated Polysaccharides from Ascidian (Halocynthia roretzi) Tunic-

우렁쉥이 껍질성분 및 색소를 이용한 양식소재 개발 -3. 우렁쉥이 껍질 유래 황산다당의 기능적 특성-

  • Hong Byeong Il (Department of Food Marketing, Cheonan College of Foreign Studies) ;
  • Jung Byung Chun (Department of Food Science and Technology, Pukyong National University) ;
  • Son Byung Yil (Dongeui Food Research Institute, Dongeui University) ;
  • Jung Woo Jin (Department of Food Marketing, Cheonan College of Foreign Studies) ;
  • Ruck Ji Hee (Department of Food Marketing, Cheonan College of Foreign Studies) ;
  • Choi Byeong Dae (Division of Marine Bioscience Institute of Marine Industry, Gyeongsang National University) ;
  • Lee Kang-Ho (Department of Food Science and Technology, Pukyong National University)
  • 홍병일 (천안외국어대학 식품유통과) ;
  • 정병천 (부경대학교 식품공학과) ;
  • 손병일 (동의대학교 한방식품연구소) ;
  • 정우진 (천안외국어대학 식품유통과) ;
  • 육지희 (천안외국어대학 식품유통과) ;
  • 최병대 (경상대학교 해양생물이용학부/해양산업연구소) ;
  • 이강호 (부경대학교 식품공학과)
  • Published : 2002.11.01

Abstract

The present study was conducted to elucidate functional properties of sulfated polysaccharides from ascidian tunics, In physical properties of the crude polysaccharides, emulsion ability and foaminess were more excellent compared with chitin and chitosan, particular dye binding capacity was prominent. Anti-blood coagulation of partially purified sulfnted polysaccharides showed with respect to APTT (Activated partial thromboplastin time). Especially, active fraction $(F_4)$ obtained by DEAE-cellulose ion exchange chromatography showed highest activity, which was approximately $20\%$ of the activity of heparin. ACE inhibitory activity also similar to anticoagulant activity. Active fraction $(F_4)$ obtained by DEAE-cellulose ion exchange chromatography showed about $34\%$, in ACE inhibitory activity.

우렁쉥이 껍질에서 추출한 autoclave 추출구와 neutrase 추출구는 지방흡수력의 경우 대조시료인 chitin과 chitsan에 비해 떨어지는 대략 250$\~$$300\%$ 정도이었으나, 포말성은 각각 0.70과 0.67로, 포말안정성은 0.50과 0.38로 우수하였다 Autoclave 추출구 및 neutrase 추출구의 유화능은 각각 $49.2\%$$47.1\%$, 유화안정성의 경우 각각 $48.3\%$$44.8\%$ 정도였으며 특히, 색소흡착능은 각각 $85.2\%$$85.6\%$로 대조시료에 비해 다소 우수하였다 항혈액응고능은 모든 시료에서 hPn 저 지효과는 나타났으나 PT값은 약 14.5초로 일정하여 혈액응고저지 효과가 거의 없었다. 특히 autoclave 처리구를 DEAE-cellulose ion exchange chromatography하여 얻은 F4 (획분4)는 APTT가 75초로 가장 효과적 이 었으며, Sephadex G-100의 $F_2$가 70초 정도였다. ACE저해능은 모든 시료에서 ACE 저해효과가 있었으며, 채택된 실험방법에 따라 동일시료 경우에 있어서도 저해효과 값이 차이가 났으며, 특히 DEAE-cellulose 이온교환 처리한 $ F_4$ (획분4)가 $35.7\%$로 가장 효과적이었다.

Keywords

References

  1. Akio, K. 1994. New functional food proteins by polysaccharide modification. Nippon Shokuhin Kogyo Gakkaish, 41, 304-310 (in Japanese) https://doi.org/10.3136/nskkk1962.41.304
  2. Albano, R.M. and A.S.M. Paulo. 1983. Presence of sulfated glycans in ascidian tunic and the body wall of a sea cucumber. Biochim. Biophys. Acta., 760, 192-196 https://doi.org/10.1016/0304-4165(83)90143-5
  3. Anno, K., O. Kimiko and N. Seno. 1974. A chitin sulfate-like polysaccharide from the test of the tunicate Halocynthia roretzi. Biochim. Biophys. Acta. 362, 215-219 https://doi.org/10.1016/0304-4165(74)90043-9
  4. Byun, H.G., O.J. Kang and S.K. Kim. 1992. Syntheses of the derivatives of chitin and chitosan, and their physicochemical properties. J. Kor. Agric. Chem. Soc., 35, 265-271 (in Korean)
  5. Cushman, D.W. and H.S. Cheung. 1971. Spectrometnc assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol., 20, 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  6. Helenius, A. and M. Aebi. 2001. Interacellular functions of N-linked glycans. Science, 291, 2364-2369 https://doi.org/10.1126/science.291.5512.2364
  7. Hong, B.I., B.C. Jung, W.J. Jung, J.H. Ruck, B.D. Choi and K.H. Lee. 2001. Utilization of pigments and tunic components of ascidian as an improved feed aids for aquaculture. 2. Chemical properties of sulfated polysaccharides in ascidian (Halocynthia roretzi) tunic. J. Kor. Fish. Soc., 34, 632-637 (in Korean)
  8. Johnson, E.A. and C.J. Breke. 1983. Functional properties of acylated pea protein isolates. J. Food Sci., 48, 722-725 https://doi.org/10.1111/j.1365-2621.1983.tb14883.x
  9. Jung, Y.S. and S.Y. Lee. 1987. Method of Clinical Pathology. Yonsei Univ., Press, pp. 120-123 (in Korean)
  10. Kang, Y.H., Y.K. Park, S.R. Oh and K.D. Moon. 1995. Studies on the physiological functionality of fine needle and mugwort extracts. Kor. J. Food Sci. Technol., 27, 978-984 (in Korean)
  11. Knorr, D. 1982. Functional properties of chitin and chitosan. J. Food. Sci., 47, 593-595 https://doi.org/10.1111/j.1365-2621.1982.tb10131.x
  12. Lee. K.H., S.J. Kang, B.D. Choi, Y.J. Choi and M.G. Youm. 1994a. Utilization of ascidian (Halocynthia roretzi) tunic. 1. Effect of ascidian tunic extracts on pigmentation and growth of rainbow trout (Oncorhynchus mykiss). J. Kor. Fish. Soc., 27, 232-239 (in Korean)
  13. Lee. K.H., S.J. Kang, B.D. Choi, Y.J. Choi and M.G. Youm. 1994b. Utilization of ascidian (Halocynthia roietzi) tunic 2. Optimum level of carotenoid extracts from ascidian tunic for the pigmentation of rainbow trout (Oncorhynchus mykiss). J. Kor. Fish. Soc., 27, 240-246 (in Korean)
  14. Lee K.H., B.I. Hong, B.D. Choi, S.J. Kang, J.H. Ruck and B.C. Jung. 1998a. Utilization of pigments and tunic components of ascidian as an improved feed aids for aquaculture. 1. Effective extraction methods of crude polysaccharides in ascidian (Halocynthia mretzi) tunic. J. Kor. Fish. Soc., 31, 423-428 (in Korean)
  15. Lee K.H., B.D. Choi, B.I. Hong, B.C. Jung, J.H. Ruck and W.J. Jung. 1998b. Functional properties of sulfated polysaccharides in ascidian (Halocynthia roretzi) tunic. J. Kor. Fish. Soc., 31, 447-451 (in Korean)
  16. Lin, M.J.Y., E.S. Humbert and F.W. Sosulld. 1974. Certain functional properties of sunflower meals. J. Food Sci., 39, 368-371 https://doi.org/10.1111/j.1365-2621.1974.tb02896.x
  17. Matui, T., H. Matsufuji and Y. Osajima. 1992. Colorimetric measurement of angiotensin-I. Converting enzyme inhibitory activity with tnnitrobenzene sulfonate. Biosci. Biotech. Biochem., 56, 517-518 https://doi.org/10.1271/bbb.56.517
  18. MecBeth, T.W. 1972. Carotenoids from nudibranches. Comp. Biochem. Physiol., 41B, 55-68
  19. Mori, H., H. Kamei, H. Nishide and K. Nisizawa. 1982. Sugar constituents of some sulfated polysaccharides from the sporophylls of wakkame (Undaria pinnatifida) and their biological activities. Proc. 10th Intern. Seaweed Symp,, 10, 109
  20. Nishino, T. and T. Nagumo. 1987. Sugar constituents and blood-anti coagulant activities of fucose-containmg sulfated polysaccharides in nine brown seaweed species. Nippon Nogeikagaku Kaishi, 61, 361-367 https://doi.org/10.1271/nogeikagaku1924.61.361
  21. Nishino, T., G. Yokoyama, K. Dobashi, M. Fujihara and T. Nagumo. 1989. Isolation, Purification, and chractedzation of fucose-containing sulfated polysacchandes from the brown seaweed Exklonia kurome and their blood-anticoagulant activities. Carbohydr. Res., 186, 119-125 https://doi.org/10.1016/0008-6215(89)84010-8
  22. Ryu, B.H., B.H. Chi, D.S. Kim and M.S. Ha. 1986. Desmutagenic effect of extracts obtained from seaweeds. J. Kor. Fish. Soc., 19, 502-508 (in Korean)

Cited by

  1. Substitution effect of sea tangle (ST) (Laminaria japonica ) with tunic of sea squirt (SS) (Halocynthia roretzi ) in diet on growth and carcass composition of juvenile abalone (Haliotis discus , Reeve 1846) vol.24, pp.1, 2018, https://doi.org/10.1111/anu.12593
  2. Antihyperlipidemic and Antidiabetic Activities of the Ascidian Tunic in Sprague-Dawley Rats vol.43, pp.6, 2010, https://doi.org/10.5657/kfas.2010.43.6.567
  3. Comparative analysis of expressed sequence tags (ESTs) between normal group and softness syndrome group in $Halocynthia$ $roretzi$ vol.7, pp.4, 2002, https://doi.org/10.1007/s13273-011-0045-6