DOI QR코드

DOI QR Code

Cytogenetic Analysis of Spotty Belly Greenling (Hexagrammos agrammus) and Greenling (H. otakii)

노래미 (Hexagrammos agrammus)와 쥐노래미 (H. otakii)의 세포유전학적 연구

  • Sim Mi A (Department of Aquaculture, Pukyong National University) ;
  • Noh Jae Koo (Department of Aquaculture, Pukyong National University) ;
  • Nam Yoon Kwon (Department of Aquaculture, Pukyong National University) ;
  • Kim Dong Soo (Department of Aquaculture, Pukyong National University)
  • Published : 2002.11.01

Abstract

Cytogenetic analysis was conducted to obtaining informations for genetic improvement of spotty belly greenling (Hexagrmmos agrammus) and greenling (H. otakii) in aquaculture. Erythrocytes of spotty belly greenling were slightly larger than those of greenling (p<0.05). The nuclear volume of spotty belly greening erythrocytes averaged 15.14 $\pm$ 0.92 ${\mu}m^3$ while that of greening averaged 14.61 $\pm$ 0.15 $\mu$m^3 the difference was not significant (p>0.05). Consequently, genome size of spotty belly greenling was also slightly larger than those of greenling. DNA content per cell of spotty belly greenling and greenling were 2.15 pg and 2.10 pg, respectively. The modal chromosome number of both greenling species were same as 2n=48 and karyotypes were also identical as 2 metacentrics, 11 snbrnetacentrics and 11 acrocentric pairs $(W: 74), There was no evidence of polymorphism including aneuploidy or sex-related heterornorphisrn for all specimens examined. The nuclear organizer regions (NOR_s)$ were localized on a small acrocentric chromosome pair in both species, Spotty belly greenling showed large sizes of active rRNA coding regions in their chromosomes. However, greenling examined only small sizes of active rRNA coding regions with dimorphism.

노래미와 쥐노래미의 유전적인 종 동정의 확립과 우량 품종 개발을 위한 유전 육종학적 연구의 기초 자료를 얻고자, 최근 양식 대상어로 대두되고 있는 두 어종을 대상으로 적혈구 세포와 핵의 크기, DNA 함량, 핵형 분석 등의 세포유전학적 연구를 수행하였다. 노래미의 적혈구 세포의 크기는 장, 단축이 각각 $9.76{\pm}0.27{\mu}m^2$, $6.35{\pm}0.07{\mu}m$로, 쥐노래미의 $9.17{\pm}0.05{\mu}m$, $6.2424{\pm}0.04{\mu}m$ 보다 크게 나타났으며 , 표면적과 부피 역시 노래미가 $48.62{\pm}1.74{\mu}m^2$, $213.67{\pm}7.51{\mu}m^3$로 쥐노래미의 적혈구 세포 표면적 $44.85{\pm}0.44{\mu}m^2$, 부피 $187.57{\pm}2.45{\mu}m^3$보다 큰 것으로 나타났다. 또한 노래미의 DNA 함량은 2.15$\pm$0.04pg, 쥐노래미는 2.10$\pm$0.03pg으로 핵의 크기와 유사한 양상을 나타내었다. 노래미와 쥐노래미의 염색체수는 48개로 동일한 핵형으로 구성되어 있었으며, NOR분석 결과 역시 두 종에서 1쌍의 acrocentric chromosome의 short arm에서 NOR이 확인되었다. 성별에 따른 염색체의 수적 차이나 hetero-morphic한 염색체, 그리고 개체간 염색체 다형 현상은 관찰되지 않았다.

Keywords

References

  1. Benfey, T.J., A.M. Sutterlin and R.J. Thompson. 1984. The use of erythrocyte measurements to identify triploid salmoiuds. Can. J. Fish. Aquat. Sci., 41, 980-984 https://doi.org/10.1139/f84-112
  2. Cruz, T.A., J.P. Thorpe and R.S.V. Pullin. 1982. Enzyme electrophoresis in Tilapia zilli: a pattern for determining biochemical genetic markers for use in tilapia stock identification. Aquaculture, 29, 311-329 https://doi.org/10.1016/0044-8486(82)90145-4
  3. Fontana, F. 1994. Chromosomal nucleolar organizer regions in four sturgeon species as markers of karyotype evolution in Acipenseriformes (Pisces). Genome, 37, 888-892 https://doi.org/10.1139/g94-126
  4. Gold, J.R. and C.T. Amemiya. 1987. Genome size variation in North American minnows (Cyprinidae). II. Variation among 20 species. Genome, 29, 481-489 https://doi.org/10.1139/g87-083
  5. Hinegardner, R. and D.E. Rosen. 1972. Cellular DNA content and the evolution of teleostean fishes. Am. Nat., 106, 621-644 https://doi.org/10.1086/282801
  6. Ida, H., N. Oka and K.-I. Hayashigaki. 1991. Karyotypes and cellular DNA contents of three species of the subfamily Clupeinnae. Jap. J. Ichthyol., 38, 289-294
  7. Kent, M., R. Chandler and S. Wachtel. 1988. DNA analysis by flow cytometry. Cytogenet. Cell Genet., 47, 88-89 https://doi.org/10.1159/000132514
  8. Kim, D.S., E.H. Park and J.S. Kim. 1982. Karyotypes of nine species of Korean catfishes (Teleostomi: Siluriformes). Kor. J. Genetics, 4, 57-68
  9. Kim, D.S., Y.K. Nam and I.-S. Park. 1995. Survival and kaiyological analysis of reciprocal diploid and tnploid hybrids between mudloach (Misgarnus mizolepis) and cyprinid loach (M. anguillicaudatus). Aquaculture, 135, 257-265 https://doi.org/10.1016/0044-8486(95)01031-9
  10. Ohno, S., U. Wolf and N.B. Atkin. 1968. Evolution from fish to mammals by gene duplication. Hereditas, 59, 169-87 https://doi.org/10.1111/j.1601-5223.1968.tb02169.x
  11. Park, E.H. and C.Y. Chung. 1985. Genome and nuclear sizes of Korean cobitid fishes (Teleostomi: Cyprinifonnes). Kor. J. Genetics, 7, 111-118
  12. Park, I.-S., Y. Choi, Y.H. Kim, Y.K. Nam and D.S. Kim. 2000. Flow cytometric and cytogenetic studies in Rhynchocypiis oxycephalus and R. steindachneri. J. Aquacult., 13, 193-196
  13. Sezaki, K. and H. Kobayashi. 1978. Comparison of eiythrocytic size between diploid and tetraploid in spinous loach, Cobitis biwae. Bull. Jap. Soc. Sci. Fish., 41, 851-854
  14. Szarski, H. 1976. Cell size and nuclear DNA content in vertebrates. Inter. Rev. Cytol., 44, 93-112 https://doi.org/10.1016/S0074-7696(08)61648-4
  15. Thorgaard, G.H., P.S. Rabinovitch, M.W. Shen, G.A.E. Gall, J. Propp and F.M. Utter. 1982. Triploid rainbow trout identified by flow cytometry. Aquaculture, 29, 305-309 https://doi.org/10.1016/0044-8486(82)90144-2
  16. Wolters, W.R., C.L. Chrisman and G.S. Libey. 1982. Erythrocyte nuclear measurements of diploid and tnploid channel catfish, Ictalurs punctatus rafinesque. J. Fish Biol., 20, 253-258 https://doi.org/10.1111/j.1095-8649.1982.tb04706.x