Cloning, Characterization of Pichia etchellsii $\beta-Glucosidase$ II and Effect of Media Composition and Feeding Strategy on its Production in a Bioreactor

  • Sethi Benu (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Jain Monika (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Chowdhary Manish (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Soni Yogesh (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Bhatia Yukti (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Sahai Vikram (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Mishra Saroj (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology)
  • Published : 2002.01.01

Abstract

The cloning and expression of $\beta-glucosidase$ II, encoded by the gene ${\beta}glu2$, from thermotolerant yeast Pichia etchellsii into Escherichia coli is described. Cloning of the 7.3 kb BamHI/SalI yeast insert containing ${\beta}glu2$ in pUC18, which allowed for reverse orientation of the insert, resulted in better enzyme expression. Transformation of this plasmid into E. coli JM109 resulted in accumulation of the enzyme in periplasmic space. At $50^{\circ}C$, the highest hydrolytic activity of 1686 IU/g protein was obtained on sophorose. Batch and fed-batch techniques were employed for enzyme production in a 14 L bioreactor. Exponential feeding rates were determined from mass balance equations and these were employed to control specific growth rate and in turn maximize cell growth and enzyme production. Media optimization coupled with this strategy resulted in increased enzyme units of 1.2 kU/L at a stabilized growth rate of $0.14\;h^{-l}$. Increased enzyme production in bioreactor was accompanied by formation of inclusion bodies.

Keywords

References

  1. CRC Crit. Rev. Biotechnol. v.9 Regulatory aspects of cellulase biosynthesis and secretion Bisaria, V. S.;S. Mishra https://doi.org/10.3109/07388558909040616
  2. Enzyme Microb. Technol. v.15 The Trichoderma_cellulase regulatory puzzle: From the interior life of a secretory fungus Kubicek, C. P.;R. Messner;F. Gruber;R. L. Mach;E. M. Kubicek-Pranz https://doi.org/10.1016/0141-0229(93)90030-6
  3. Biotechnol. Bioprocess Eng. v.4 Sorbose mediated enhancement of cellulase biosynthesis in Trichoderma ressei Sethi, B.;S. mishra;V. S. Bisaria https://doi.org/10.1007/BF02931927
  4. ACS symposium series β-Glucosidases, Biochemistry and Molecular biology Esen, A.
  5. The metabolic basis of inherited disease(3rd ed.) The pathogenicity of gaucher's disease Fredrickson, D. S.;M. R. Sloan;J. B. Stanbury(ed.);J. B. Wyngaarden(ed.);D. S. Fredrickson(ed.)
  6. Biotechnol. Lett. v.9 The synthesis of oligosaccharides by the reverse hydrolysis reaction of β-glucosidase ot high substrate concentration and at high temperature Ajisaka, K.;H. Nishida;H. Fujimoto https://doi.org/10.1007/BF01027157
  7. Tetrahedron Lett. v.33 Enzyme catalysed synthesis of alkyl-D-glucosides in organic media Vic, G.;D. Thomas https://doi.org/10.1016/S0040-4039(00)61314-X
  8. Biotechnol. Lett. v.17 Enantio-selective synthesis of several 1-O-D-glycoconjugates using almond β-glucosidase (EC 3.2.1.21) Fischer, L.; R. Bromann;F. Wagner https://doi.org/10.1007/BF00128380
  9. J. Ferment. Bioeng. v.80 Cloning and expression of β-hlucosidase gene from the yeast Pichia etchellsii Pandey, M.;S. Mishra https://doi.org/10.1016/0922-338X(96)80918-4
  10. Gene v.190 Expression and characterization of Pichia etchellsii β-glucosidase in Excherichia coli Pandey, M.;S. Mishra
  11. Methods: A Companion to Methods in Enzymology v.4 Production of heterologous proteins from recombinant DNA Escherichia coli in bench fermentors Lin, N. S.;J. R. Swartz https://doi.org/10.1016/1046-2023(92)90048-D
  12. Bio/Technology v.10 Recombinant protein expression in high cell density fed batch cultures of Escherichia coli Yee, L.;H. W. Blanch https://doi.org/10.1038/nbt1292-1550
  13. Current Protocols in Molecular Biology Selected topics from classical bacterial genetics. Unit 1.4 Raleigh, E. A.;K. Lech;R. Brent;F. M. Ausubel(ed.);R. Brent(ed.);R. E. Dingston(ed.);D. D. Moore(ed.);J. G. Seidman(ed.);J. A. Smith(ed.);K. Struhl(ed.)
  14. Gene v.33 Improvement in M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors Yanisch-Perron, C.;J. Vieira;J. Messing https://doi.org/10.1016/0378-1119(85)90120-9
  15. Nucleic Acids Res. v.20 A single amino acid substitution reduces the super helicity requirement of a replication initiator protein Higashitani, A.;D. Greenstein;K. Horiuchi https://doi.org/10.1093/nar/20.11.2685
  16. Mol. Cell Biol. v.5 Pichia pastoris as a host system for transformations Cregg, J. M.;K. J. Barringer;A. Y. Hessler;K. R. Madden https://doi.org/10.1128/MCB.5.12.3376
  17. Molecular Cloning: A Labaratory Manual(2nd ed.) Sambrook, J.;E. F. Fritsch;T. Maniatis
  18. J. Biol. Chem. v.241 The release of enzymes by osmotic shock from Escherichia coli in exponential phase Nossal, N. G.;L. A. Heppel
  19. Current Protocols in Molecular Biology Analysis of Proteins. Unit 10.8 Gallagher, S.;S. E. Winston;S. A. Fuller;J. G. R. Huriell;F. M. Ausubel(ed.);R. Brent(ed.);R. E. Kingston(ed.);D. D. Moore(ed.);J. G. Seidman(ed.);J. A. Smith(ed.);K. Struhl(ed.)
  20. Principles of Microbe and Cell Cultivation Pirt, S. J.
  21. J. Ferment. Bioeng v.68 Cloning and expression of a Clostridium cellobioparum cellulase gene and its expression in Escherichia coli JM109 Shima, S.;J. Kato;Y. Igarashi;T. Kodama https://doi.org/10.1016/0922-338X(89)90050-0
  22. J. Bacteriol. v.174 Purification and characterisation of a Bacillus polymxa Bgl gene expressed in Escherichia coli Painbeni, E.;S. Valles;J. Polaina;A. Flors https://doi.org/10.1128/jb.174.9.3087-3091.1992
  23. J. Bacteriol. v.177 Characterization of celB gene encoding for β-glucosidase from the hypothermophilic archeon Pyrococcus furisus and its expression and site-directed mutation in Escherichia coli Voorhorst, W. G. B.;R. I. L. Eggen;E. J. Leusink; de W. M. Vos https://doi.org/10.1128/jb.177.24.7105-7111.1995
  24. Process Biochem. v.36 Overproduction of Phytolacca insularis protein in batch and fed-batch culture of recombinant Escherichia coli Kweon, D. -H.;N. S. Han;K. -M. Park;J. -H. Seo https://doi.org/10.1016/S0032-9592(00)00237-5
  25. FEMS Microbiol. Lett. v.128 Cloning and nucleotide sequence of belA from Erwinia herbicola and expression of bgl activity in Escherichia coli Marri, L.;S. Valentini;D. Venditti
  26. Mol. Gen. Genet. v.246 Cloning and characterization of bgxa gene from Erwinia chrysanthemi D1 which encodes a β-gluco-sidase/xylosidase enzyme Vroeman, S.;J. Heldens;C. Boyd;B. Henrisaat;N. T. Keen https://doi.org/10.1007/BF00290450
  27. Appl. Environ. Microbiol. v.63 Genes encoding two different β-glucosidases of Thermoanaerobacter brokii are clustered in a common operon Breves, R.;K. Bronnenmeier;N. Wild;F. Lottspeich;W. L. Staudenbauer;J. Hofemeister
  28. Appl. Microbiol. Biotechnol. v.51 High cell density cultivation of microorganisms Reisenberg, D.;R. Guthke https://doi.org/10.1007/s002530051412
  29. Biotechnol. Bioeng. v.36 Production of recombinant human growth hormone in Escherichia coli: Expression of different precursors and physiological effects of glucose, acetate and salts Jenson, B.;S. Carlsen https://doi.org/10.1002/bit.260360102
  30. Trends Biotechnol. v.14 High cell-density culture of Escherichia coli Lee, S. Y. https://doi.org/10.1016/0167-7799(96)80930-9
  31. Biotechnol. Prog. v.13 Production of heterologous protein in Escherichia coli under high cell density conditions Srittmatter, W.;S. Matzku
  32. Biotechnol. Bioeng. v.43 Fed-batch operation of recombinant Escherichia coli containing trp promoter with controlled specific growth rate Yoon, S. K.;W. K. Kang;T. H. Park https://doi.org/10.1002/bit.260431013
  33. J. Biotechnol. v.39 Simple fed-batch technique for high cell density cultivation of Escherichia coli Korz, D. J.;V. Rinas,;K. Hellmuth;E. A. Sanders;W. D. Deckwer https://doi.org/10.1016/0168-1656(94)00143-Z
  34. Biotechnol. Prog. v.10 Effect of modulated glucose uptake on high level recombinant protein production in a dense Escherichia coli culture Chou, C. H.;G. N. Bannet;K. Y. San https://doi.org/10.1021/bp00030a009
  35. J. Biotechnol. v.68 Temperature induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli Schmidt, M.;K. R. Babu;N. Khanna;S. Marten;U. Rinas https://doi.org/10.1016/S0168-1656(98)00189-8
  36. Biotechnol. Bioeng. v.70 Effective production of a thermostable α-glucosidase from sulfolobus solfararicus in Escherichia coliexploiting a microfiltration bireactor Schiraldi, C.;A. Martino;M. Acone;I. Di Lernia;A. Di Lazzaro;F. Marulli;M. Generoso;M. Carteni;M. De Rosa https://doi.org/10.1002/1097-0290(20001220)70:6<670::AID-BIT9>3.0.CO;2-7