개념 기반의 코스웨어 표현 방법과 이를 이용한 인터넷 기반의 코스웨어 저작 도구의 구현

김만석 ${ }^{+}$. 김창화 ${ }^{++}$

요 약

지늉형 컴퓨터 보조교육(ICAI : Intelligent Computer Assisted Instruction) 시스템온 전문가 모듈, 교사 모듈, 학습자 모듈, 접속 모듈 둥윅 4 가지 모듈로 구성하는 것이 일반줙이다. 각 모듈 구성에 있어 교과 내 용과 평가 문제, 평가 결과와 진단, 진단 졀과에 따른 처방 듕의 관련 전략을 효율적이고 체계적으로 제어 하기 워한 뀨칙이 푤요하다. 이률 위해 교과 과정율 일정한 단위로 구분하는 방법율 제시하였다. 또한 구분 된 단위간에 연퐌성을 부여하고 이률 참고로 학습 진행과 평가, 진단, 처방의 모든 과정에 적용할 수 있도 록 하였다. 구밴된 단위(개넙)와 연관성(관계)을 그래프 형식으로 나타내는 방법을 제안하였다. 또한, 이 개 념을 적용하여 인터넷 상에서 여러 전문가가 협력하여 동시에 쿄스웨어률 구축할 수 있는 환경을 지원하는 인터넷 기반의 코스웨어 저작 도구률 구현하였다.

An Implementation of an Courseware Authoring Tool Using a Concept based Courseware Representation Method.

Man-Seok Kim^{\dagger} - Chang-Hwa Kim ${ }^{+\dagger}$

Abstract

It is general that the ICAI(Intelligent Computer Assisted Instruction) consists of 4 modules. Export module, Teacher module, Student module and Interface module. In each module construction, there should be some rules to control strategies efficiently and systematically that are related to the texts and assessment instruments, assessment results and evaluation, feedback, etc. It is necessary to use a method to classify the curriculum into sections with units and to represent the identified relationships between them. These relationships are available to all the process of learning, assessment, evaluation and feedback. In this paper, we propose the method to represent these units and relationships as a graph. In addition, we implement an internet-based courseware authoring tool to support the environment in which several experts can construct concurrently the courseware with cooperation between them.

1. 서론

ICAI의 핵심은 학숩자 수준에 따론 개별화 수 업에 있다. 이를 위한 필수적으로 요구되는 기능 은 '학습자의 학슙 상태 파악'과 '이에 따른 교육 내윤 제시', '수준별 평가'와 '정확한 진단 및 처 방' 둥이다.[1][2] 이 요소듈을 만족하기 위한 첫 째 조건은 '학늅자의 파악'이라고 귀결될 수 있

[^0]다. 학습자 표악을 위한 보편적인 방법은 '평가' 이다. 평가는 진단평가, 형성평가, 중합평가를 모 두 도입할 수 있다. 수업전 학슙자의 파악올 위 해 진단평가와 아울러 설문지법올 활용하는 것이 바람직하다. 컴퓨터룰 이용한 학습과 평가시스템 의 일반적인 구성에서는 한 개의 본문을 기준으 로 강의가 이루어지고 그 강의 내용욜 기본으로 평가가 실시된다. 평가 결과에 의한 진단과 처방 은 정. 오 결과에 따라 해당 본문을 제시하면 간 단히 이루어 질 수 있다. 이러한 일반적인 방법 의 특징은 본문과 문제의 제시가 단순하여 처리 가 쇱다는 것과, 진단과 처방 규칙 역시 단순하

고 공통된 방법을 계속 적용하여 사용할 수 있다 는 것이다.[3] 그러나 이러한 기본젹 구성의 틀에 약간의 변형된 요구(이전 개념과 연관되거나 종 속된 현재의 개념을 함께 이해하고 있는가? 여러 개의 개념이 흔합된 개념을 이해하지 못핸을 때 어떠한 개념을 처방으로 제시할 것인가? 둥)률 가했을 때 처리하기 합들다는 단점이 있다. 이러 한 부분은 정확한 진단이 핵심이라고 볼 수 있는 ICAI 시스톔에 있어 치명적인 취약점이 둴 것이 다.[1]

이상과 같이 평가에 해당되는 부분뿐만 아니 라 수업과정 운영과 평가 졀과 진단 분석, 처방 제시 둥 전반적인 단계에 있어 기존 ICAI 연구는 비적응적인 문제점을 내포하고 있다.[1] 이률 위 해 모든 과정과 모듈에서 일관적으로 적융시킬 수 있는 규칙올 제시한다. 그것은 교과 과정의 분석과 단위화에서 시작된다.

교과 과정을 구분하여 단위화한 것을 '개넘 (Concept)'이라고 정의하며 일반적으로 단원, 장, 절 등울 기준으로 구분한다. 그리고 그 개념과 개념간의 상호 작용을 '꽈계(Relation)' 혹은 '까 련’이라고 정의하며 관계의 연관성의 크기률 숫 자로 표기한다. 구분된 개념과 관계률 이용하여 본문율 구성하고 한 개념(본문)과 다른 개념(본 문)과의 관계에 따라 수업이 진행된다.

개념온 '노드(node)', 관계는 '링크(link)'라고 불 때 이는 자료 구조에서의 그래프(graph)와 같 은 형태로 나타널 수 있다. 따라서 그래프 형식 의 개념 제작기를 구성하여 ICAI 의 각 모둘에서 공퉁적으로 사용할 수 있도록 제공하는 것이 본 연구의 목적이다. 또한 평가 시에는 문제 발생기 (question generator)에서 제작된 개념과 관계률 근거로 문제률 출제한다. 즉, 문항 작성의 경우 해당 개념(본문)에서만 출제되는 것이 아니라 판 련된 다른 개념-주로 이전 개념이 둴 수 있욜 것 이다-의 내용에서도 출제된다. 이률 이용하면 평 가 진단 시 여러 개념(본문)의 인지 상태률 동시 에 검토할 수 있어 보다 명확한 진단이 가능하 다. 처방의 경우에도 현재의 개념(단원) 외에 관 련된 다른 개녑의 제시가 가능하다. 결과적으로 개녑-콴계의 규칙욜 수업 전 과정에 일관되게 적 용시켜 보다 다양하고 유연한 운영이 가능하다.

개념은 별도의 개념 제작기능에 의해 제작되 어진다. 그래프 방식으로 개녑과 관계룰 구성할 수 있고 개녑 이륨과 관계값올 입력할 수 있다.

제작된 개념도(개념set)률 이용하여 본문-개념문제률 연결한다. 이는 개념 아이콘을 본문 편집 기와 문제 제작기에 drag drop시켜 간단히 수행 할 수 있다. 본 연구에서는 문제 제작기룰 함깨 제작하여 실제 문제 제작에 있어 어떻게 반영둴 수 있는가률 증명하였다.

본 논문의 구성은 다음과 같다. 2 장 관련 연구 에서는 ICAI와 관련된 평가 방법과 학습자 반웅 분석에 대한 각종 연구와 의미를 분석해보고 학 습-평가-분석-처방의 효올적인 연계 방법의 퓰 요성을 지적한다. 3장 구현 이론에서는 이률 위 해 도입한 '개념'과 '꽌계'률 정의하고 이률 이용 하여 4장에서는 평가와 분석 방법을 제시한다. 5 장에서는 개념 처리률 위한 tool의 설계와 구현을 다루고 6 장에서 제언과 함께 결론을 맺는다.

2. 관련 연구

컴퓨터률 활용한 학습시스템의 큰 흐롬의 두 부류는 ICAI로 대표되는 적옹형 교육시스템가 WBI로 대표되는 웹올 이용한 원격 교육시스템이 라고 볼 수 있다. 그러나 현재는 두 시스탬을 동 기화한 시스템읙 연구와 개발이 일반적인 추세이 다. 이러한 현재의 시스템의 주된 튝징은 멀티미 디어와 하이퍼링크, 온라인 네트워크 등을 이용 한 교사와 학습자의 양방향 원격 교옥과 이로서 가능해진 수준녈, 상호작용적 학습 둥이 될 것이 다. [4][5] 이와 관련된 각종 연구 중 중요한 젓은 컴퓨터를 이용한 평가와 학습자 반응 분석이다. 서론에서 밝힌 바와 같이 ICAI에 있어 학습자의 파악(어느 시점에서든)이 매우 중요하며 이률 위 한 가장 보편적인 방법은 평가이기 때문이다.

컴퓨터를 이용한 평가는 CBT(Computer Based Test)와 CAT(Computer Adaptive Test) 둥으로 구분될 수 있다. CBT는 지필식 시험과 동일한 과정을 컴퓨터로 구현한 것으로, 정해진 문항을 지펼식 시험을 보둣이 풀어나가기 때문에 지필 검사에 익숙한 사랍들이 컴퓨터 겁사에 적 웅하기 숴운 형식의 평가이다. 또한 CAT는 '컴 퓨터 개별 적응 겸사'로서 학생의 응답을 분석하 여 개인에게 적절한 문항을 제공함으로써 능력평 가의 효율성올 높이고 정확성을 높일 수 있는 평 가 방법이다. CAT 시스텝에서는 난이도, 제한시 간, 정답 시 피드빽, 에러 시 피드백 등을 평가

문항 요소에 추가 시켰다．이는 학습자의 학습 수준에 따라 문제褁 제시할 수 있다는 것과 재교 육올 실시할 수 있다는 의미률 갖는다．또 다른 특징으로는 학습자의 평가 결과首 문항별로 기록 하여 문항 변경의 근거 자료로 활용한다는 것이 다．［6］

학슙자의 반옹 분석에 대한 연구는 일반적으 로 학습자의 기본 정보와 학습 내용，문제 은행 둥을 데이터베이스로 구축하고 별도의 분석 에이 전트（Agent）률 사용하여 구현한다．분석 에이전 트는 저장뒨 학습자의 둥록정보와 수시로 갱신되 는 학습 진행 경로，문제 풀이 결과 등을 근거로 하여 학습 모델과 평가 문항 모델욜 생성하고 이 ㄹ⿱ㄹ 전송한다．또한 학늡자가 전솧한 평가 문항의 답안을 채점하고，학업 성취 정돌⿱ㄹ 파악하여 다 음 단계로의 학습 진행 여부률 판단하고 학습자 의 둥록정보에 저장한다．［7］학습자의 반웅 분석 의 또 다른 방법으로는 정보 수집 에이전트 （Agent）률 이용하여 학습자의 컴퓨터 조작 반웅 을 퉁해 학슙자의 정보電 수집하여 이률 교육에 할용하는 젓이다．이는 수업 결과에 의한 반웅 분석적인 축면 보다 학습자의 물리적 행동과 반 옹에 대한 분석을 중심으로 하고 있다．［8］

개념화와 관련된 연구에는 춧째，과제분석과 계열화에 대한 연구가 있다．계열화가 수업의 호 과성，효율성，수업에 대한 학슙자의 유인성에 있 어 영향올 미치고 각 그륩의 크기，순서，요소， 전략 등이 계열화의 요소가 된다는 것이다．［9］ 즉，학숩 내용을 분석하고 계열화하여 최종적으 로 단순화하는 방법이다．둩째，체계적 개념 학습 을 위한 전문검색시스템 구현 연구로 체계적 개 념 학습을 위해 학습 내용을 재해석하고 학습 개 념을 구조화 한 후 개념 요소룰 추출하는 방법올 제시하였다．이륜 할용하여 하이퍼링크 밤식의 검색시스템에 도입할 수 있게되는 것이다．［10］또 다른 연구로는 LCPG（Learning Contents Problem Graph）학습모델올 기반으로 제작된 $R C^{2}$ 시스템으로 학습 내용을 대단원，소단원，학 습프레임으로 구성하고 중요도률 지정하여 일방 적인 학습이 아닌 교사와 학습자간의 상호대화 방식의 교육시스 템욜 제안하였다．［11］

이상과 같이 폄가와 학습자 반웅 분석에 대한 연구와는 달리 학ㅅㅂ 내용과 폄가률 연결하는 방 법에 대한 연구와 반웅 분석 결과에 따른 처방에 대한 상호 연결적 연구가 부족한 상태이다．

3．구현 이론

3.1 개념

학습 내용 지식베이스와 문제 지식베이스 처 리률 위해 학습 니용을＇개념＇화 한다．즉，학습 내용과 문제 출제의 구조화，효율적 적용을 위해 교육 과정을 단위화 하는 것이다．이 단위를＇개 념＇이라고 정의하며 이는 운영자의 기획에 따라 양과 범워 등이 결정된다．다，개념과 타 개념과 의 관계苨 설정할 수 있어야 하며（구분 지을 수 있어야 하며）독립적－연동적 활용이 동시에 가 능할 수 있어야 한다．

본문을 개념화하는 방법은 HTML로 구성된 본문을 단원별로 핵갈피（bookmark）를 부여하고 이를 개념 정보에 포함시킨다．
＜그립 3－1＞은 학슙내용올 일정한 기준에 의 해 작은 단원으로 구분하고 이를 개념화하여 관 계률 부여하고 다시 구조화한 것이다．

＜그림 3－1＞본문의 개념화
본문의 단원화나 단원의 개념화의 경우 너무 큰 범위률 기준으로 구분하지 않는 것이 좋다． 이는 폄가 문항 작성이나 진단•처방에 있어 보 다 구체적인 부분을 다불 수 있어야 하기 때문이 다．

3.2 개념들간의 선행 관계

일반적으로 한 과목을 대상으로 개념화할 경 우 기존에 설정되어 있는 단원에 따라 개넘울 분 류할 수 있다．임의의 과정올 개념화하여 도식화 한 예가＜그림 3－2＞에 나타나 있다．

＜그림 3－2＞일반적인 분류에 따른 개념화
그러나＜그림 3－2＞와 같이 반드시 트리（선형

자료 구조에서의 Tree）와 같은 구조률 가질 필요 는 없다．또한 단원과 단원（개념과 개념）사이가 반드시 $1: 1$ 관계가 아널 수도 있다．즉，＜그림 3－3＞과 같이 표현 할 수 있으며，오히려 진단에 따른 처방시에 더욱 광범위하고 구체적인 처리가 가눙하다．

3.3 개념간의 관계값（가중치）

＜그림 3－3＞과 같이 단원1－2－2는 단원1－2에 기본적으로 관계되지만 단원1－1과도 판계가 있음 을 뚠한다．예률 듈어 단원1－2－2에서 학생의 평 가와 진단．처방시 단원1－2만 참고로 하는 것이 아니라 단원1－1도 함께 참고할 수 있다는 것이 다．또한 단원1－2역시 단원1과 단원2量 동시에 관계 맺고 있는 것이다．이때，서로간의 관계의 정도가 다률 수 있다．이畐 함께 표시하여 처리 하면 진단•처방에 참고적으로 사용할 수 있게된 다．

＜그림 3－4＞관계값 섞정
＜그림 3－4＞는 단원1－2珸 위한 관계값이 단원 1 과는 0.7, 단원2와는 0.3 의 관계가 있다．족 단원 $1-2$ 는 단원1과 더 많욘 권계가 있고，진딴．처방 시 혹은 문제 출제시 관계값에 비례한 참고와 제 시가 이루어 질 것이다．관계값은 0．1～0．9의 9가 지 값을 가질 수 있다．이는 백분율의 의미률 갖 는다．과계값이 0.0 이라는 것온 두 개녑사이에 아 무런 관계가 없는 즉，연결이 이루어 질 수 없는 （또는 물리적 연결은 이루어지더라도 논리적•내 용적 연결은 이루어지지 않는）꽌계률 의미한다． 반대로 관계값이 1.0 이라는 것은 두 개녑이 완전 한 일치 쥭，같온 본문이라는 의미가 둴 것이다． 이 값둘은 문제와 문항 출제에 직접적으로 연관 되어 사용되뗘 진단의 단계에서도 이률 참고로 처방이 이루어진다．두（혹은 그 이상의）관계값의

합이 반드시 1 이거나 절대적인 값이 될 펄요는 없다．단원1－2－2와 관계된 단원 즉，단원1－1，단 원1－2의 관계값은 합은 1 이 아니다．

4．개념과 평가 문제

4.1 평가 문제의 연결

작성된 개념율 기반으로 평가 문제를 제작하 는 데에는 많은 부분을 고려해야 한다．톡별히 ICAI 에 있어서의 오․바른 진단은 개녈화에 대한 특징율 갖게 하는 가장 핵심적인 부분인 만큼 제 대로 구성된 문제의 제시 또한 각녈한 주의가 있 어야 한다．이畀 위해 첫째，문제 유형의 적절한 선택．듈째，개념 퐌계값을 적융한 문제 및 문항 작성．셋째，난이도 차이에 따른 문제 작성 등이 이루어져야 한다．

4．1．1 문제 유형의 선택

Courseware 본 내용의 성격과 호름에 적합하 도록 문제 유형을 선택한다．일반적으로 객관식 문제 유형을 이용하는 것이 타 개념과의 연관성 올 유지하고 평가 졀과 분석에 유리하다．그러나 주관식 유형이 펄요한 경우 적절히 활용할 수 있 다．주관식의 경우 단답형 답안의 검사는 문자열 비교법울 이용하여 실행 할 수 있고，서슬형인 경우에는 핵심 단어 비표 방법율 사용하여 처리 할 수 있다．

4．1．2 개녑 관계값의 적용

문제와 문항 제작의 경우 개념 관계값을 참조 해야 한다．즉，관련된 이전（수직적인 관계로만 생각한 경우）휵은 다음 단계의 개념 내용율 포 한하여 제작한다．이 경우 문제보다 문항 작성에 쉽게 적용할 수 있을 것이다．즉，타 개념의 포합 을 문제에 두기보다 문항에 적용시키는 것이 간 단하다．이와 같이 제시된 문제률 뚱해 학습자의 타 개념 인식量올 확인 할 수 있게 된다．＜그립 $4-1>$ 과 같이 현재 수업중인 본 개념과 직접적으 로 관련되는 문향과 함께 개념 관계값에 의해 관 련된 다른 개념의 문항을 함께 제시한다．
tool의 구현에 있어 문항 작성 시 각 문항정보 에 해당되는 개녑 ID를 추가하여야 한다．이를 이용하여 진단과 처방에 대한 자료로 사용할 수 있기 때문이다．

＜그림 4－1＞개념과 문제와의 연결

4．1．3 난이도의 차별화

같은 개념 내의 같은 내용의 문제일지라도 난 이도률 차별화하여 구성하고 이륜 문제 정보에 포함시켜 학습자의 반웅도률 함께 처리할 수 있 도록 한다．난이도의 부여는 평가를 통한 진단에 있어 보다 정확한 판단을 할 수 있는 정보를 제 공한다．난이도의 구분은 진단에 앞선 검증 단계 로 활용될 수 있다．즉，평가의 기본 문제는 중간 수준의 난이도률 갖는 문제를 출재하고，설정뒨 기준 점수에 외해 합격의 판단이 되면 높은 난이 도의 문제률 소량 출제하여 심화 평가률 실시하 고，불합격 판단의 경우 낮은 난이도의 문제를 출제하여 진단의 정보를 추가시킬 수 있다．난이 도가 높은 문제 작성의 경우 문항 작성시 다음 단계의 개녑（즉，아직 수업하지 않은 관련된 내 용）을 도입하여 재시하는 것도 효욜적이다．

난이도는 정적인 성격을 갖지 않고，학습자들 의 반웅에 따라 변화될 수 있는 동적인 자료의 성격을 갖는다．이는 반용 인원에 대한 정•오답 율 둥의 일정한 기준을 수립하여 변경할 수 있 다．

4.2 문제量 통한 진단 방법

4．2．1 반응에 따른 분석

＜그림 4－1＞에서 푼제의 정답이（1）이라고 가 정한 경우 학습자의 문항 선택 반웅예 따른 진단 은 다음과 같을 수 있다．첫째，경우（1）은 정답올 답했으므로 문제에 본문 내용과 간련된 개념 내 용올 이해하고 있다고 판단된다．따라서 다음 문 제를 제시하거나 난이도가 높은 유사 문제롤 제 시하여 재확인을 실시한다．둘째，경우（2）는 현재 의 개념을 완벽히 인식하지 못하고 있는 겸우라 고 불 수 있다．따라서 관련 본문을 제시하거나 난이도가 낮은 유사 문제률 제시하여 재확인올 실시한다．셋째，경우（3）（4）（5）는 현재의 개념울 완 벽히 이해하지 못했거나 이전 개념（여기에서는

단원1－2 또는 단원1－1）을 제대로 이해하지 못한 경우이다．이 경우에는 현재의 본문을 제시하는 방법과 이전 개념에 대한 본문을 제시할 수 있을 것이다．또한 난이도 조절에 의한 재확인과 이전 개념（단원1－2 또는 단원1－1）의 문제률 재확인용 으로 제시할 수 있다．

4．2．2 관계값의 적용

앞서 개념의 간계값을 이용하여 평가 문항올 작성한 경우와 같이 평가에 대한 진단과 처방에 서도 관계값을 적용할 수 있다．예로 「ICAI시스 템에서 개별 학습 진단 모멜에 대한 연구」［12］ 에서 제시된 방법이 될 것이다．문제에 대한 주 제들의 가중치（관계값）를 설점하고 평가 결과에 따른 성취도률 비교하여 가중치와 성취도의 편차 에 의해 우선적으로 피드백을 권유하는 방법이 다．

5．개념 처리의 설계 및 구현

5.1 설계 분석

5．1．1 개략적 구성

＜그림 5－1＞개념 처리화 과정
개념 처리量 위한 Tool의 구성은 본문의 내용 율 기초로 하여 신규 개념SET율 샘성하게 되고 편집 화면에서 마우스로 노드（단위 개념）와 림크 （개념간의 관계）률 추가하거나 삭제，수정하여 개 넘SET을 완섬한다．완성된 개녑SET은 수업 운 영 전략에 반영되고 평가 문항 제작과 진단 ．처 방의 근거로 제시된다．

5．1．2 Tool 설계

개념 처리룰 위한 Tool의 주요 기능은 다음과 같다．
－열기 ：기존에 작성된 개념SET 파일을 디 스크로부더 불러온다．
－저장 ：제작되거나 수정둰 개녑SET을 파일

로 저장한다．

＜그림 5－2＞ 1001 의 개념 처리 메뉴
－노드（개념）추가 ：세분화둰 개념율 추가하 는 과정으로 노드量 삽입하교 이륨（혹욘 ID）을 지정하거나 변경한다．본문과의 연결은 HTML로 졔작된 본문의 책갈피量 참조하여 연결시킬 수 있다．또한 문제 작성기와 연동하여 관련 개념과 문제률 연졀할 수 있다．
－노드 삭제 ：뷸펼요한 노드률 삭제한다．
－링크（관계）추가 ：관련된 노드간의 관계성 을 부여한다．추가된 링크에 이兑율 부여하거나 관계값을 설정할 수 있다．
－링크 삭제 ：불필요한 링크률 삭제한다．

5．1．3 문제 표현 방식

문제의 출제는 이미 준비된 본문 내용올 이용 하여 tool에서 작성하게 된다．문제는 구축된 개 념SET에 의하여 출제한다．본 연구에서 사용뒬 문제의 형식과 톡징은 다옴과 같다．
（1）내용적 축면
첫째，하나의 본문（개념）에 대해 다양한 문제 률 제작한다．즉，난이도별 구분이 가능하도룍 제 작하고，내용（이해，웅용，암기 등）에 따라 고르게 작성한다．

둘째，가능한 관련 단원（개념）과 관련된 항목 을 사용한다．이는 학습 내용과 무관한 항목이 포함되지 않온 경우가 무관하지 않은 함목올 포 함한 경우보다 더욱 효과적이라는 연구［13］에서 그 이유률 돌 수 있다．
（2）구조적 늑면
첫째，각 문제마다 ID 률 부여하여 개념，본문 과 파계불 몆는다．

둘째，웹 상에서 문제률 표현하므로 멀티미디 어（그래픽，소리 둥）자료를 사용할 수 있도록 멀

티미디어 데이터률 포함하거나 연결시킬 수 있어 야 한다．본 연구에서는 직접 데이터률 포함할 경우 본문과의 2중화에 따른 낭비 등을 고려하여 연졀（왭 주소률 이용한 링크）하는 방법을 택하였 다．

셋째，각 문제에 대한 난이도률 지정한다．이 는 학습 전략에서 참고로 하여 학생 수준 및 과 정에 따른 적용적 평가륜 위한 것이다．

넷째，각 문제에 대한 정답자와 오답자의 반웅 횟수률 기록한다．이률 통해 문제 난이도률 재조 정하거나 수업 진행시 참고로 한다．

다섯쩨，문제 유형은 단일 문제와 한 개의 지 문이나 보기률 궁유하는 뷸록 문제로 구분한다．

5．1．4 데이터베이스 설계

데이터베이스는 local database와 remote database로 구분된다．local database는 관리자가 직접 제어하는 tool에 의해 생성되고 관리되는 데 이터베이스이다．테이뷸의 구성은 다음과 같다．
＜표 5－1＞접속 정보 ：Tool올 사용한 정보․․․ 기륙

	항목	
1	점속 서버	Remote Database 서버 주소
2	접속 ID	서버 접속 ID
3	최종 정속월	최종 전속일
4	최중 접속시간	최종 접속시간

remote database는 서버에 설치되어 학습 및 평가 등에 활융된다．테이뷸의 구성은 다음과 같 다．
＜표 5－2＞노트（개념）구성

	학목	내옹
1	ID	노드의 고유 ID
2	이륨	노드의 이量
3	본문 주소	노드와 연관ㄷ⿺ㄴ 본문 주소
4	X	노드의 화면상 위치（x）
5	y	노드의 화면상 위치（y）
6	좌측노든	노드 좌책 연졀 노든
7	우촉ㄴㄷㅡ	노드 우축 연견 노드
8	노드 설명	느드 셜명

〈표 5－3＞문제 테이볼 구성

	학목	4%	비고
1	분제 D	문재量 구분하기 위한 문제뗠 1 D	
2	본문 D	분문의 개념 D	
3	불룩 문제의 자문		T／F
4	불록문제	팔려 문제（불록 문제）여 대한 문져 여부	TF
5	분룬 주소 및 패갈파	퐈ㄴㅕㅕ 본문 주소 및 쳑갈피	T
6	문네 내옹	분서ㅅㅐㅐㅛ8ㅇ	
7	문제의 ． 7 림 주소	문제에 포함둴 그렴의 위치（주소）	

8	선택 항묵 1	선뼈 함목	
9	항목 1의 그릴 주소	항목 1표 함께 제시될 그립의 위치	
10	함목 1의 분문 \mathbb{D}	선빙항목 1아 롸련 본문 ID	
	\sim	썬텨 핳목 2～4	
11	정답	정단	
12	애상 난이도	애상되는 바이도	2
13	참ㄱ⼯내융	헨트，안내사항．기타 참고 냉88	
14	궁답 반융	반웅 분석：겅단 반웅 밧수	3
15	오답 반웅	빤옹 분석 ：오답 반응 핫수	3

＜그림 5－3＞문제 작성
여기에서［1］본문 주소 및 책갈피는 평가 부 분과 진단 모듈에서 중요하게 사용되는 부분이 다．족，문제에 대한 관련 부분올 연결하기 위한 포인터（Pointer）의 역할을 한다． 2 예상 난이도 는 평가 문제 제시에 있어 학생의 지식베이스 내 용에 따라 난이도 조절을 위해 필수적으로 필요 한 부분이다． 3 정－오답 반움은 평가시 정－오 답자의 수 侸 누적시켜 통계量 산출하고 이률 이 옹하여 예상 난이도률 변경하며 수업 진행 규칙 에 반영한다．

문제 테이불욜 제어하기 위한 tool의 실행화면 은＜그림 5－3＞과 같다．

5.2 개발 환경과 사용자 환경

5．2．1 개밦자 환경

PentiumIII CPU률 탑재한 PC에서 Visual Studio 6율 이용하여 프로그래밍을 구현하였다． 원격 데이터베이스 운영을 위해서는 Windows 2000 Server률 운영체제로 하고 MS－SQL 2000 이 설치된 PentiumIII PC률 이용하였다．

5.2 .2 사용자 환경

Tool 운영을 위한 사용자 환경은 Pentium CPU률 탑재하고 Windows 운영체재률 사용하는 일반적 시스템이다．그러나 네트워크 구성이 이 루어져 있어야 Server에 접속하여 모든 메뉴률 사용할 수 있다．

5.3 구현 분석

5．3．1 전체 Tool 기본 구성

〈그림 5－4＞tool의 기본 메市
tool의 주요 기눙에 대한 메뉴 구성은＜그림 5－4＞와 같다．
－연졀 ：원격 데이터베이스와의 연졀（＜그림 5－5＞）
－문제 ：문제 작성 및 편집
－관계 ：개념 그래프률 제작，수정하여 본문 과 문제률 연결하며 처리률 위한 기본 자료를 만 든다．
－DB ：각종 데이터 베이스률 조회，수정한다．
－창 ：제작된 tool은 MDI（Multi Document Interface）방식으로 운영되므로 여러 개의 창을 정렬해야 할 경우 사용한다．

5．3．2 개념과 관계 처리 부분의 구성

개녑간의 관계률 설정하고 나타내는 방법으로 는 여러 가지가 있을 수 있으나 그래프（Graph） 방식올 이용하였다．아울러 개넘은 그래프의 노 드（node）로 관계는 링크（link）로 대웅된다．
（1）노드의 추가
노드（개념）률 추가하는 방법으로는 메뉴를 이 용하거나＜그림 5－6＞과 같이 화면상에서 오른쪽

클릭하여 팝업 메뉴（popup menu）에서 선택한 뒤 추가 할 수 있다．

＜그립 5－6＞popup menu量 이용한 노트의 추가
＜그림 5－7＞과 같이 개념에 ID量 부여하기 위 해 노드률 마우스 오른쪽 버뜬으로 꿀릭하면 입 력할 수 있는 창이 나타난다．노드 밑의 레이불 을 오른쪽 클릭하여 노드의 설명（단원 제목 둥） 율 입력하거나 수정 할 수 있다．

＜그림 5－7＞노드의 이畨 섶정
（2）노드간의 연졀
노드간의 연결（link）은＜그립 $5-8>$ 과 같이 메 뉴률 이용하여 수행한다．먼저 기준이 되는 노드 륜 큘릭하고 마우스률 이둥하여 대상이 되는 노 드률 큘릭한다．연졀뒨 선을 쿨릭하여 노드간의 관계값율 설정할 수 있다．

＜그림 5－8＞노드간의 연결（link）
（3）노드의 복수 선택
＜그림 5－9＞와 같이 마우스률 드래그（drag）하 여 여러 개의 노들⿱⿱一𫝀冖⿺⿻一⿰冫⿰亅⿱丿丶丶 선태ㅎㅏㅏ 뒤 작업할 수 있도 록 제작되었다．륙히 사용되는 노드의 개수가 많 아질수록 복수 선택 기능은 필수적인 것이다．선 택된 복수개의 노드는 삭제 및 이동 등이 가능하 다．

＜그림 5－9＞북수 노드 선택
（4）노드 처리를 위한 변수 및 포인터 설정
노드의 구현율 위해서는 노드와 연결선의 개 체에 고유의 속성을 부여하여 각종 정보를 저장 해야 한다．족，노드의 경우 푠련된 노드의 포인 터와 위치 등이 필요하고 링크의 경우 양쪽에 연 결될 노드의 정보와 레이블 정보 둥이 보관되어 있어야 한다．
（5）그래프 처리률 위한 사용자 정의 컨트롤 제작 프로그래밍 언어 자체에는 노드를 표현하기 위한 개체（대부변의 겸우 control이라고 칭한다） 률 기본적으로 제공하지 않는다．따라서 노드와 그래프의 처리률 워해서는 별도의 사용자 정의 개체룰 직접 구현해야 한다．［14］［15］［16］본 Tool 에서 사용되고 있는 노드가 별도로 제작된 사용 자 정의 컨트룰이다．사용자 정의 컨트룰은 프로 그래밍 언어에서 제공되는 사용자 정의 개체률 기본으로 사용자가 속성（property），메소드 （method），이벤트（event）둥율 추가하여 완성된 다．〈그림 5－10〉，〈그립 5－11＞은 사용자 정의 개체의 구성욜 나타낸다．

6．결론

기존의 $\mathrm{CAI}, \mathrm{WBI}$ 관련 연구에 있어 깊이 다 루어지지 않은 부분이 본 연구의 주제인＇학습내 용의 개념화（혹은 구조화，단위화）의 방법＇，＇개념 화된 본문간ㅇी 연관성 부여＇，이률 퉁한＇평가와 진단에의 할융＇둥이다．아올러 이튤 실현하기 위 한 별도의 tool 설계와 구현 부분도 깊이 연구되 지 못한 상배이었다．즉，대부분의 경우 고정된

본문의 제시와 문제 은행식의 단순 평가, 고정된 진단과 처방의 방법을 이용하였다. 따라서 본 연 구의 의의는 ICAI가 보다 실질적으로 적용적, 체 계적인 능력을 갖추기 위한 방법을 제시했다는 것에 있다.

완성된 tool은 ICAI의 expert module의 기능 을 기반으로, 이론에서 다루어진 개녑과 관계의 규칙을 포합하여 제작되었다. expert module의 기능을 세분화하고 타 모듈과의 관계률 함께 고 려한다면 많은 기능을 포함하는 광범위한 tool을 제작하여야 할 것이다. 그러나 기타 부분을 제외 한 개념 작성과 작성된 개념을 이용한 문제작성 을 위주로 제작되었다. 톡징으로는 Windows 환 경과 GUI 방식의 프로그래밍 도구의 특징을 최 대한 반영하여 사용자가 닙게 활용할 수 있도록 제작하였다.
tool의 구현 결과에 따른 톡징욜 정리하면 다 음과 같다.

첫째, 개념과 관계값의 설정은 진단과 처방에 단순화된 방법율 제시하였다. 즉, 문제의 제작 단 계에서부터 설정된 개념을 참고하여 제작되므로 평가의 결과 분석이 매우 용이하였다. 따라서 처 방의 경우 설점된 개녑만을 확인하여 학습자에게 제공하면 간단히 처리둴 수 있었다.

둘째, 개념 설정 이전에 본문의 상세한 분할이 필요하였다. 즉, 개념화룰 위하 큰 구역의 설정 외에 문제 및 항목 제작, 더 나아가 진단과 처방 의 정확한 처리률 위해 세부적인 분할이 필요하 다. 처방의 경우를 예률 들면 feed back시킬 본 문의 정확한 위치를 알 수 있다면 구체적이고 직 접적인 조치가 가능하기 때문이다. 이률 위해 tool에 HTML 형식의 본문에 책갈피(name tag) 를 쉽고 편리하게 삽입하는 기능의 개선이 필요 하다.

셋째, 개념 설정의 경우 선형(직선적인) 형태 의 구조를 갖기 윕다는 어려움이 있었다, 죽, 일 반적인 본문은 이야기 전개식의 순서적인 진행 구성을 가지므로 복수개의 요소(개념)로 나누기 힘든 경우가 발생한다. 이를 해결하기 위해서는 본문의 구성율 논리적으로 세분화하고 세분화된 요소끼리의 연관성을 젹절히 부여하기 위한 교사 의 노력이 필요하다.

넷째, 관계값의 설정이 매우 중요하고 이률 보 다 적극적으로 활용하기 위한 진단 또듈 차원의 연구가 함께 필요하다. 관계값을 이용하여 처방

에 다양성과 유연성욜 중대시킬 수 있기 매문이 다.

마지막으로, 본 연구 결과와 관련하여 앞으로 이루어져야 할 연구 과제를 제안하면 다음과 같 다.

첫째, 주관식, 서술식 문제에 대한 상세한 처 리가 풜요하다. 본 연구의 결과물인 Expert Module Tool은 4지선다형의 객꽌식 처리를 대상 으로 제작되었다. 그러나 보다 다양한 평가 처리 가 요구된다. 즉, 주관식(단답형)이나 서술식의 답변을 처리 할 수 있는 기눙이 추가되어야 한 다. 물론 이 사항은 학생과 직접 접촉하게 되는 Interface Module과 진단과 처방올 위한 Diagnostic Module과의 연관성이 있기 때문에 모 든 모둘이 동시에 고려해ㅇㅑㅑ 할 사항이 된다. 또 한 평가와 진단에 있어서의 처리 방법도 합께 고 려되어야 할 것이다.

둘째, DBMS의 성능에 따른 선택이 필요하다. 본 연구에서는 구혐의 편리성과 대중성 둥의 톡 징을 가진 Microsoft SQL을 사용했다. 그러나 다 수의 사용자가 데이터베이스에 동시에 접속했을 경우와, 많은 양의 데이터 접근을 처리하는 데 부족함이 있욜 수 있다. 이률 해결하기 위해 다 양한 종류의 CPU Machine과 OS, DBMS 를 조합 하여 검증할 필요가 있다.

셋째, 보안의 문제가 고려되어야 한다. ICAI의 튝성상 인터넷과 네트워크 환경에서의 작업이 필 수적이다. 이에 따라 보안 문제가 반드시 고려되 어야 한다. 즉, 학생들의 신상정보의 외부 유출, 허가(둥록) 받지 않은 사용자의 무단 접근 등이 주요 연구 대상이 될 것이다. 이와 관련하여 데 이터베이스의 Transaction 처리률 도입해야 하며 방화벽과 암호화 방법 둥도 도입되어야 할 것이 다.

넷째, 웹 브라우저 상에서도 실행 가눙하도록 하는 연구가 요구된. 이률 위해 Active X Doc 기법 둥을 활용한 웹 기반 도구의 구현도 제안할 만하다. 이 경우 웹을 기반으로 하는 장점과 프 로그래밍 언어률 이용한 다양하고 다각적인 프로 그래밍의 장점올 동시에 충족시킬 수 있을 것이 다.

다섯째, 본 연구의 범위는 학습 내용의 개념화 가 주목표이다. 물론 개념화를 적용하기 위해 평 가 문항 작성기률 tool에 함께 구헌하여 개념과 평가 문제률 연결시켰다. 그러나 이에 그치지 않

고 개념화에 따론 수업 전략 수립, 수업 운영, 평 가 실시, 진단과 처방 둥의 전채적이 부분이 합 께 연구되고 구현되어야 완전한 의미의 ICAI를 구축할 수 있을 것이다.

참고문헌

[1] 쳥영수(1994). ICAI 의 교수 모듈에 대한 이론적 논 의와 셜계 전략 탐색. 서울대학교 대학원. 교역학 석사하위논문.
[2] 솧재룩 (1996). CAI와 ICAI가 학습능력이 다른 학 습자의 학엽성취에 미치는 효과. 한국교원대하ㄱㅛㅛ. 표욕학석사학위논문.
[3] 이화민 신상철 갱순영 유헌창(2001). 문제 은행 시 스템율 이용한 웹 기반 평가 시스탬의 셜계 및 구 혐. 한국컴퓨터교육학히 5권 1호.
[4] 김미량. 하이표택스트 표수-하ㄴㅡㅡㄴ확경예서 상호작용 중진율 위한 설계전략의 탑색. 교욕공학연구 제 14 권 제1호 pp. 47-69
[5] 박종선(1998), 네트왝기반의 교수-학습울 위한 가 상학습지원시스톔 퓰렛픔 설계. 교욕공학연구 제 14 권 제1호 pp. 71-96
[6] 조재완 장세희 백장현 김영식(2001). CAT 평가모형 을 적용한 웹 기반 코스웨어 평가 시스템의 설계 및 구혐. 한국컴퓨터교역학희 5권 2호.
[7] 이현혀 황부현(2000). 예이전트률 활용한 쵑 기반 단계노 원격 교육 시스템읙 설계. 한국컴퓨터교육 학혀 3 권 1 호.

김 만 석

1994.02 관둥대학교 전자광학과 줄업 (이학사)
2000.02 독학에 의한 전자계산학이학사 취둑
2000.03 현재 강롱대학교 교육대학원 전산교육 석사 퐈정
1997.03~현재 강원도공업계고릉학교 강릉공병실숩소 멀티미디어실 표사
E-Mail : manseok@hanmail.net
[8] 이대원 이화민 신상철 유헌창(2001). 학습행위 정 보수집과 분석율 위한 에이전트 시스템 개발. 한국 컴퓨터표육학희 5뤈 2호.
[9] 김영환(1994). 과제분석과 계열화률 위한 단순화 조건업. 표육궁학연구 제9권 세1호 pp. 43-59.
[10] 강성국 이영현 강성현 김성식(2001). 채계적 개념 학습욜 위한 전문졈낵시스템의 설계 및 구현. 한 국컴퓨터교욕학희 4권 1호.
[11] 송민아 송온하 정권호 정영식(2000). 학습문제 구 조화量 퉁한 효율적인 웹기반 개별화 학습시스템 $R C^{2}$ 의 설계 및 구현. 한국컴퓨터교욕학희 3권 1 호.
[12] 전경남(2002). ICAI시스템에서 개별 학습 진단 모 델에 대한 연구. 강륭대학교 교욕대학원. 교육학숙 사학위는문.
[13] 나일주(1993). 컴퓨터 보조수업의 반복연습형 프 로그램에 있어서 문항제거와 선택지 범위가 사실 적 정보의 기억에 미치는 효과. 교욕학연구 제31 권 5 호.
[14] Microsoft, Visual Basic Component Tools Guide. Microsoft. pp. 277.
[15] 김민호 박성완 주경민(2000). Visual Basic Progra mming Bible Ver. 6.X. 영진 귤 퐈사
[16] Brierley. Eric, Prince. Anthony, Rinaldi. David(1 998). The Waite Group's Visual Basic 6 HowTo. Macmillan Computer Pub.

1985.02 고려대학교 수학교육퐈 줄업 (이학사)
1987.02 고려대학교 대학원 (전산학전공, 이핫석사)
1990.02 고려대학교 대학원
(전산학전공, 이학박사)
1994.09~1995.08 카나다 토론토 대하교 Enterprise Integration 연구소
(Post-Doc. 겸 Visiting Professor)
2000.11 ~현재 강쁭 ECRC(전자상거래지원션터) 기술 지원 실장
2001.06 ~현재 강릉대학교 중소기업지원센터 기술지원 부장
1989.03 ~현재 강풍대학교 컴류터공학과 교수

E-Mail : kch@kangnung.ac.kr

[^0]: + 정회원: 강륭대학교 표육대학원 전산표육전궁
 논룬접수: 302년 3월 20일, 심사완료 : 2002년 4원 22일

