원 저

柴胡藥鐵이 생쥐의 Adjuvant 誘弡 關節炎에 미치는 영향

구민숙 • 윤종화 • 김경호 • 장준혁 • 이승덕 • 김갑성

동국대학교 한의과대학 침구학교실

Abstract

The Effect of Bupleuri Radix Herbal－acupuncture Solution

 on Immune Responses to Adjuvant Induced Arthritis in MiceMin－Suck，Koo•Jong－Hwa，Yoon•Kyoung－Ho，Kim•Jun－Hyeok，Jang Sung－Deck，Lee－Kap－Sung，Kim

Department of Acupuncture \＆Moxibustion，College of Oriental Medicine， Dong－Guk University（Direted By Prof．Kap－Sung，Kim O．M．D Ph．D．）

Objective ：The purpose of this study is to investigated that effect of Bupleuri Radix Herbal－acupuncture solution（BRHS）on the celluar immune response in mice with adjuvant induced arthritis，performed several experimental items ：those are paw edema，IL－1b，IL－6，IL－8，PNF－a and PGE 2 ．

Methods ：All the male Sprague Daeley mice used in this study were bred and maintained in our pathogen－free mouse colony and were 8 weeks of age at the start of the experiment．The experimental model of arthritis was induced by injection of $50 \mu \mathrm{~g} / \mu \mathrm{l}$ adjuvant（mineral oil mixed Mycobacterium butyricum）．Bupleuri Radix Herbal－acupuncture solution（BRHS）was injected into ST_{36}（足三里）of mice daily for 21 days．Immunohistological analysis was carried out to assess paw edema，IL－1 β ，IL－6， IL－8，PNF－α and PGE $_{2}$ expression in synovial membrance and sera Bupleuri Radix Herbal－acupuncture solution（BRHS）injected．

Results ：At day 21 post arthritis onset，immunohistological studies using monoclonal antibodies showed that Bupleuri Radix Herbal－acupuncture solution（BRHS）group had decreased expression of LL－1 β ，IL－6，IL－8，PNF－α and PGE 2 at inflamatory cytokines production and edema compared with control group．

[^0]Conclusion ：Bupleuri Radix Herbal－acupuncture solution（BRHS）inhibited infammatory cytokines production and edema in adjuvant induced arthritic mice．Thus，Herbal－acupuncture solution may have prevention．

Key words ：Bupleuri Radix Herbal－acupuncture solution，arthritis，cellular immunity

I．緒 論

關節은 筋의 機能的 發現의 聚合處이며 屈伸，內外轉 및 同轉등을 담당하는 운동기관 ${ }^{11}$ 으로써，여러 가지 원인에 의한 炎症性 病變이 일어나 疼痛，腫脹，强直，發赤，發熱，運動障煄가 나타나는 질환을關節炎이라 한다＂．
關節炎 患者의 炎症部位의 滑膜細胞에서는 proinflammatory cytokine의 일종인interleukin－1 $\beta(\mathrm{IL}-1 \beta)$ 의 上昇 ${ }^{33}$ 과 이로 인한 燐脂質의 變換 그리고 arachidonic acid 대사과정에 관련된 酵素界 의 活泩化 ${ }^{4)}$ 및 관련된 prostaglandin의 生成 增加 등 다양한 因子들 ${ }^{5}$ 이 관련되어 있다．

현재 關節炎 研究를 위한 動物 實驗的 研究로는 collagen 誘發 關節炎（Collagen－induced arthritis， （IA）${ }^{6)}$ 과 adjuvant 誘發 關節炎 ${ }^{7)}$ 등의 방법이 있으 며 이중 adjuvant 誘發 關節炎은 關節炎 浮腫의 연 구모델로서 이용되고 있다．

최근 韓㗨學의 치료법중 經絡學說의 原理에 근거 하고 韓薬의 特性을 이용하여 人體의 經穴 및 壓通點에 薬鍼液을 주입하여 刺針效果와 薬物作用을 통 하여 질병을 치료하는 ${ }^{8)}$ 薬鈸療法이 關節炎 치료에 효과가 있음이 보고되고 있다．
Adjuvant 誘發 關節炎에 대한 關聯藥鋮 研究로 는 草龍膅 ${ }^{(9)}$ ，草烏 ${ }^{(0)}$ ，牛膝 ${ }^{(1)}$ ，繥斷 ${ }^{(2)}$ 等을 adjuvant 誘發 關節炎에 유효하다고 보고하였으나

柴胡를 薬鋮으로 사용하여 연구한 보고는 없었다．
이에 저자는 炎症抑制 및 炎症傳達物質纤 生成㺫 미치는 영향을 연구하기 위하여，생쥐의 關節에 adjuvant로 關節炎을 誘發시키고 和解退熱의 效能 이 있는 柴胡（Bupleurum falcatum Linne．）${ }^{133}$ 를 材料로 한 樂銊液（Bupleuri Radix Herbal－acu－ puncture solution）을 朓關節痛，四肢浮腫等의 중상 에 효능이 있는 足天里 $\left(\mathrm{ST}_{36}\right)^{8)}$ 에 投與하여 炎症吽： cytokine인 interleukin－1 β（IL－1 β ），inter－ leukin－6（IL－6），tumor necrosis factor－α （TNF－α ）의 변화 및 synovial fluid에서 prosta－ glandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ 의 변화를 관찰하여 有意한 結果 를 얻었기에 보고하는 바이다．

I．實 騟

1．材 料

1）動 物
胎齢 8주된 Sprague Dawley계의 雄性 생쥐（立 창 사이언스，대구，대한민국）를 $22 \pm 2^{\circ} \mathrm{C}$ 온도와 $40 \sim 60 \%$ 습도가 유지되는 조건으로，감염을 방지하 고자 無菌飼育装置内에서 일주일 이상 적응시킨 후 체중 130 g 내외의 것을 實驗에 사용하였다．

2）薬 材

實驗에 사용한 柴胡（Bupleuri Radix）는 東國大學校 韓贀科大學 附屬韓方病院에서 사옹중인 정선

한 柴胡를 사용하였으며 3 次 蒸溜水를 추출에 사용 하였다．

3）柴胡藥釷（BRHS）의 製造

본 實驗에서는 水删－Alcohole沈法 ${ }^{14)}$ 에 의해 다 음과 같이 柴胡樂鋮을 製造하였다．먼저 柴胡 60 g 을 수직으로 환류냉각관이 부착된 盾低flask에 넣고，蒸溜水 400 m 를 가한 후， 3 시간 煎湯하여 抽出하고溏過하였다．그 후 濾過液 중에 남아 있는 微量의 침전물을 제거하기 위해 $4^{\circ} \mathrm{C}$ 에서 $2,500 \mathrm{rpm}$ 으로 10 분간 원심 분리하여，ㄱ 上層液을 취하였다．上層液을 다시 rotary evapomiceor（BUCHI RE121， Switzerland）로 减啀浀縮하고，濃縮液准 蒸溜水를 가하여 全量을 $50 \mathrm{~m} \ell$ 가 되도록 한 다음，membrane filter（ $0.22 \mu \mathrm{~m}$ ，Whatman ${ }^{\text {R }}$ ，Germany）로 濾過하였 다．위의 방법으로 製造한 柴胡抽出液 50 ml 에 ethanol을 가하여 稪拌하고 저온에서 방치하여 生成 된 침전물을 餘別하였다．이 때 ethanol은 99.9% ethanol을 사용하였으며，첨가량은 柴胡抽出液이 단 계별로 $75 \%, 85 \%$ 및 95% ethanol 용액이 되게하 면서 침전물을 제거한 다음，減晆漕縮䇄였다．減啀櫦縮郆여 生成된 濃縮液训 生理食鹽水를 가하고 1 N NaOH 로 pH 7.0 으로 조절하여 全量이 $200 \mathrm{~m} \ell$ 가 되 게 한 다음 저온에서 24 시간 방치한 후，membrane filter（ $0.22 \mu \mathrm{~m}$ ，Whatman ${ }^{\text {® }}$ ，Germany）로 濾過하여柴胡藥鍼解 源液 $(\times 1)$ 으로 사용하였으며 필요에 따 라 0.5 倍 濃度 $(\times 0.5)$ 및 2 倍 濃度 $(\times 2)$ 로하여 사 용하였다（Scheme 1）．

4）試薬 및 機器

Adjuvant는 熱—弱化시킨 Mycobacterium bytyricium（Difco Labomiceory，Detroit，MI）을， 그 외의 모든 試薬들은 特級製品을 사용하였고， $\mathrm{IL}-1 \beta$ 및 $\mathrm{IL}-6$ 의 定量에 사용한 3 종류의 抗體 （ $\mathrm{ON}-1, \mathrm{NY}-2, \mathrm{YB}-3$ ）및 polyclonal antibody들 은 東或大學校 䣽科大學 薬理學教室로부터，TNF $-\alpha$

Scheme 1．Prepamiceion of Bupleuri Radix Herbal－ Acupuncture Solution（BRHS）

및 $\mathrm{IL}-8$ 의 定量에는 R\＆D systems社（Minneapolis， $\mathrm{MN}, \mathrm{U} . \mathrm{S} . \mathrm{A}$.$) 로부터，prostaglandin \mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ 측정 에 사용한 試藥인 enzyme immunoassay kit는 Cayman Chemical社（Ann Arbor，MI，U．S．A．）로부 터 구입하여 사용하였다．

Table I Classification of Experimental Groups

實驗工畕		마리	적용부위	投與迢／mice	기간
	正常群（Normal）	5			21일
	ant 誘發群（對照群，Control）	5	足三理（ ST_{36} ）	0.4 ［日l	21일
實 驗 群	0.5 倍樂銊刺载群 $(\times 0.5$ ）	5	足三理（ ST_{36} ）	0.4 m ¢	21 일
	1 倍藥鍼刺戟群（ $\times 1$ ）	5	足三理（ ST_{36} ）	0.4 ma	21 일
	2 倍薬鋮刺戟群（ $\times 2$ ）	5	足三理（ ST_{36} ）	0.4 ml	21일
	任意穴刺戟群（Blank locus）	5	任意穴（尾椎部）	0.4 al	21일

實驗에 사용한 機器로서는 rotary evapomiceor 는 BUCHI社（BUCHI RE121，Switzerland）로부터， CO_{2} 배양기는 Vison社（Vision Biotec，VS－9180， Korea）로부터，UV spectrophotometer는 Gilford社（Gilford，Response ${ }^{\text {TM }}$ ，U．S．A．）로부터，ELISA reader는 Molecular Devices社（VERSA max， U．S．A．）로부터 구입하여 사용하였다．

2．方 法

1）取 穴
생쥐의 經穴은 인체와 달리 그 부위가 애매하여解剖學的으로 인체의 足三里 $\left(\mathrm{ST}_{36}\right)^{8)}$ 에 상웅하는 부 위의 털을 제거한 후 骨度分寸法으로 取穴하였다．

2）實験群의 分類 및 慮置

實驗動物은 생쥐 5 마리를 1 群으로 하여 無處置한正常群（Normal），adjuvant 關節炎 誘發产 生理食鹽水를 투여한 對照群（Control），足二里（ ST_{36} ）와 $\times 0.5, \times 1, \times 2$ 의 농도를 각각 投與한 實驗群으로 분류하였으며 投與용량은 1 회 $400 \mu \mathrm{l}$ 씩 주입하였다．

3）關節炎의 實験的 誘發 ${ }^{157}$

關節炎을 誇發시키기 위혜 熱一弱化시켜 건조한 Mycobacterium butyricum를 mineral oil에 현탁 시킨 액（adjuvant）을 생쥐의 오른쪽 발에 1 회 皮下注射 $(50 \mu \mathrm{~g} / 50 \mu \mathrm{l} / \mathrm{mice})$ 하였다．實驗은 한그룹당 5 마 리의 생쥐를 사용하였으며 對照群으로는 mineral oil만을 사용하여 같은 방법으로 오른쪽 발에 주사

하고 柴胡薬鍼 대신 생리식염수 $(0.9 \% \mathrm{NaCl}$ 용액） 를 投與하였다．

4）Synovial fluid의 探取

생쥐의 부어오른 關節로부터 synovial fluid의 探取는 멸균된 insulin syringe（SHINA Co．，Seoul， Korea）를 사용하여 eppendrop tube에 모아 6,000 rpm 에서 30 분간 원심분리한 뒤 卜層液을 희석하여 prostaglandin E_{2} 의 측정에 사용하였다．

5）Paw volume의 測定 ${ }^{16)}$

生成된 浮腫의 용적은 adjuvant를 投與하기 직전 에 측정한 volume을 control volume（day 0 ）으로 하였으며 data는 매일 같은 시각에 측정한 volume 을 control volume과 비교하여 percentage로 나타 내었다．測定에는 plethysmometer（UGO，Basil， Italy）를 사용하였다．

6）Interleukin－ 1β 의 泿度測定

생쥐의 혈청 속의 $\mathrm{IL}-1 \beta$ 의 양은 sandwich ELISA（enzyme linked immunosorbent assay）法 ${ }^{\text {17 }}$ 을 이용하여 측정하였다．즉 anti－IL－1．β polyclonal antibody（ $5 \mu \mathrm{~g} / \mathrm{m}$ ）를 96 well plate에 PBS buffer를 이용하여 미리 over night로 홉착시 켜 놓는다．생줘 혈청을 PBS buffer로 희석한 다음 50μ 씩 plate에 가한 다음 실온에서 1 시간 배양시킨 다．그 후 96 well plate를 0.05% Tween－PBS로 3 회 세척하고 그 위에 biotin화시킨 anti－IL－1 β
monoclonal antibody（ $\mathrm{ON}-1, \mathrm{IgG}_{2 \mathrm{~b}}, 5 \mu \mathrm{~g} / \mathrm{m} \ell$ ）를 다 시 가하여 1 시간 배양한다．3희 세척한 후 horse radish peroxidase（HRP）conjugated streptavidin을 가하여 1시간 反應 시킨 후，o－phenylenediamine 을 기질로 하여 492 nm 에서 吸光度를 측정하였다．

7）Interleukin－6의 量澌定

생쥐의 血清속의 $\mathrm{IL}-6$ 의 양은 Nam 등 $^{18)}$ 이 학 립한 sandwich ELISA 法을 이용하여 측정하였다． 즉 anti－IL－6 monoclonal antibody（NY－2，IgM， $5 \mu \mathrm{~g} / \mathrm{m} \ell)$ 를 96 plate well에 PBS buffer를 이용하 여 미리 over night로 홉착시켜 놓는다．그리고 희 석한 血清을 50μ 씩 plate에 가한 다음 실온에서 1 시간 배양시킨다．그 후 well plate를 0.05% Tween－PBS로 3회 세척하고 그 위에 biotin화시 킨 anti－IL－6 monoclonal antibody（YB－3，IgG1， $5 \mu \mathrm{~g} / \mathrm{ml}$ ）를 다시 가하여 1 시간 배양한다． 3 회 세척 한 후 horse radish peroxidase（HRP）conjugated streptavidin을 가하여 1 시간 反應시킨 후， $0-$ phenylenediamine을 기질로 하여 492 nm 에서 吸光度를 측정하였다．

8）Interleukin－8의 量測定 ${ }^{19)}$

IL－8 의 濃度측정에 사용한 enzyme immuno－ assay kit는 R\＆D systems社（R\＆D System， Minneapolis， Minn ）의 제품을 사용하였다．먼저 각 각의 group으로부터 희석한 血清 50μ 를 an－ ti－IL－8 polyclonal antibody가 coat되어 있는 well에 넣은 다음 실온에서 2 시간 배양한다．그 후 well plate를 세척하고 peroxidase conjugated secondary antibody를 $100 \mu \ell$ 가한다．다시 실온에 서 2 시간 배양 후 세척한 다음 peroxidase의 기질 시약을 $100 \mu \mathrm{l}$ 가한 다음 450 nm 에서 吸光度를 측 정한 뒤 檢量曲線과 비교하여 定量하였다．

9）Tumor necrosis factor $-\alpha$ 의 淸度测定 ${ }^{201}$

TNF－α 의 俵度測定에 사용한 enzyme im－ munoassay kit는 R\＆D system社（R\＆D System， Minneapolis，Minn）의 제품을 사용하였다．희석혈 청 $50 \mu \ell$ 를 anti－TNF α monoclonal antibody가 coat되어 있는 well에 넣은 다음 실온에서 2시간 배양한다．그 후 well plate를 10 mM phosphate buffered saline（ pH 7.4 ）－0．05\％Tween 20으로 3회 세척하고 alkaline phosphatase conjugated secondary antibody를 $100 \mu \mathrm{l}$ 가한다．다시 실온에 서 2 시간 배양 후 세척한 다음 phosphatase의 기 질시약 $\{1 \mathrm{mg}$ of disodium p －nitrophenyl phos－ phate， 1 ml of 1 M diethanolamine buffer $(\mathrm{pH}$ 9．5）containing $0.5 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2}$ 을 100μ 아한 다 음 405 nm 에서 吸光度를 측정한 뒤 檢量曲線과 비 교하여 定量하였다．

10）Prostaglandin E_{2} 의 眼度測定

Enzyme immunoassay kit（Cayman Chemical社，U．S．A．）를 사용하여 Synovial fluid으로 부터 PGE_{2} 의 양을 측정하였다．${ }^{21}$ 즉，synovial fluid를 $3,000 \mathrm{rpm}$ 에서 원심분리하고 上層液을 이용하여 PGE_{2} 의 함량을 측정하였다．그 방법은 먼저 EIA buffer를 비특이적 결합（NBS）을 한 well에 첨가하 고， $50 \mu \ell$ 의 buffer를 최대결합 $\left(\mathrm{B}_{0}\right)$ 을 한 well에 첨 가하였다． $50 \mu \ell$ 의 PGE_{2} standard（7．8，15．6， $31.3,62.5,125,250,500,1000 \mathrm{pg} / \mathrm{ml}$ ）나 EIA buffer로 희석한 상충액 sample을 각 well에 첨가 하였다． 50μ 의 PGE_{2} acetylcholin－esterase tracer를 total activity와 blank well을 제외한 각 각의 well에 넣고， $50 \mu \ell$ 의 anti－ PGE_{2} monoclona！ antibody를 total activity（TA）와 비특이적 결합 （ NSB ）그리고 blank（ B ）well을 제외한 각각의 well 에 넣었다．플라스틱 필름으로 plate를 덮고 40 C 에 서 18 시간 反應시켰다．그리고 wash buffer로 $5 \mu \ell$ 세척한 후， $200 \mu \ell$ 의 Ellman＇s 시약을 각각의 well

에 첨가하고 $5 \mu \ell$ 의 tracer를 total activity well에 넣었다．Plate를 plastic film으로 덮고 60～90분 동 안 develop시킨 후 405 nm 에서 吸光度를 읽었다．

11）統計處理

본 實驗에서 얻은 實験群 간의 결과에 대하여 Student＇s t－test를 실시하여 有意性을 검정하였으 며， p 값이 0.05 이하인 경우에 有意性를 인정하였다．

III．實騇成續

1．Paw volume의 測定

각 濃度別 柴胡樂鋮의 足三里 $\left(\mathrm{ST}_{36}\right)$ 投與로 adjuvant 投與 후 實驗群의 제 1일～제 9 일 사이에 는 對照群에 비하여 별다른 抑制를 나타내지 못했 다．그러나 제 21 일에서는 對照群에 비해 柴胡薬鋮 $\times 0.5$ 의 濃度에서는 $36.8 \%, \times 1$ 의 濃度에서는 52.6% ，그리고 $\times 2$ 의 濃度에서는 54.7% 의 抑制效果를 보임으로써 기간별，濃度依存的 억제효과가 나 타났다．任意穴刺戟群（BL，blank locus）에서는 柴胡藥鍼（ $\times 1$ ）投與群에서도 31.6% 의 㧕制效果를 나 타내었다（Fig．1）．

Fig 1．Effects of BRHS on adjuvant induced arthritis in mice

2．Interleukin－1 β 의 生成에 미치는 效果
對照群은 正常群에 비하여 3.2 배의 중가를 보였 으며，寅騟群은 對照群에 비하여 柴胡蔡鍼 $\times 0.5$ 에 서 23.5% 로 有意性（ $\mathrm{p}<0.05$ ）있는 억제효과가 보였 고，$\times 1$ 에서 $42.2 \%, \times 2$ 에서 44.1% 로 각각 매우 현저한 有意性（ $\mathrm{p}<0.005$ ）울 나타냈다．任意穴刺戟群 （BL，blank locus）은 16.7% 의 抑制效果가 나타났 다（Fig．2）．

Fig 2．Effect of BRHS on IL－1 β production in mice sera of adjuvant induced arthritis Data shown are mean values with bars indication the standard deviations of the mean $(n=3)$ ．${ }^{p}<0.05, \cdots p<0.005$ as compared with adjuvant（Adj）

3．Interleukin－6의 生成에 미치는 效果

對照群은 正常群에 비하여 2.9 배의 증가를 보였 으며，嘪驗群은 對照群에 비하여 柴胡藥銊 $\times 0.5$ 에 서 21.0% 로 有意性（ $\mathrm{p}<0.05$ ）있는 억제효과가 보였 고，$\times 1$ 에서 $28.4 \%, \times 2$ 에서 39.5% 로 각각 현저 한 有意性（ $\mathrm{p}<0.01$ ）을 나타냈다．任意穴刺戟群（ BL ， blank locus）은 16.0% 의 抑制效果가 나타났다（Fig 3）．

Fig 3．Effect of BRHS on IL－6 production in mice sera of adjuvant induced arthritis The values are expressed as the mean \pm SD（standard deviation） of three experiments．＂ $\mathrm{p}<0.05$, ＂ $\mathrm{p}<0.01$ as com－ pared with adjuvant（Adj）group．

4．Interleukin－8의 生成에 미치는 效果

對昭群은 正常群에 비하여 10.9 배의 증가를 보였 으며，竇驗群은 對照群에 비하여 柴胡皪銭 $\times 0.5$ 에 서 11.9% 의 억제표과가 보였고，$\times 1$ 에서 19.8% 로有意性（ $\mathrm{p}<0.05$ ）있는 억제효과가 보였고，$\times 2$ 에서 28.2% 로 현저한 有意性 $(\mathrm{p}<0.01$ ）을 나타갰다．任意穴刺戟群（BL，blank locus）은 16.3% 로 抑制效果가 나타나 柴胡藥喊 투여 $\times 0.5$ 농도보다 억제효과가 크게 나타났다．對照群ㅔㅔㅅㅓ 1090% 증가를 고려할 때 약침의 투여로 인한 억제효과는 크지 않았다 （Fig 4）．

Fig 4．Effect of BRHS on IL－8 production in mice sera of adjuvant induced arthritis Data shown are mean values with bars indicating the standard deviations of the mean $(n=3)$ ．${ }^{\circ} p<0.05,{ }^{\prime} p<0.01$ as compared with adjuvant（Adj）group．

5．Tumor necrosis factor－α 의 生成에 미 치는 效果

對照群은 正常群에 비하여 6.2 배의 증가를 보였으 며，實驗群은 對照群에 비하여 柴胡楽銊 $\times 0.5$ 에서 16.1% 로 억제되었으며，$\times 1$ 에서 $32.3 \%, \times 2$ 에서 51.6% 로 각각 매우 현저한 有意性（ $\mathrm{p}<0.005$ ）있는 억제효과를 나타냈다．任意穴刺戟群（ BL ，blank locus）은 12.9% 의 抑制效果가 나타나 $\times 0.5$ 의 농도 와 비슷한 정도로 억제시키는 것으로 나타났다（Fig 5）．

Fig 5．Effect of BRHS on TNF－aproduction in mice sera of adjuvant induced arthritis The values are expressed as the mean \pm SD（standard deviation） of three experiments．${ }^{\cdots} p<0.005$ as compared with adjuvant（Adj）group．

6．Prostaglandin E_{2} 의 生成에 미치는 效果

對照群은 正常群에 비하여 4．0배의 증가를 보였 으며，實驗群은 對照群에 비하여 柴胡薬鍼 $\times 0.5$ 에 서 26.2% 로 有意性（ $\mathrm{p}<0.01$ ）있는 억제효과가 보였 고，$\times 1$ 에서 $44.1 \%, \times 2$ 에서 39.3% 로 각각 매우 현저한 有意性（ $\mathrm{p}<0.005$ ）을 나타냈다．任意穴刺戟群 （BL，blank locus）에서도 26.2% 의 억制冝과가 나 타났다（Fig．6）．

Fig 6．Effect of BRHS on PGE_{2} production in mice Synovial fluid of adjuvant induced arthritis

The values are expressed as the mean $\pm S D$（standard deviation）of three experiments． ．．p＜0．01，．．．p＜0．005 as compared with adjuvant（Adj） group．

IV．考 察

東洋醫學에서 關節炎은 痛瘴，歷節風，痛風，鶴腅風，白虎風 等의 範䮻纳 속하는 것 ${ }^{22)}$ 으로 이들 병증 의 原因으로 〈素問》 ${ }^{237}$ 에서는 風寒㴔을，張 ${ }^{24)}$ 은 飲酒 汗出後 風邪所致로，蘇 ${ }^{25)}$ 는 血氣가 虚한데 風邪 를 받은 것이라 하였으며，朱 ${ }^{26)}$ 는 血虚 風濝 風熱痰飲 斿血克 보았고，李 ${ }^{27)}$ 는 内因으로 血虚有火外因으로 風濕生痰으로，또한 張 ${ }^{28)}$ 은 氣血本虛 飲酒勞倦犯房을 원인으로 보았다．

關節炎은 關節의 炎症性 病變으로 疼痛 强直 腫脤 發赤 發熱 運動障碍 等의 증상이 나타나는 질환 을 말한다．原因은 外傷，感染，代謝異常，免疫異常，腫場 等이 있지만 原因不明인 경우도 많다．이러한 증상은 病變이 있는 軟骨과 支持組織 또는 滑膜組織 疾患으로부터 생기는 것이며 가장 대표적인 질 환 중의 하나로 류마토이드 關節炎을 들 수 있다 ${ }^{29)}$ ．

또한 關節炎 환자의 炎症部位의 滑膜細胞에서는 proinflammatory cytokine의 일종인 interleukin－ 1β（IL－1 β ）의 상숭 ${ }^{33}$ 과 이로 인한 燐脂質의 turn over 그리고 arachidonic acid 대사과정에 관련된

酵素界의 활성화）및 관련된 prostaglandin의 生成增加 등 다양한 因子들 ${ }^{5}$ 이 관련되어 있는 것으로 나타나 있다．

關節炎 연구를 위한 動物實驗 모델로 대표적인 것은 collagen 誘發 關節炎（Collagen－induced arthritis，CIA）${ }^{301}$ 과 adjuvant 關節炎 ${ }^{31)}$ 으로，그 중 adjuvant 關節炎은 實驗動物의 피부에 결핵균의 유 성 현탁액인 Freund＇s complete adjuvant를 주사 하면 사람의 rheumatoid 關節炎에서도 서로 交叉反應하는 항체가 발현되고 있는 peptidoglycan 성분 으로 알려진 誘發因子에 의하여 2 주후에 多發性 關節炎 및 脾臟斗 副腎解 腫大，體重減少，E血球 增加 等의 전형적인 중상이 국소 및 전신에 발현되는 데，그 유사성으로 인하여 인체의 rheumatoid 關節炎 연구를 위한 model로서 광범위하게 이용되고 있 다 ${ }^{1.10)}$ ．

본 실험에 사용된 柴胡（Bupleuri Radix）는 縞形科（Umbelliferae）에 속한 多年生 草本인 柴胡의 뿌 리를 건조한 것으로，性味가 辛苦微寒하고 氣香質輕 하여 비교적 양호한 退熱作用이 있으며 化解退熱，疎肝解鬱，升舉陽氣의 작용으로 感覧發熱，寒熱往來，胸滿脇痛，口苦耳㢣，頭痛目眩 等을 치료한다 ${ }^{32)}$ 。

足 二里 $\left(\mathrm{ST}_{36}\right)^{8)}$ 는 外膝眼下 3 寸知 脛骨支外側 약 1 寸處에서 脛骨前 肌肉中에 위치하며 足陽明胃經의土合穴이다．疎風化瀿，通調經絡乎 京능으로 膝關節痛，四肢의 浮腫，脚氣等을 치료한다．

Adjuvant 關節炎의 樂鋮處置 연구로는 草能据 ${ }^{\text {y }}$ ，草鳥 ${ }^{(0)}$ ，牛膝 ${ }^{(1)}$ ，續斷 ${ }^{(2)}$ 等을 adjuvant 關節炎에 유효하다고 보고하였으나 柴胡를 樂鋮으로 사용하 여 연구한 보고는 없었다．

이에 저자는 炎症抑制 및 炎症傅達物質给 生成听 미치는 영향을 연구하기 위하여，생쥐의 關筜에 Adjuvant로 關節炎을 誘發시키고 和解退熱의 效能 이 있는 柴胡（Bupleurum falcatum Linne．）${ }^{13)}$ 를 材料로 한 藥鋮液（Bupleuri Radix Herbal－ acupuncture solution）을 膝關節痛，四肢浮腫等의 증

상에 효능이 있는 足三里 $\left(\mathrm{ST}_{36}\right)^{8)}$ 에 投與하여 炎症性 cytokine인 interleukin－1 β（IL－1 β ），interleukin -6 （IL－6），tumor necrosis factor $-\alpha(\mathrm{TNF}-\alpha)$ 의 변화 및 synovial fluid에서 prostaglandin E_{2} （ PGE_{2} ）의 변화를 관찰하였다．

임상적으로는 發赤，發熱，腫脹，痛澩過敏 및 機能障譺의 5 가지 증상을 나타낸다．이러한 각 단계의 발현기전은 서로 다르며 다양한 약리학적 활성물질 이 국소적으로 生成 誘導되어 反應을 매개한다．이 와같은 물질올 chemical mediators라 하며 pros－ taglandins（PGs），histamine，serotonin，leuko－ triene 등이 여기에 속한다．또한 炎症領域으로 유주 한 多核白血球，單核食細胞（macrophage），淋巴球에 서 방출하는 다양한 cytokine，活性酸素（superoxide anion radicals）및 加水分解 酵素，轗基性 蛋白等이炎症反應에 직접적으로 관여하게 된다．

본 실험에서는 생쥐에 adjuvant로 關節炎을 誘發 시키고 關節液（synovial fluid）에서 PGE_{2} 의 量이柴胡薬鍼数 投與로 有意性있게 減少하였다．이는 柴胡薬鋮이 關節의 滑膜細胞에서 燐脂質 代謝와 관련 된 酵素들（phospholipase A_{2} ，cyclooxygenase）의 활성을 抑制시킨다고 여겨진다．따라서 많은 연구자 들은 炎症反應을 抑制하기 위해 새로운 물질탐구의 일환으로 천연물 및 해양물 둥에서 phospholipase A_{2} 및 cyclooxygenase저해제의 탐색에 관한 활성 및 물질분리에 노력을 가하고 있다 ${ }^{34}$ ．

浮腫이란 細胞間이나 組織間의 體腔에 體液 즉，炎症性 浮腫液이 과다하게 축적되는 것을 말하는데 이러한 渗出液（exudate）은 炎症에 의해 内皮細胞의透過性이 항진되어 생기는데 histamine，bradyki－ nine，prostaglandin，anaphylatoxin 등이 관여하는 것으로 알려져 있으며 炎症이 심할수록 增加한다． 결국 炎症이 심해지면 渗出液이 增加되어 浮腫이 심해지게 되므로 浮腫률을 측정해보면 炎症의 심한 정도 및 진행과정을 간접적으로 확인할 수 있다고 사료된다 ${ }^{2)}$ ．

본 실험에서는 각 濃度別 柴胡薬錿의 足三里 $\left(\mathrm{ST}_{36}\right)^{8)}$ 投與䛈 adjuvant 投與 章 實驗群의 제 1 일～제 9 일 사이에는 對照群에 비하여 별다른 抑制 를 나타내지 못했다．그러나 제 21 일에서는 對照群 에 비해 柴胡製鋮 $\times 0.5$ 의 濃度에서는 $36.8 \%, \times 1$ 의 濃度에서는 52.6% ，그리고 $\times 2$ 의 洹度에서는 54.7% 의 抑制效果를 보임으로써 기간별，濃度依存的 억제효과가 나타났다．任意穴刺轱群（BL，blank locus）에서는 柴胡藥煘（ $\times 1$ ）投與群에서도 31.6% 의 抑制效果를 나타내었다．

Cytokine은 매우 소량으로 造血作用，免疫反應，一般的 炎症過程에 관여된 표적세포의 표면수용체 에 결합하여 그 표적세포의 고유기능을 항진시킴으 로서 여러 가지 생리．병리학적 소견을 도출하는데 ${ }^{35)}$ ， cytokine의 과도한 합성과 부적절한 抑制에 의하여 병리생리학적 기전이 이루어진다고 알려져 있다 ${ }^{36)}$ ．
$\mathrm{IL}-1$ 은 주로 大食細胞에서 生成이 되는 cytokine의 하나로 $\mathrm{IL}-1 \alpha$ 와 $\mathrm{IL}-1 \beta$ 의 두가지 형 태가 있으멱 ${ }^{37)}$ ，fibroblast，synovial cells 및 endothelial cell의 성장을 촉진하며 ${ }^{47)}$ IL -1β 는 호중구，淋巴球 및 單核細胞 둥 炎症細胞의 浸潤을誘發한다 ${ }^{38)}$ ．

본 실험에서는 對照群은 正常群에 비하여 3.2 배의 중가를 보였으며，實驗群은 對照群에 비하여 柴胡藥鍼 $\times 0.5$ 에서 23.5% 로 有意性（ $\mathrm{p}<0.05$ ）있는 억제 효과가 보였고，$\times 1$ 에서 $42.2 \%, \times 2$ 에서 44.1% 로 각각 매우 현저한 有意性（ $\mathrm{p}<0.005$ ）을 나타냈다．任意穴刺戟群（BL，blank locus）은 16.7% 의 抑制效果 가 나타났다．

IL－6 은 많은 연구자 ${ }^{39)}$ 들이 급성 조절단백으로 류마토이드 關節炎에서 炎症 反應의 주요매개체로 작용하여 혈청 및 關節炎에 손상된 關節의 關節液 에서 IL－6의 活性度가 增加하며 특히 外傷性關節炎 및 骨關節炎보다 높은 活性度를 보여 질환의 活性度와 연관성이 있다고 보고하고 있으며，따라서 류마토이드 關節炎에서 IL－6이 면역反應의 매개체

로서 病態 생리에 중요한 역할올 담당할 것으로 생 각되고 그 역할은 특정 $\mathrm{IL}-1$ 이나 $\mathrm{TNF}-\alpha$ 의 효과 를 증폭시키는 것으로 추정되고 있다．

본 실험에서는 對照群은 正常群에 비하여 2.9 배 의 중가를 보였으며，實験群은 對照群에 비하여 柴胡藥鍼 $\times 0.5$ 에서 21.0% 로 有意性（ $\mathrm{p}<0.05$ ）있는 억제효과가 보였고，$\times 1$ 에서 $28.4 \%, \times 2$ 에서 39.5% 로 각각 현저한 有意性（ $\mathrm{p}<0.01$ ）을 나타냈다．任意穴刺戟群（BL，blank locus）은 16.0% 의 抑制效果가 나타났다．
$\mathrm{TNF}-\alpha$ 와 $\mathrm{IL}-1 \beta$ 는 류마토이드 關節炎에서 T細胞와 B細胞의 機能을 增加시키고，neutrophil， lymphocyte 및 monocyte의 化學流走 및 纖維母細胞 增殖，滑膜織維母細胞와 軟骨細胞에 作用해서 prostaglandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ 와 collagenase 生産을 增加시킨다 ${ }^{+(0)}$ ．

본 실험에서 對照群은 正常群에 비하여 6.2 배의 증가를 보였으며，實驗群은 對照群에 비하여 柴胡薬鋮 $\times 0.5$ 에서 16.1% 로 억제되었으며，$\times 1$ 에서 $32.3 \%, \times 2$ 에서 51.6% 로 각각 매우 현저한 有意性（ $\mathrm{p}<0.005$ ）있는 억제冝과를 나타쌨다．任意穴刺戟群（BL，blank locus）은 12.9% 의 抑制效果가 나 타나 $\times 0.5$ 의 농도와 비슷한 정도로 억제시키는 것 으로 나타났다．

Prostaglandin（PG）은 炎症의 chemical media－ tors중 藥理 및 生理學的으로 중요한 물질로 細胞膜 에 存在하는 燐脂質에서 由來된 不飽和脂肪酸의 代謝産物이며，PG의 生成에는phospholipase A_{2} ， cyclooxygenase 및 hydroperoxidase가 관여하는 일련의 酸化反應이다 ${ }^{34)}$ ．

이중 PGE_{2} 는 內因性 發熱物質이라고 알려진 in－ terleukin－1 β ，interkeukin－8 및 tumor necrosis factor $-\alpha$ 에 의해 生成이 誘導되어 bradykinin과 같은 강력한 發炎物質의 作用을 增强시킬 뿐만 아 니라 視床下部의 體溫調節中樞에 作用하여 體溫上昇을 誘發한다．또한 PGE_{2} 는 骨髄細胞에 作用하여

破骨細胞（osteoclast）의 前駩細胞（preosteoclast）를誘道하는 作用이 있다고 알려져 있다 ${ }^{333}$ ．

본 실험에서 對照群은 正常群에 비하여 4.0 배의 중가를 보였으며，實驗群은 對照群에 비하여 柴胡藥鍼 $\times 0.5$ 에서 26.2% 로 有意性（ $\mathrm{p}<0.01$ ）있는 억제 효과가 보였고，$\times 1$ 에서 $44.1 \%, \times 2$ 에서 39.3% 로 각각 매우 현저한 有意性（ $p<0.005$ ）을 나타냈다．任意穴刺戟群（BL，blank locus）에서도 26.2% 의 억制 효과가 나타났다．

따라서 adjuvant에 의해 誘導되어지는 PGE_{2} 의生成增加가 柴胡薬鋮의 전처치에 의해 減少한다는 사실과 柴胡薬鋮이 抗炎症作用을 가진다는 사실은 $\mathrm{IL}-1 \beta$ ， $\mathrm{IL}-6, \mathrm{IL}-8$ 및 $\mathrm{TNF}-\alpha$ 의 生成沮害作用 으로 더욱 뒷받침되어진다．

이상의 結果로 보아 柴胡薬鋮은 생쥐에서 adjuvant에 誘發되는 류마토이드 關節炎과 관련하 여 炎症誘發 中間媒介體의 生成呈 抑制시키고 痛症傳達物質인 PGE_{2} 의 生成을 抑制시키는 것이 관찰 되어 炎症化 과정의 抑制 및 炎症傳達物質解 生成 을 沮害시키는 作用이 있는 것으로 생각되며 앞으 로 柴胡薬鋮體液性免疫反應에 대한 效果와 作用紀傳에 관한 지속적인 研究가 필요할 것으로 사료 된다．

V．結 論

柴胡藥鍼이 생쥐의 adjuvant 誘發 關節炎에 미치 는 效能을 관찰하기 위하여 생쥐의 足三里에 상응 하는 부위에 $\times 0.5, \times 1, \times 2$ 의 농도로 柴胡薬鋮을 처치한 후 浮腫과 炎症性 cytokine에 대하여 조사 한바 다음과 같은 結論을 얻었다．

1．柴胡藥緘은 浮腫에 미치는 영향에서는 제 21 일에서 濃度依存的㧕制效果를 나타내었다．

2．柴胡樂鍼은 $\mathrm{IL}-1 \beta$ 에서 漕度를 有意性있게

抑制시켰다．
3．柴胡藥銊은 IL－6에서 澱度㐙 有意性있게 抑制시켰다．

4．柴胡樂鍼은 IL－8에서 濃度依存的 抑制 效果 를 나타내었다．

5．柴胡藥絾은 TNF－의 生成을 濃度依存的으로顯著하게 抑制하였다．

6．柴胡薬鋮은 PGE_{2} 生成을 有意性있게 抑制시 켰다．

VI．参考 文䴢

1．宋彦錫，안병철，朴東錫．加味涷風活血湯 이 Adjuvant 關節炎에 미치는 影響．大韓 鍼炎學會誌．1990；7（1）．
2．大韓整形外科學會．整形外科學，서울：最新 醫學社．1991：121－137．
3．Yilmaz，M．，Kendirli，S．G．，Altintas，D．， Bingol，G．and Antmen B．cytokine levels in serum of patient with juvenile rhema－ toid arthritis．Clin．Rheumatol．2001；20： 30－35．
4．Hara，S．，Kudo，I．，Chang，H．W．，Matsuta， K．，Miyamoto，T．and Inoue，K． Purification and characterization of ex－ tracellular phospholipase A2 from human synovial fluid in rheumatoid arthritis．J． Biochem．1989；105：395－9．
5．Nakahata，N．，Kutsuwa，M．，Kyo，R．， Kubo，M．，Hayashi，K．and Ohizumi，T． Effects of Kakkon－to，Mao－to，Tokaku－ joki－to andSan＇o－shashin－to on prosta－ glandin E_{2} release from C 6 mice glioma cells．J．Traditional Medicines．1998；15：

116－122．
6．Durie FH，Fava RA，and Noelle RJ， Collagen－induced arthritis as a model of rheumatoid arthritis．Clinical Immunol Immunopathol 1994；73（1）：11－18．
7．최영길．Rheumatoid 關節炎의 原因 및 病 態生理．서울．醫學情報誌11，1986：45－47

8．全國暲㙠科大學校 鋮众經穴學教室 編著，鋮灸學（下）서울：集文堂．1994：1457．
9．김갑성，강성길．草龍膽水鋮에 의한 肝機 能改善이 膝關節炎症性 浮腫에 미치는 影 響，慶熙韓醫大論文集．1987；10：127－49．
10．강수일．穴位別 草鳥水鋮刺戟이 생쥐의 $\mathrm{ad}-$ juvant 關節炎에 미치는 影響．慶熙大學 校論文集．1990；13：203－17．
11．장통형．牛鉌藥鍼이 mice의 adjuvant 關 節炎에 미치는 影響。向志大 韓㗨學碩士學 位論文． 1999.
12．이형열．續断樂鋮이 adjuvant 關節炎에 미치 는 影響．大田大韓醫學碩士學位 論文． 2000 ．
13．全國韓醫科大學 本草學教授 共編著．本草 學 서울：영림사．1994：149－50
14．錢百炎．中草薬注射劍．上海：上海科學技 術出版社．1981：71－132．

15．Kwon，Y．B．，Lee，J．D．，Lee，H．J．，Han， H．J．，Mar W．C．，Kang，S．K．，Beitz，A．J． and Lee，J．H．Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptiver－ responses．Pain 2001；90：271－280．

16．Kubo．，M．，Matsuda，H．，Tanaka，M．， Kimura，Y．，Okuda，H．，Higashino．，M．， Tani，T．，Namba，K．and Arichi，S． Studies on Scutellariae Radix．VII． Anti－arthritic and anti－inflammatory actions of methanolic extract and fla－
vonoid components from Scutellariae Radix．Chem．Pharm．Bull．1984；32：2724 －9．
17．남경수，배윤수，남명수，오은숙，박순 희，최 인성，정태화．Anti－IL－1 β 단일클 론항체 를 이용해서 발열환자의 뇨중 $\mathrm{IL}-1 \beta \mathrm{in}-$ hibitor의 확인약학회지1993；37：420－6
18．Na，K．S．，Yang，J．H．，Choi，M．J．，Choi，I．， Kim，C．H．and Moon，J．O．Effective pro－ duction and clinical application of an－ ti－interleukin－6 monoclonal antibodies． Korean J．Immunol．1998；20：289－94．

19．Sharma，S．A．，Tummuru，M．R．，Miller， G．G．and Blaser，M．J．Interleukin－8 re－ sponse of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro． Infection and Immunity．1995；63：1681－7．
20．Kim，C．D．，Kim，H．H．and Hong，K．W． Inhibitory effect of rebamipide on the neutrophil adherence stimulated by conditioned media from Helicobacter pylori infected gastric epithelial cells．J． Pharmocol．Exp．Thera．1999；288：133 －8．
21．Pradelles，P．，Grassi，J．and Maclouf，J． Enzyme immunoassays of eicosanoids esterase as label ：An alternative to radioimmunoassay．Anal．Chem．1985；57： 1170－3．
22．金正坤，李潤浩，朴東錫：鋮，灸 및 秦 艽水鍼이 흰줘의 adjuvant 關 節炎에 미치는 영 향，서울，大韓鍼灭學會誌，10（1）：125－131， 1989.

23．馬蒔 編註，黃帝内經素問註證發微，서울：대 성문화사， $\mathrm{p} .85,268,320$ ．
24．張子和，儒門事親，臺北，旋風出版社，卷 四，
pp．7，1978．
25．蘇元方．蘇氏諸病源候論，臺北，昭人出版 社， pp．11－12， 1974.
26．朱震亨．丹溪心法附餘，서울，大成文化 社， pp．206，1982．
27．李東垣．東垣十種醫書，서울，大成文化 社， pp．480－481， 1983.
28．張介䚔．景岳全書，上海，衛生出版社，卷 +二，pp．211－212， 1972.
29．大韓病理學會 ：病理學，서울，고문사，pp． 71 －93，1166－1171， 1990.
30．서울大學教 㙠科大學．免疫學，서울，서 울大學䧺出版部，pp．1－25，123，125，132， 134，229－246， 1987.
31．박원．류마티스 關節炎의 定意와 原㝼，擎樂情報19（3）：29－33， 1993.
32．全國韓醫科大學 本草學教授 共編著．本草 學 서울．永林社，pp．149－150．
33．문진영．柴胡薬鍼数 生體防禦 效能 研究，東國大學校 博士學位 論文 1997；1－97．
34．Chang，J．，Musser，J．H．and Mcgregor， H．Phospholipase A_{2} function and phar－ macological regulation．Biochem． Pharmacol．1987；36：2429－36．
35．이수곤，이지수，이찬희．류마티스關節炎의治療．파라다임（paradigm）의 孌化．대한류마 티스학회지 3（2）：103－109， 1996.
36．김동집，박동준．류마티스關節炎의 病因，대 한류마티스학회지 $1 ; 1-12,1994$.
37．해리슨내과편집위원희 편．해리슨내과학，서 울：정담．1994：155－165．

38．Arend W．P．，Dayer J．M．Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis．Arthritis Rheum $33(3): 305-15,1990$.
39．Helle，M．，Boe3ije，L．，Groot，E．，Devos，
A. and Araden, L. Sensitive ELISA for interleukin-6 detection of IL-6 in biological fluid:synovial fluid and sera, Journal of Immunological Methods. 1991; 138:47-56.
40. Dayer, J.M., de Rochemonteix, B., Burres,
B., Demczuk, S., Dinarello, C.A. Human recombinant interleukin 1 stimulates collagenase and prostaglandin E_{2} production by human synovial cells. J. Clin. Invst. 1986;77:645-8.

[^0]: －접수 ：2002년 3월 9일－수정 ：5월 9일 • 채택 ：2002년 5월 18 일
 －교신저자 ：김갑성，경북 경주시 용강동 357，동국대 경주한방병원 침구과（Tel．054－770－1558）
 E－mail：kapsung＠unitel．co．kr

