國産 蜂毒 및 精製 蜂毒薬銊液이 류머티스 關節炎 滑液細胞에 미치는 影響

$$
\begin{aligned}
& \text { 이윤섭•서정철 • 이승우 • 한상원 } \\
& \text { 경산대학교 한의과대학 침구학교실 }
\end{aligned}
$$

Abstract

The Effect of Bee Venom \＆Purified Bee Venom on Cell Death in Synovial Cell

Yun－Seop，Lee • Jung－Chul，Seo－Seung－Woo，Lee • Sang－Won，Han
Department of Acupunture \＆Moxibustion，College of Oriental Medicine， Kyung－San University

Objective ：This study is aimed to investigate the effects of bee venom and purified bee venom on cell death in synovial cell line．

Methods ：It was evaluated by using MTT assay，morphological method，flow cytometry， immunocytochemistry analysis，RT－PCR．

Results ：The result obtained is as follows．
1．The MTT assay demonstrated that synovial cell viability was significantly inhibitted dose－dependently by treatment with BV and PBV in comparison with control．And the inhibitory effect of BV and PBV was almost same．

2．The morphologic study demonstrated that synovial cell showed apoptotic body resulted from apoptosis after treatment with BV and PBV for 6 hours using microscope．

3．The Flow cytometry demonstrated that apoptosis of synovial cell treated with BV and PBV was related with stop of cell cycle in stage of G0／G1．

4．Immunocytochemistry assay demonstrated that COX－П and iNOS were slightly expressed by treatment with BV and PBV in comparison with control group．

[^0]5．RT－PCR analysis demonstrated that COX－II were almost down－regulated by high dose treatment with BV and PBV in comparison with control group．iNOS were well down－regulated by treatment with $5 \mu \mathrm{~g} / \mathrm{ml}$ BV and PBV whereas it was well expressed in control group．

Conclusion ：These results suggest that bee venom and purified bee venom have significant effect on cell death in synovial cell line and further study is needed in vivo．

Key words ：Bee Venom，Purified Bee Venom，Synovial Cell Line，Cell Death

I．서 론

류마티스 關節炎은 주로 滑液性 關節의 滑液漠 비후 와 임파구의 침윤현상을 특징으로 하는 自家免疫疾患 의 일종으로 慢性 炎症性 疾患이다 ${ }^{1)}$ ．이는 韓嫛學的으 로 歷節風 ${ }^{2 \sim 8)}$ ，鶴膝風 ${ }^{2.3)}$ ，白虎歷節風 ${ }^{2,4)}$ ，痛風 ${ }^{2.5 \sim 6)}$ ，痺症 ${ }^{2,57.9)}$ ，風痹 ${ }^{10)}$ 의 범주에 속한다고 볼 수 있으며 原因 은 眞陰虛弱精血䧺損 ${ }^{(10 \sim 11)}$ ，三陰樓損 ${ }^{2)}$ 둥 身體가 虛弱 해진 틈을 타 風寒濕邪가 侵入하거나 ${ }^{4-5.7 ~ 9.11)}$ 汗出後當風 ${ }^{4,12 \sim 13)}$ ，飲酒後當風 3 ，4，13），風澋痰火 ${ }^{3 \sim 4,7-8)}$ 등으로 인하여 발생하며 治法으로는 祛風，散寒，除淂，化痰，祛瘯，活血，通絡，滋補肝腎한다 ${ }^{13)}$ ．

발달된 의료기술로 수많은 질병들이 정복되어 가 고 있는 현실 속에서 自家免疫 異常으로 인한 疾病 들은 아직도 정복되지 않은 難治病으로 류마티스關節炎도 그 중 하나이다．현재 이에 대한 많은 治療法이 연구 중이며 蜂藥鋮療法도 그 중 하나의 治療法이라고 생각된다．

따라서 蜂毒을 이용한 藥鋮療法은 新鋮療法의 일 부분으로 ${ }^{14)}$ 蜂毒이란 꿀벌（Apis mellifera lig－ ustica）의 毒囊에 들어있는 약 40 여 가지의 유효성 분으로 구성된 물질로 염중，알러지 둥을 유발하는 작용이 있으나 臨床에서는 鎮痛，解熱，消炎，鎮痤 및 免疫 增强 둥의 效能이 있는 것으로 알려져 있

다 ${ }^{15)}$ ．
蜂毒의 잉8ㅇ은 이미 紀元前 2000년 경의 이집트 파피루스 문서에 記録이 나타나기 시작했으며 紀元前 168 년에 매장된 중국 長沙 馬王堆 3 號 漢墓에 서 출토된 의서에서도 蜂毒을 이용한 2 例의 記錄이 실려 있다 ${ }^{16)}$ ．

이후 蜂毒療法은 각종 疼痛 및 炎症性 疾患에 응 용되어 왔으며 1858년 프랑스의 Desjardins가 최 초로 류마티스 疾患에 응용한 이후 痛風，神經痛에有效하게 사용되고 있다 ${ }^{17)}$ ．

현재 蜂毒療法을 이용한 關節炎 患者에 대한 臨床的 報告는 많이 되고 있으나，류머티스 關節炎 治療에 대한 研究는 李 ${ }^{18}$ 와 都 ${ }^{19)}$ 등의 lipopo－ lysaccharide（LPS）로 관절염을 유발한 실험보고 이외에는 부족한 실정이다．

이에 著者는 摑産蜂毒（Bee Venom，BV）및 精製蜂纅鍼液（purified bee venom，PBV）이 류마티 스 關節炎 滑液細胞에 미치는 影響을 5－diphenyl －tetrazolium bromide（MTT）assay를 통한 細胞增殖 觀察，形態學的 觀察，flow cytometry를 이용 한 細胞週期 分析，免疫細胞化學的 分析，reverse transcription polymerase chain reaction（RT -PCR ）을 이용한 cyclooxygenase－II（COX－II） 및 inducible nitric oxide synthtase（iNOS） mRNA 分析을 통하여 觀察한 바 有意性 있는 結果 를 얻었기에 報告하는 바이다．

5,10 및 $15 \mu \mathrm{~g} / \mathrm{ml}$ 로 희석하여 사용하였다．

II．실 험

1．材料

1）試薬
RPMI 1640 medium，fetal bovine serum（ F － BS，Gibco BRL，USA），phosphate－buffered s－ aline（PBS，Gibco BRL，USA），penicillin and treptomycin，trypsin（Gibco BRL，USA），Eth－ anol（Merck，Germany），5－diphenyl－tetrazolium bromide（MTT，Sigma，USA）둥이며 anti－rabbit lgG iNOS，anti－rabbit IgG COX－II，2차 抗體인 FITC는 Santa cruse社（USA）에서 購入하였고，1－ ipidpolysaccharide（LPS）은 Sigma社（USA）에서 購入 하였다．기타 試樂은 모두 特級 및 一般試樂을 使用하 였다．

2）試料
精製蜂毒（ $100 \mathrm{mg} / \mathrm{ml}$ ）은 Sigma社（USA）에서 購入 하였고 國産蜂毒 $(100 \mathrm{mg} / \mathrm{ml})$ 은 養蜂協會를 통하여購入하였다．

3）機器

CO_{2} incubator（VS－9108 MS，vision scientific Co．Korea），light microscope（Olympus，Japan）， ELISA（enzyme－linked immunosorbent assay） reader（Hyperson，Promega，USA），immunoflu－ roscence microscope（Bio－Rad，USA），FAC s－ can（Becton Dickinson，CA，USA）둥이다．

2．方法

1）試料의 調製
본 實驗에 사용된 國産蜂毒과 精製蜂毒 분말올 3 차 중류수로 $20 \mathrm{mg} / \mathrm{ml}$ 로 미리 조제하여 실험시 1 ，

2）實驗群의 分類
（1）對照群（control group）
Raw 264.7 cell lines 세포를 배양하면서 아무 런 처치도 하지 않았다．
（2）實驗群（treatment group）
배양한 Raw 264.7 cell lines에 國産蜂毒（BV）과精製蜂毒（PBV）薬鍼液吴 각각 $1,5,10$ 및 $15 \mu \mathrm{~g} /$ m 으로 처치하였다．

3）細胞㧣의 배양
본 實驗에 사용된 關節炎 滑液細胞는 교도대 醫科大學 사노教授로부터 分讓받은 細胞株 滑液炎症細胞인 Raw 264.7 cell lines을 5% RPMI 배지에 penicillin（10units／ml）／streptomycin（ $10 \mathrm{mg} / \mathrm{ml}$ ）을 첨가하여 flask에 배양하면서 본 실험에 사용하였 다．

4）MTT assay를 이용한 關節炎 滑液細胞의 貿殖率 分析

蜂毒의 류마티스 滑液細胞 增殖抑制에 대한 효과 를 규명하기 위하여 96 microplate에 각 well마다 세포수를 달리하여 관절염 활액세포를 분주한 다음 24 시간 배양하여 각 well에 $1,5,10,15 \mu \mathrm{~g} / \mathrm{ml}$ 로 세포 중식도를 分析하였다．본 실험에 사용한 MTT 법은 Mosmann이 개발한 방법 ${ }^{20)}$ 을 변형하여 실시 하였다．즉 96 well plate의 각 well에 5×10^{3} cells $/ 100 \mu \mathrm{l}$ 를 넣고 $37^{\circ} \mathrm{C}$ 의 CO_{2} incubator에서 24 시간 배양한 후 國産 및 精製蜂毒薬銊液㓉 농도별 로 제조하여 각 well에 50μ 씩을 넣고 $37^{\circ} \mathrm{C}$ 의 CO_{2} incubator에 24 시간 배양하였다．배양액을 제거한 후 dPBS 에 희석한 MTT 용액 $(10 \mathrm{mg} / \mathrm{ml}) 20 \mu \ell$ 를 각 well에 첨가하고 $37^{\circ} \mathrm{C}$ 에 4 시간 정도 방치한 다옴

DMSO 50μ 를 첨가하여 반웅을 정지시킨 후 약간 흔들어 주고 실온에서 30 분 정치시켜 발색되는 정 도를 파악한 다음 ELISA reader에서 홉광도 570 nm 에서 측정하였다．측정수치는 對照群의 홉광도와 비교하여 細胞 增殖率（inhibitory concerntration $50, \mathrm{IC}_{50}$ ）은 對照群의 50% 수준으로 癌細胞의 成長 을 抑制하는 시료의 농도 $(\mu \mathrm{g} / \mathrm{m} \mathrm{\ell})$ 에 대한 成長率 $\mathrm{Y}(\%)$ 로 환산하여 계산하였다．
$Y(\%)=[\{T-C 0\} /\{C-C 0\}] \times 100$

이때

$\mathrm{CO}=$ 培害 시작시 평균 細胞数（cells／me）

5）細胞死의 形態學的 觀察

國産 및 精製蜂毒 樂鍼液이 류마티스 關節炎 滑液細胞의 細胞死를 억제하는지 관찰하기 위해 5% RPMI medium，penicilin／streptomycin이 함유된 배지에 10^{5} 세포를 60 mm culture dish（Corning Incorporated，NY，USA）에 분주하고 $37^{\circ} \mathrm{C}$ 에서 24 시간 배양하는데 薬鍼液을 $10 \mu \mathrm{~g} / \mathrm{ml}$ 를 첨가하여 반웅을 관찰하였다．細胞死 觀察은 위상차 현미경 $(\times 200)$ 으로 細胞死가 유도된 세포를 촬영하여 조 사하였다．

6）Flow cytometry를 이용한 細胞週期의 分析關節炎滑液細포를 10^{3} 세포수로 6 well에 분주 하고 하룻밤 배양한 다음 對照群과 實驗群인 國産 및 精製蜂毒 薬践液 $(10 \mu \mathrm{~g} / \mathrm{ml})$ 을 5 시간 처리한 후 PBS로 세척하고 trypsin을 처리하여 세포를 $1.5 \mathrm{~m} \ell$ eppendorf tube에 넣은 다음 $1,000 \mathrm{rpm}$ 에서 5 분간 원심분리하여 상청액을 제거한 후 $100 \% \mathrm{EtOH}$ 를 $1 \mathrm{~m} \ell$ 첨가하여 고정하였다．이때 propidium iodide
$5 \mu \mathrm{~g} / \mathrm{ml}$ 와 RNase 을 혼합해서 준비하고 상기 고정된 세포를 원심분리하여 상청액을 제거한 다옴 PBS 로 한번 세척하였다．동시에 상기 고정된 세포의DNA 에 염색시약을 첨가하여 $37^{\circ} \mathrm{C}$ 에서 30 분간 항온조 로 가온시킨 다음 propidium iodide로 염색하고 호 일에 밀봉하여 $4^{\circ} \mathrm{C}$ 에 보관하고 FAC scan을 이용 하여 flow cytometry analysis를 실시하여 細胞週期를 觀察하였다．

7）COX－II와 iNOS 發顯에 미치는 免疫細胞化學的 分析

滑液細胞의 COX－II 및 iNOS 발현의 억제를 유 도하는지 조사하기 위해 상기 방법과 동일하게 한 후 metanol을 세포 위에 떨어뜨려 고정시킨 다음 PBS 로 세척을 실시하였다． 1 차 抗體인 iNOS 및 $\mathrm{COX}-\mathrm{II}$ 를 표지하여 $4^{\circ} \mathrm{C}$ 에서 1 시간 정도 방치하고 2 차 抗體인 FITC로 표지하여 호일로 차광하여 이 를 1 시간 정도 방치하였다．이를 형광 현미경에서 관찰하여 對照群과 䐵驗群의 발현 정도를 관찰하였 다．

8） $\mathrm{RT}-\mathrm{PCR}$ 를 이용한 $\mathrm{COX}-\mathrm{II}, \mathrm{iNOS}$ 와 β －actin mRNA 發曘 分析

류마티스 關節炎 滑液細胞에 대해 전사수준에서 미치는 細胞死 效果를 알아보기 위하여 세포를 6 well plate에 10^{5} 세포수가 되게 분주한 후 적정藥鋮液 농도가 되도록 가한 다음 세포를 $1.5 \mathrm{~m} \ell$ eppendorf tube에 모아서 $15,000 \mathrm{rpm}$ 에서 5 분간 원심분리하였다．상청액을 제거하고 RNAzol 용액을 $200 \mu \ell$ 를 첨가한 다음 chloroform $50 \mu \ell$ 를 가하고 조심스럽게 pippeting하여 세포를 용해하고 이를 $15,000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$ 에서 15 분간 원심분리하여 total RNA를 회수하였다．다음 isopropanol 돟량을 넣고 $4^{\circ} \mathrm{C}$ 에서 15 분간 침전시켜 $75 \% \mathrm{EtOH}$ 로 한번 세척 하여 건조시켰다．RNase free $\mathrm{dH}_{2} \mathrm{O}$ 를 20μ 을 넣

고 $60^{\circ} \mathrm{C}$ 에서 30 분간 가열하여 녹인 다음 total RNA $5 \mu \ell$ 에 10 mM dNTP $5 \mu \ell, 25 \mathrm{mM} \mathrm{MgCl}_{2} 6$ $\mu \ell$ ，10x RNA PCR buffer $5 \mu \ell$ ，RNase inhibitor $1 \mu \ell$ ，AMV－Optimized Taq $1 \mu \ell$ ，AMV reverse Transcriptase XL $1 \mu \ell, 50 \mathrm{pM}$ specific primer （sense／antisense） $1 \mu \ell$ ，RNase free $\mathrm{dH}_{2} 026 \mu \ell$ 을 첨가하여 $50^{\circ} \mathrm{C}$ 에서 20 분간 역전사 반응을 실시 하고， $94^{\circ} \mathrm{C}$ 에서 2 분간 반웅을 정지시켜서 PCR 을 실시하였다．이 때 반응조건은 $94^{\circ} \mathrm{C} / 1 \mathrm{~min}, 55^{\circ} \mathrm{C}$ $/ 45 \mathrm{sec}, 70^{\circ} \mathrm{C} / 60 \mathrm{sec}$ 에서 35 cycles 을 진행시켜 70 ${ }^{\circ} \mathrm{C}$ 에서 쵝종적으로 5 분간 팽창 반응을 실시하여 종 결한 후 PCR 산물을 1% agarose gel에 부하하여 marker를 기준으로 band의 유무를 확인하였다．

9）統計處理

모든 실험값은 평균값 \pm 표준오차（mean \pm standard error）로 하였고，統計學的 分析은 SAS（Statistic Analysis System）program을 이용하였다．對照群 과 實驗群과의 比較는 Student＇s t－test에 의해 有意性을 검정하였으며， $\mathrm{P}<0.01$ 인 경우에만 有意性이 있는 것으로 간주하였다．

III．결 과

1．MTT assay를 이용한 關節炎 滑液細胞의增殖率에 미치는 影響

國産蜂毒 및 精製蜂毒 薬鍼液이 류마티스 滑液細胞 增殖抑制에 미치는 影響을 分析한 결과 ELISA reader에서 나타난 홉광도 수치는 國産蜂毒 藥龯液實驗群의 경우 對照群에서는 0.955 ± 4.8（상대적 세 포수의 환산계수 100% ），國産蜂毒의 1,5 및 $15 \mu \mathrm{~g}$ $/ \mathrm{m} \mathrm{\ell}$ 에서 각각 $0.311 \pm 0.01(32.6 \%), \quad 0.119 \pm 1.8$ （ 12.56% ）및 $-0.19 \pm 0.01(-0.2 \%)$ 로 對照群에 비 하여 IC_{50} 경우 모든 群에서 滑液細胞가 有意性
（ $\mathrm{P}<0.01$ ）있게 增殖이 抑制되었다．
精製蜂毒 貝驗群의 경우 對照群에서는 0.982 ± 0 .01 （상대적 세포수의 환산계수 100% ）， 1,5 및 15 $\mu \mathrm{g} / \mathrm{ml}$ 에서 $0.44 \pm 7.8(45 . \%), 0.286 \pm 7.6(29.2 \%)$ 및 $-0.09 \pm 0.01(-0.1 \%)$ 로 對照群에 비하여 IC_{50} 은 모 든 群에서 滑液細胞가 有意性（ $\mathrm{P}<0.01$ ）있게 增殖이抑制되었다．（Fig．1）

Fig．1．Effect of inhibitory concentraction of Bee Ve－ nom（BV）and purified Bee Venom（PBV）herbal acu－ puncture solution on the synovial cells isolated from th－ eumatoid arthritis．

2．細胞死에 미치는 形態學的 觀察

國産 및 精製蜂毒 樂銊液을 각각 $10 \mu \mathrm{~g} / \mathrm{ml}$ 농도로 6시간 培養한 경우에 細胞死를 유도하는 形態學的變化인 apoptic body가 출현되는 양상이 나타났다 （Fig．2）．

Fig．2．Mophological pattern of apoptic body from
synovial cell isolated meumatoid arthritis patients by Bee Venom and purified Bee Venom herbal acupuncture so－ lution．（Arrows indicate apoptic body．）

3．Flow cytometry를 이용한 細炮遠期에 미 치는 影響
對照群의 경우 $\mathrm{G}_{0} / \mathrm{G}_{1}$ 단계에서는 66.7% ， S 단계는 $13 \%, \mathrm{G}_{2} / \mathrm{M}$ 닥계는 21.3% 로 나타났다．國産蜂毒 樂䥠液의 경우 $\mathrm{G}_{0} / \mathrm{G}_{1}$ 단계에서는 78.5% ， S 단계는 $3.5 \%, \mathrm{Ga} / \mathrm{M}$ 단계는 18% 이었다．精謷蛙毒 朰鍼液嘪騟群에서는 $\mathrm{G}_{0} / \mathrm{G}_{1}$ 단계에서는 86.7% ，S단계는 $3 \%, \mathrm{G}_{2} / \mathrm{M}$ 단계는 11.3% 정도로 나타냈다（Fig．3）．

Fig．3．Cell cycle pattern of flow cytometry of synovial cell isolated rheumatoid arthritis patients by Bee Venom and purified Bee Venom herbal acupuncture solution．

G ：interphase \＆first gap phase（G0／G1）
S：synthesis phase（S）
$M:$ second gap phase \＆mitosis（G2／M）
4．COX－II와 NOS 發頷에 미치는 免疫細胞化眸的影響
薬紱液 實驗群이 滑液細胞手 COX－II 및 iNOS 발현의 억제효과를 유도하는지 조사하기 위해 형광 현미경에서 관찰한 바 COX－II 경우 對照群은 FITC에 의해 녹색을 나타내는 signal이 强하게 나

타나는데 반해，國産 및 精褩蜂毒 莱窢液 實驗群에 서는 弱하게 나타나거나 signal의 정도가 감소하였 다（Fig．4）．또 iNOS는 對照群에서 발현이 유도되
 는 발현이 억제되었다（Fig．5）．

Fig．4．Immunocytochemistry stain for COX－II in Control（left），Bee Venom（middle）and purified Bee Venom herbal acupuncture solution（right）．（Arrow denote stain of Raw 264.7 synovial cell．）

Fig．5．Immunocytochemistry stain for iNOS in Control （left），Bee Venom（middle）and purified Bee Venom herbal acupuncture solution（right）．（Arrow denote stain of Raw 264.7 synovial cell．）

5．RT－PCR를 이용한 $\operatorname{NOS}, C O X-11$ 및 β －actin mRNA의 發㵭에 미치는 影響
滑液細胞로부터 total RNA를 회수한 다음 RT－PCR를 실시하였는데 COX－II의 경우 對照群 에서는 잘 발현되었고 國産 및 精製蜂毒 實驗群에 서는 고농도일수록 발현이 잘 억제되었다．
iNOS의 경우 對照群은 발현되었은，國産 및精䢂蜂毒 實䮥群에서는 $5 \mu \mathrm{~g} / \mathrm{ml}$ 에서부터 강하게 발 현이 억제되는 결과를 나타내었다．한편 細胞의 전 사수준이 동일함을 나타내는 β－actin mRNA의 발

현은 모든 群에서 일정하게 발현되었다．（Fig．6）

Fig．6．RT－PCR analysis of total RNA from synovial cells．

Subconfluent synovial cells were cultured in RPMI medium of FBS for 24 hrs ．Total RNA was isolated and analyzed by RT－PCR using oligonucleotides specific for COX－II（middle），iNOS（lower）．B－actin mRNA for standard transcript was used as control（upper）．

IV．고 찰

류마티스 關節炎은 滑液膜의 비후와 임파구의 국 소적 침윤현상을 병리학적 특징으로 하는 지속적인多發性 對稱性 滑液膜炎으로 서서히 진행되어 활액 막의 섬유화와 관절내 연골，연골하골 및 관절주위 연체조직이 파괴되어 결국 관절의 변형을 가져오는全身性 自家免疫 疾患이다 ${ }^{21)}$ 。

류마티스 關節炎의 主要症状 ${ }^{22 \sim 23)}$ 은 심한 관절 통，관절의 변형，피부상 결절 및 운동의 제한 등으
風 ${ }^{2.4)}$ ，痛風 ${ }^{2.5-6)}$ ，㾝症 ${ }^{2.5 .7 .9)}$ ，風痦 ${ }^{10)}$ 등의 범주에 속하며 ㄱ 原因을〈素問•掉論〉 ${ }^{11)}$ 에서＂風寒瀑三氣雜之合而爲痺也＂라 하여 風寒濕外邪가 痺症의 중요 한 原因이라고 언급되었고 〈金赛要略〉 ${ }^{12)}$ 에서는＂磿節之痛 皆有汗出入水 或飲酒汗出 當風所致＂라 踛응

며 景岳全書에서＂寘陰衰弱 精血歔損 故三氣得而 勝之而爲㾝＂라 하였고〈醫學入門〉 ${ }^{24)}$ 에서＂鶴膝風三陰颜損 風邪入亦有虚火 陰血枯所以瘕後多此疾＂이라 했 다．〈東垣十種㗨書〉 ${ }^{25)}$ 에서는 血熱卌 風寒冷外搏으 로〈巢氏諸病源候論 ${ }^{13)}$ 에서는 氣血이 不足站 때 風邪에 속하여〈千金方〉 ${ }^{26)}$ 에서는 熱毒이〈外臺秘要 $>{ }^{27)}$ 에서는 風塞暑澋의 毒이 四肢에 머물러 病이 발 생한다고 하였다．三三因方〉 ${ }^{28)}$ 에서는 風濕이 上搏하 여 또는 飲酒나 傷風 및 汗出入水 등으로 痰이 형 성되어〈丹溪心法附餘〉 ${ }^{29}$ 에서는 源痰으로〈萬病回春〉 ${ }^{301}$ 에서는 血氣風溸痰火로 인한다고 하였고〈實用中翳內科學 ${ }^{22)}$ 은 病因올 크게 旰腎歔損，邪氣侵入으로 나누었으며 그 외 病因으로는 무거운 것을 들거나 넘어져 다치거나 氣血瘀阻의 형성으로 보았 다．眞陰褧弱 또는 精血皻損，三陰噱損 등 身體가虚弱해진 틈을 타 風寒濕邪가 침입하거나 汗出後當風，飲酒後 當風，風濝痰火，飲食起居失常 둥으로 인 하여 발생한다고 하였다．

韓㗨學에서는 류마티스 關節炎이 先天臬賦不足，正氣歔虚하여 風寒烈熱의 邪氣가 침범해 발생하는 것으로 보고 있다．치료는 祛風除濐，活血化瘀，通經活絡을 기본으로 하며 특히 蚛蚣，水蛭，全蝎 같은蟲類 약물을 사용하여 항원을 제거하거나 항체를 억제，흑은 활성면역세포의 생산을 억제함으로서 免疫反應을 억제한다고 볼 수 있다 ${ }^{23)}$ ．

蜂檪鋮은 經絡學說의 원리에 의하여 꿀벌의 毒囊 에 들어있는 蜂毒 자체를 이용하거나 이를 추출하 여 가공한 후 직접 질병과 유관한 穴位，壓痛點 혹 은 체표의 촉진으로 얻어진 陽性反應點에 주입함으 로써 刺鍼效果 및 蜂毒의 생화학적 효과를 동시에 이용한 것이다．이는 생체의 기능을 조정하고，병리 상태를 개선시켜 질병을 치료하고 방어하는 薬銊㞠法의 일종이다 ${ }^{31)}$ ．

蜂毒의 性味는 苦，辛，平，有毒하고，臨床에서는鍞痛，解熱，消炎，鎮痙，免疫 增强 및 抗癌效果 등

의 效能이 있는 것으로 알려져 있다 ${ }^{31)}$ ．
蜂毒의 成分은 크게 peptide components，non peptide components，enzymes으로 구성되어 있 다．Peptide components는 freeze－dried venom 의 약 50% 를 구성하고 있으며，주요성분으로는 apamin，MCD peptide，melittin 둥이 있다 ${ }^{32)}$ ．

전통적으로는 蜂鍼을 직접 인체에 자입하는 방법 을 사용하였으나，최근에는 蜂毒을 추출하여 가공한 후 주사기를 이용하여 인체의 經穴에 자입하는 蜂樂䤶療法이 주로 활용되고 있다．1990년대 이후 國內에서 蜂藥鍼에 관한 연구가 활발히 진행되고 있 어 鑟痛 ${ }^{33)}$ ，消炎 ${ }^{33)}$ ，䥊痙 ${ }^{34)}$ ，免疫機能 增强作用 ${ }^{35)}$ 둥이 보고되었고，外國에서는 Habermann ${ }^{32)}$ 등에 의해 蜂毒의 생화학적 성분 및 약리작용 등이 보고 되었다．

현재까지 蜂毒療法올 이용한 關節炎 患者에 대한臨床的 報告는 많이 되고 있으나，류머티스 關節炎 에 대한 연구보고는 드문 편이다．또한 關節炎의 병 리 측면에서 현재까지 알려진 바로는 iNOS，COX －II 같은 효소가 관여한다는 보고가 있으나 이에 대한 연구도 미비한 상태이다．

이에 著者는 國産蜂毒과 精製蜂毒 樂鍼液이 류마 티스 關節炎 滑液細胞에 미치는 影響에 대해 MTT assay 방법을 통한 細胞의 增殖抑制에 미치는 影響，細胞死에 미치는 形態學的 觀察，flow cy－ tometry로 細胞週期 分析，免疫細胞化學的 分析 및 RT－PCR을 통하여 COX－II 및 iNOS mRNA 分析을 통하여 觀察한 結果 다음과 같다．

MTT assay 방법을 통해 國産蜂毒과 精製蜂毒薬鋮液이 滑液細胞의 增殖에 미치는 影響을 分析한 결과 ELISA reader에서 나타난 홉광도 수치는 國産蜂毒 樂鍼夜 實驗群纤 경우 對照群에서는 0.9 55 ± 4.8（상대적 세포수의 환산계수 100% ），國産蜂毒의 $1 \mu \mathrm{~g} / \mathrm{ml}$ 는 0.311 ± 0.01（ 32.6% ）， $5 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$ 는 0.1 $19 \pm 1.8(12.56 \%), 15 \mu \mathrm{~g} / \mathrm{m} \ell$ 는 $-0.19 \pm 0.01(-0.2 \%)$

로 對照群에 비하여 IC_{50} 경우 모든 群에서 滑夜細胞가有意性있게 增殖이 抑制되었다．精製蜂毒 樂鍼夜 嘪驗群의 경우 對照群에서는 0.982 ± 0.01（상대적 세포수 의 환산계수 $100 \%), 1 \mu \mathrm{~g} / \mathrm{ml}$ 는 $0.44 \pm 7.8(45 . \%), 5 \mu \mathrm{~g} /$
 (-0.1%) 로 對照群에 비하여 IC_{50} 은 모든 群에서 滑液細胞가 有意性있게 塒殖이 抑制되었다．

國産蜂毒과 精製蜂毒 薬銭液을 각각 $10 \mu \mathrm{~g} / \mathrm{ml}$ 로 해서 6 well 에 10^{5} cell수로 분주하여 하룻밤 배양한滑液細胞에 첨가하여 현미경하에서 매시간 관찰하 여 細胞死가 유도되는 양상을 관찰한 바 6시간 배 양한 경우에 細胞死를 유도하는 형태학적 변화로 apoptic body가 출현되는 양상이 나타났다．이는國産蜂毒翔 精製蜂毒이 炎症에 의해 발생하는 關節炎의 病症을 호전시킬 가능성이 있음을 시사한다고 하겠다．

國産蜂毒과 精製蜂毒 薬鍼液이 細胞死를 유도한 다면 細胞增殖에 影響을 주므로 細胞週期에 어떤 단계에 影響율 미치는지를 分析할 필요가 있다．細胞週期는 DNA합성을 기준으로 구분하게 되며 Go期（interphase），G1期（first gap phase），S期（sy－ nthesis phase）， G_{2} 期（second gap phase） 의 間期 와 mitosis（M期 또는 細胞分裂期）로 대별한다． G_{0}期는 세포가 중식을 휴지하고 있는 상태이고 G_{1} 期 는 세포내 인자가 중식되며 세포의 크기가 중대되 는 시기이다． S 期는 細胞分裂을 위한 DNA 의 합성 이 이루어 지는 시기이며， G_{2} 期는 세포질의 인자가 중식되는 시기이고， M 期는 핵분열과 세포질분열로 세포자체가 나누어지는 시기이다 ${ }^{36)}$ 。細胞週期를 f－ low cytometry로 조사하여 본 결과 對照群의 경우 $\mathrm{G}_{0} / \mathrm{G}_{1}$ 단계에서는 $66.7 \%, \mathrm{~S}$ 단계는 $13 \%, \mathrm{G}_{2} / \mathrm{M}$ 단계는 21.3% 로 나타났다．國産蜂毒 樂鍼液의 경우 $\mathrm{G}_{0} / \mathrm{G}_{1}$ 단계에서는 $78.5 \%, \mathrm{~S}$ 단계는 $3.5 \%, \mathrm{G}_{2} / \mathrm{M}$ 단계는 18% 이었다．精製蜂毒 藥鋮液 實驗群에서는 $\mathrm{G}_{0} / \mathrm{G}_{1}$ 단계에서는 $86.7 \%, \mathrm{~S}$ 단계는 $3 \%, \mathrm{G}_{2} / \mathrm{M}$ 단

계는 11.3% 정도로 나타나 對照群에 비하여 현저한低下를 보였다．따라서 實验群의 滑液細胞가 $\mathrm{Go}_{0} / \mathrm{G}_{1}$ 단계에서 細胞週期의 진행이 정지되기 때문이라 생 각된다．

일반적으로 痛症이나 炎症에 관여된다고 알려진 prostaglandin은 세포내 여러 화학 단계를 거쳐 COX（cyclooxygenase）에 의해 생성된다 ${ }^{37)}$ ．이 COX 는 현재 $\mathrm{COX}-\mathrm{I}$ 과 $\mathrm{COX}-\mathrm{II}$ 의 형태로 존재한 다 ${ }^{38)}$ ．이 중 $\mathrm{COX}-\Pi$ 는 뇌와 신장부에서 주로 발견 되며 일부 염중성 세포에서도 발견되는데 톡히 염 중부위에서 유도되어 고농도 prostaglandin의 매개 물질로서 중요한 역할을 한다 ${ }^{39)}$ ．

또한 iNOS 는 arginine에서 NO를 생성시키는 효 소로，關節炎에서 많이 중가되는데 이 NO 는 COX －II 활성을 촉진하며 염중시기에 동반되는 물질로 뇌허혈이나 관절염에 독성을 가진다 ${ }^{40)}$ ．

따라서 國産蜂毒과 精製蜂毒 薬銊液이 활액세포 의 COX－II 및 iNOS 발현의 억제효과를 유도하는 지 조사하기 위해 免疫細胞化學的 分析을 실시한 바 COX－II 경우 對照群은 FITC에 의해 녹색을 나 타내는 signal이 강하게 나타나는데 반해，國産 및精製蜂毒 薬鋮液 實驗群은 약하게 나타나거나 signal의 정도가 감소하였다．iNOS는 對照群에서 발현이 유도되었으나，國産 및 精製蜂毒 薬銊淔 實驗群에서는 발현이 억제되었다．

한편，國産 및 精製蜂毒 樂鍼液이 滑液細胞에 대 한 細胞死 效果를 전사수준에서 미치는 影㗽을 알 아보기 위해 $\mathrm{RT}-\mathrm{PCR}$ 를 실시하였는데 $\mathrm{COX}-\mathrm{II}$ 의 경우 對照群에서는 발현이 잘 되었으나，國産 및 精製蜂毒 藥鍼液 實驗群에서는 고농도일수록 발현이 억제됨을 알 수 있었다． iNOS 의 경우 對照群은 발 현되었지만 國産 및 精製蜂毒 集鍼液 實驗群에서는 $5 \mu \mathrm{~g} / \mathrm{ml}$ 에서부터 강하게 발현이 억제되는 결과를 나 타내었다．한편 細胞의 전사수준이 동일함을 나타내 는 β－actin mRNA의 발현은 모든 群에서 일정하게

발현되었다．이처럼 蜂毒 薬鍼夜이 세포내 표준 단 백질인 β－actin mRNA에 대해서는 對照群과 비등 한 발현올 나타낸 반면，關節炎에서 활성화되는 COX－II와 iNOS mRNA 에 대해서는 발현을 억제시 키는 것으로 보아 생리적인 正常細胞와는 별개로關節炎 관련 遺傳子에만 特異的으로 反應을 일으켜 이를 억제하는 것으로 생각된다．

이상의 結果는 결국 蜂毒 薬鍼液이 특정 단백질 의 전사와 발현울 강하게 억제함을 암시해 주고 있 다．따라서 蜂毒 薬铖液은 류마티스 關節炎 滑液細胞를 有意性있게 억제하여 류마티스 關節炎 治療에 효과가 있음을 의미한다고 하겠다．또한 본 실험을 통하여 國産蜂毒과 精整蜂毒 薬銊液이 류마티스 關節炎 滑液細胞에 미치는 影響에 있어서 미세한 정 도의 차이는 있었으나 큰 차이는 없음을 알았다．

향후 蜂毒 薬緘液이 正常細胞에 미치는 影響斗痛症 및 炎症斗 관련된 다른 요소에 미치는 效果를 알아보기 위한 추가적인 實驗 및 研究가 지속적으 로 이루어져야 할 것으로 생각된다．

V．결 론

國産蜂毒业 精製蜂毒 樂鍼液이 류마티스 關節炎滑液膜 細胞에 미치는 影響을 MTT assay를 통한細胞增殖 觀察，形態學적 觀察，flow cytometry를 이용한 細胞週期의 分析，免疫細胞化學的 分析， RT－PCR을 이용한 COX－II 및 iNOS mRNA 分析을 통하여 觀察한 바 다음과 같은 結論을 얻었다．

1．MTT assay 方法을 통해 滑液細胞의 增殖에 미치는 影響에서 國産蜂毒과 精製蜂毒 薬鍼液群 모 두 用量依存的으로 滑液細胞의 增殖을 有意性있게排制하였다．

2．國産蜂毒과 精製蜂毒 薬鍼液群에서 細胞死를

유도하는 形態學的 緌化인 apoptic body가 모두 나 타났다．

3．Flow cytometry로 細胞週期를 觀察한 결과國産蜂毒과 精製蜂毒 薬鍼液群이 $\mathrm{G}_{0} / \mathrm{G}_{1}$ 의 細胞週期 에서 진행이 정지되어 細胞死가 일어넜다．

4．COX－II와 iNOS 발현을 위한 免疫細胞化學的分析 결과 國産蜂毒과 精製蜂毒 藥鍼液群에서 모두發影이 抑制되었다．

5． $\mathrm{RT}-\mathrm{PCR}$ 결과 $\mathrm{COX}-\mathrm{II}$ 와 iNOS 의 mRNA 發顯은 國産蜂毒承 精製蜂毒 薬鍼液群에서 强하게 抑制되었다．

VI．참고문헌

1．이수곤．류마티스관절염의 원인 및 중상．대한 의학협회지． $1992 ; 35(10): 1213 \sim 1222$ ．
2．권재식，김기현，김형태，박웅호，서성훈．㾝憕． 서울．정담．1993：29，208－10， 214.
3．崔容泰．精解鐡灸學．서울．集文堂．1983：16 $6-74,279,461$.
4．金定濟．診療要鑑．서울．東洋醫學研究所． 197 4：459－60．
5．顧伯華．實用中醫外科學．上海．上海科學技術出版社．1985：385－89．
6．朴柄昆．增補韓方臨床40年．서울．大光文化史． 1989：343．
7．楊緒性．中㙠痛症診療大全．北京．中國中朢薬出版社．1992：619－43．
8．襄元植．最新韓方臨床學．서울．南山堂．1989： 446.

9．具本泫．東醫外科學．서울．南山堂．1985：225．
10．張介賓．景岳全書．北京．人民衛生出版社． 19 91：248－55．
11．王琦．黄帝內經素問今釋．서울．成博社． 198

3：206， 209.
12．張仲景．金匮要略方論．台北．東方書店． 195 0：30－9．
13．巢元方．巢氏諸病源候論．台北．昭人出版社． 1974：19．
14．全國暲䜿科大學 鍼灸經穴學教室。鍼炎學（上，下）．서울．集文堂．1994：1457．

15．金文具．蜂毒療法과 蜂銭療法，서울：한국 교 육기획．1992：20－37，41－42，67－64， 104－112，134－149，171－176．
16．인창식 고형균．봉독요법에 대한 한의학 최 초의 문헌기록，마왕퇴의서의 봉독요법 2 예． 대한침구학회지．1998；15（1）：143－147．
17．이종석，김재규，고형균．봉독의 치사량에 관 한 실험적 연구．대한침구학회지． 1993 ；10（1）：151－158．

18．이숭덕，김갑성．우슬 및 봉독약침이 생쥐의 LPS유발관절염의 세포성 면역반응에 미치는 영향．대한침구학회지．1999：16（3）：287－ 314.

19．도원석，김경호，김갑성 유백피 계지 우슬 봉독 및 우슬 웅담 사향 복합제제 약침이 mouse의 LPS 유발 관절염의 혈액학적 변 화에 미치는 영향．대한침구학회지． 2001 ；18（1）：157－169．

20．Mosmann T．．Rapid colormertic assay for cellular growth and survial：app－ lication to proliferation and cytotoxicity assays．J Immunol Method 65．1983； （1）：55－63．
21．김호연．류마티스관절염치료의 최근경향．대 한내과학회지． $1996 ; 5(4): 271-279$ ．
22．黄文東．實用中醫內科學．上海．上海科學技術出版社．1986：554－69．
23．진귀정，양사수．실용중서의결합진단치료학．

서울．일중사．1992：637－641．
24．李梃．編註㞺學入門．서울．大星文化社．19－ 81：52－61．

25．李東垣．東垣十種醫書．서울．大星文化塥． 19 83：480－1．
26．孫思㟫．備急千金要方．台北．目田出版社。 1975：161－64．
27．王燾．外臺秘要．서울．大星文化社．1983：4 24.

28．陳無擇．三因方．大連．國風出版社． 1977 ：2－3．

29．朱震亨．丹溪心法附餘．서울．大星文化社． 1989：214－17．
30．贅廷賢．萬病回春．北京．人民筩生出版社． 1972：309．

31．낙화생．면역과 한방．서울．열린책들． 199 $4: 16,20,76,116$.

32．Habermann E．Chemistry，pharmacology and toxicology of bee，wasp and hornet venoms．In Venomous Animals and their Venoms．Academic Press．1971；3：61．
33．高炣均．蜂毒銊療法이 抗炎，錤痛 및 解熱에 미치는 效能에 관한 實驗的 研究．大韓暲嫛學會誌．1992；13（1）：283－292．
34．孔賢淑，高炣均，金昌煥，蜂銭毒療法이 抗痤攣에 미치는 影響．大韓鍼灸學會誌。1993
；10（1）；159－165．
35．李京娱，金昌煥，姜成吉，高炣均，産地別 蜂毒液薬鍼刺戟이 免疫機能低下에 미치는 影響． 대한침구학회지．2000；17（4）；28－40．
36．서울대학교 의과대학．세포생물학．서울대학 교 출판부．1990：1－9，63－5，145－50．
37．Austenaa LM，Ross AC．Potentiation of interferon－gamma－stimulated nitric o－ xide production by retinoic acid in RAW 264.7 cells．J Leukoc Biol． 2001 ；70（1）：121－9．
38．Dubois RN，Abramson SB，Crofford L， Gupta RA，Simon LS，Van De Putte LB， Lipsky PE．Cyclooxygenase in biology and disease．FASEB J．1998；12（12） ：1063－73．
39．Kaufmann WE，Andreasson KI，Isakson PC，Worley PF．Cyclooxygenases and the central nervous system．Prosta－ glandins．1997；54（3）：601－24．

40．Kageyama Y，Koide Y，Nagata T，Uc－ hijima M，Yoshida A，Arai T，Miura T， Miyamoto C，Nagano A．Toxic shock syndrome toxin－1 accelerated collagen －induced arthritis in mice．J Autoimmun． 2001；16（2）：125－31．

[^0]: －접수 ：2002년 3월 7일－수정 ：3월 12일 • 채택 ：2002년 3월 19일
 －교선저자 ：한상원，대구시 수성구 상동 165 ．경산대학교부속 대구한방병원 침구과（Tel：053－770－2236）
 E－mail ：chimguhan＠hanmail．net

