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Abstract

A General Pipe Break Prediction Model that incorporates linear and exponential models in its fom is
developed. The model is capable of fitting pipe break trends that have linear, exponential or in between of
linear and exponential trend by using a weighting factor. The weighting factor is adjusted to obtain a best
model that minimizes the sum of squared enors of the model. The model essentially plots a best curve (or
a line) passing through “cumulative number of pipe breaks” versus “break times since installation of a
pipe” data points. Therefore, it prevents over-predicting future number of pipe breaks compared to the con-
ventional exponential model. The optimal replacement time equation is derived by using the Threshold

Break Rate equation by Loganathan et al. (2002).
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1. Introduction

In this paper a new mathematical model to predict
pipe breaks — prediction of the number of breaks in
the future time of a pipe — in water distribution sys-
tems is developed. The model uses past break history
— break times versus number of breaks — of a pipe. It
is coupled with the optimal threshold break rate esti-

mator developed by Loganathan et al. (2002) to obtain
the optimal replacement time of a pipe. It is composed
of linear and exponential prediction models and deter-
mines the dominance of past break trends — linear,
exponential or in between — by using a weighting fac-
tor. Thus, the model is coined as a “General Pipe
Break Prediction Model” to reflect its capability of fit-
ting any break trends. As a result, the tendency of a

*Corresponding author  Tel: +82-51-320-1830, Fax: +82-51-320-1818, E-mail: spark@dongseo.ackr {Park, SW.)

710



uh4=¢ - G.V. Loganathan

OIS =EYRR] =2
1624 8%, pp. 710-716, 2002

pipe break trend can fall into one of the three cate-
gories: (1) linear, (2) exponential, and (3) somewhere
between the linear and exponential break trend. In the
past the pipe break trend had taken to be exponential
[Shamir and Howard (1979), Walski and Pelliccia
(1982), and Clark et al. (1982)]. The newly developed
model overcomes the shortcomings of the exponential
model, which is shown in the subsequent sections.

2. Literature Review

Shamir and Howard (1979) applied regression
analysis to obtain a relationship for the breakage rate
of a pipe as a function of time. This relationship,
which is exponential, was used to find the optimal tim-
ing of pipe replacement to minimize the total cost of
repair and replacement. It is clear that any error in the
predictive model will alter the replacement time sig-
nificantly. Walski and Pelliccia (1982) subscribed to
the idea of the threshold break rate. They adopted
Shamir and Howard’s (1979) model for predicting
break rates. They derived an optimal replacement
time estimator by setting the total repair costs to be
equal to the replacement cost. It is not clear why such
a criterion for replacement is valid. Clark et al. (1982)
suggested a model that combines two equations, one
to predict the time elapsed until the first break
occurred and the second to predict the number of sub-
sequent breaks which were assumed to grow exponen-
tially over time in an attempt to account for the rela-
tive impacts of various external agents. These equa-
tions had coefficients of determination (R%) of 0.23
and 0.47, respectively. While Clark et al.’s (1982) pro-
cedure is a significant improvement in predicting pipe
breaks, it does raise some concerns because of the low
values of the coefficients of determination. Clark et al.
(1982) have made the following observations: only a
subset of pipes have recurrent repairs; the tdme to first
repair is quite long, typically about fifteen years; the
time between repairs becomes shorter as pipes get

older; large diameter pipes tend to have fewer prob-
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lems; and industrial development in general results in
more repairs.

As can be found in the literature the mathematical
model for the pipe failure prediction has been mostly
based on the exponential model. However, it is con-
ceivable that the break trend of a pipe can show a
trend anywhere between the exponential and linear
considering randomness of pipe failure. Furthermore,
a case study for a large city area in the United States
with 4,000 miles of pipes and 32,242 recorded break
incidents confirmed the intermediate of linear and
exponential break trend mentioned above. Therefore,
a pipe break trend model that can span from the linear

to exponential is formulated in this paper.
3. General Pipe Break Prediction Model

The accuracy of the fitted model plays a major role
in the curve fitting approach for the prediction of
future pipe breaks and subsequent timing of replace-
ment of water mains. Poorly fitted models produce
either unrealistically high or low number of breaks for
the future years resulting in too early or late replace-
ment. In this section a new model to better fit water
main break data is developed, and the model is used
with the Threshold Break Rate to obtain the optimal
replacement time.

The exponential model used by Shamir and
Howard (1979) tends to over-predict the number of
future breaks of water mains when the history of pipe
breaks does not show an exponential trend. In the
General Pipe Break Prediction Model described in
this section, a weighting factor is utilized to moderate
the dominance of either exponential or linear model
in prediction of breaks for a pipe. The General Pipe
Break Prediction Model offers two advantages over
the exponential model: (1) it provides a better fit for
the pipe break history and better predicts the future
number of breaks; (2) it is a break prediction model
based on a cumulative number of breaks for a stretch
of a pipeline defined. Shamir and Howard (1979) used
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“number of beaks in a year per 1,000 ft length of
pipe.” Considering the break patterns of a real
pipeline underground, this approach may not generate
satisfactory results since some pipelines simply don’t
fail frequently even though the length is great.
Therefore, the break prediction model presented here
incorporates cumulative number of breaks since instal-
lation.
The exponential part of the General Pipe Break
Prediction Model has the following form:
N(#) = B_exp.e1-701) (3.1)
where
N(#) = cumulative number of breaks along the
length of a defined pipe in year ¢
t = time in years
1, = base year for the analysis (pipe installation year,
or the first year for which data are available)
A_exp = growth rate coefficient (1/year)
B_exp = coefficient of regression

The linear part of the General Pipe Break
Prediction Model has following form:
N@ =B_lin+Alin(t-1) 3.2
where
N () = cumulative number of breaks along the
length of a pipe in year ¢
t = time in years
1, = base year for the analysis (pipe installation year,
or the first year for which data are available)
A_lin = growth rate coefficient (1/year)
B_lin = coefficient of regression

The General Pipe Break Prediction Model has the
following form:

N = (1 - WFXB_lin + A_lin(t - ,))

+ WF-B_exp-exp(A_exp(t — 1)) (3.3)
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where
N(#) = Cumulative number of breaks along the
length of a pipe in year ¢
t = Time in years
t, = Base year for the analysis (pipe installation year,
or the first year for which data are available)

WF = Weighting factor to determine the best
model for the data given,

A_lin and B_Jin = Coefficients of the linear model

A_exp and B_exp = Coefficients of the exponential

model

The coefficients (A_/in, B_lin, A_exp, and B_exp) are
determined from a curve fitting analysis. The weight-
ing factor is determined between 0 and 1 that would
result in the least sum of squared relative errors. The
computational steps to determine the weighting fac-
tor, WF, is as follows:

First, the value of WF is set to 0, which represents
the linear model, and the sum of squared errors is
computed for the later 1/3 portion of the data to
enhance the predictability of break events of the
model. Then, WF is increased by some increment, &,
and the sum of squared errors is obtained. The opti-
mal weighting factor is the one with least sum of
squared errors. The procedure can be mathematically
represented as follows:

Minimize SSE = :Y;(Oj - C'j,)2 34
Subject to: d
Ci=(1-w)L) + oE)

;=€

wherei={0, 1, ..., 1/g}

l/eisanintegerand O < e< 1

SSE = sum of squared errors for each /

0, = each observed break time

C; = computed value from the General Pipe Break
Prediction Model for each j

w, = weighting factor for each i

E(#) = the exponential model (Eq. (3.1))
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L(t) = the linear model (Eq. (3.2))

7 = number of breaks

Fig. 1 illustrates the procedures of building the
General Pipe Break Prediction Model from pipe break
data.

4. Optimal Replacement Time by Using the
General Pipe Break Prediction Model

The General Pipe Break Prediction Model (Eq.
(3.3)) can be used to determine the optimal replace-
ment time of a pipe by considering the equivalence

I Break Data |

v
| Fit Linear Model |

v
Fit Exponential Model |

4

Use the value of WF as 0 in the
general break prediction model

Compute and store the
sum of residual ervors for
later portion (e.g. later 173
data points) of data

y

Increase the value of WF
by some increment (e.g.
0.01)

<ol >

No

Select the value of WF
that minimizes sum of
residual errors for later
portion (e.g. later 1/3
data points) of data

Fig. 1. General pipe break prediction model building process.

relationship with the Threshold Break Rate developed
by Loganathan et al. (2002). According to them,

@.1)

where the left-hand side of Eq. (4.1) is the pipe break-
age rate at time ¢ and the right-hand side of Eq. (4.1)
represents the Threshold Break Rate of a pipe, which

18

In(1 + R)
)

Brk, = “.2)

In(1
n(l + FiL

where F, = replacement cost per unit length of a pipe
($/fv)

L = the length of a pipe (ft)

C = repair cost of a pipe

and R = discount ratio.

Therefore, the optimal replacement time of a pipe
can be determined by taking a derivative of Eq. (3.3)
with respect to time t and substituting it to Eq. (4.1).
The optimal replacement time is obtained as

1 Brk, - (1 - WF)»A_li
= In (s~ e ).43)
A_exp WF.A_exp-B_exp-e™-""0

Example

By using the recorded historic break times of a pipe,
obtain the General Pipe Break Prediction Model and
the optimal replacement time. Use the interest rate as
7% per year.

Solution
The properties of a pipe is obtained from a break
database as follows:

PIPE ID Installation Year Length ICPF RCPB Brikth
(vear) " (/1) % {breaks/year)
14449-1952-CI-6 1952 13635 9277 2814 3.08
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This pipe is a cast-iron 6 inch pipe with a length of
1363.5 ft. ICPF is the Installation Cost Per Foot, and
RCPB means the Repair Cost Per Break of a pipe.
The Threshold Break Rate (Brkth) is obtained by
using Eq. (4.2). The recorded historic break times of
the pipe, 14449-1952-CI-6, obtained from the break
database are as follows;

MTB(1) MTB(2) MTB(3) MTB(4)
217 361 373 426
MTB(5) MTB(6) MTB(7) MTB(8)
437 469 480 548

The value in the parentheses after MTB (months to
break from installation time) provides the cumulative
number of breaks at each MTB and the order of
breaks.

First, the entire data (break times and correspond-
ing cumnulative number of breaks) are fitted to the lin-
ear model, that is

y,=A_lin+ B linx, + €, i=1,2,..,m

where

y; = the cumulative number of breaks at /th break

x = the time of #th break (year)

€= error at ith break

and 7 = total number of breaks of a pipe

The method of least squares is used to estimate
A_lin and B_lin. Estimates of A_lin and B_lin are
obtained by solving equation

A lin=5- B lin%. 4.4
where

_ l 7 _ 1 7

y=;—i'ryiandx=;—i§xi,

An estimate of B_/in is obtained by solving equation

S
B lin=—2

rx

where
S,.= zl.(x,. -%7and Sq = z%y,(xi-i)z.
The ith residual error is

€=y~ (A Jin+ B linx), i=1,2,.,7

The error sum of squares is expressed as

n

$55= 3¢ = £ 0,57

The estimated values of A_lin and B_lin for the
pipe, 14449-1952-CI-6, are

A_lin =0.378 and B_lin = -8.65.

Second, the entire data is fitted to the exponential
model, that is

y;= B__expuxf

“Prg,  i=l2,.,n
By taking natural logarithms to both sides we obtain

a linear model, thatis
In(y) = In(B_exp) + A_exp In(x).

Let In(B_exp) = 2 and A_exp = b, then the estimates
of B_exp and A_exp are obtained by solving
a=Iny-blnx 4.5)
Therefore, by substituting x for In x and y for In y in

Eq. (4.5) and from Eq. (4.4) we obtain the estimates of
A_exp and B_exp as
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A_exp =0.117 and B_exp = 0.0676.

Third, the error sum of squares in later 1/3 of break
data points (e.g. calculate the residual error starting
from 6% break if a pipe has total 9 breaks) are calculat-
ed by varying the weighting factor (e.g. from 0 to 1 by
an increment of 0.01) in the General Pipe Break
Prediction Model. The General Pipe Break Prediction
Model for the pipe by using the estimated coefficients

are expressed as

y;= (1 - wf)(A_lin + B_lin-x) + wf-B_exp-¢'-7*
= (1 - wf)0.378 - 8.65.x) + wf0.0676.¢>!17

where = 6, 7, 8. Since n = 8 for the pipe, 8/3 = 3.
Therefore, take the later 3 break data and calculate
the sum of squared errors for x, = 469, x, = 480, and
xg = 546. The lowest value of the sum of the squared
errors is calculated as 0.2957 when the weighting fac-
tor is 0.47. Therefore, the General Pipe Break
Prediction Model for the pipe is

y=0.53(0.378 - 8.65-2) + 0.32.£117

The optimal replacement time of the pipe is
obtained by using Eq. (4.3), that is

14449- 1952018
20 T
Exponential
.
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| /
1€ /I
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i

HPRQ JO JGLINL SATEIRLIND
5
T
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Fig. 2. Break versus time plots of the GPBPM, exponential and
linear models.
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! n Brk, - (1 - WR)A_lin
A_exp WEFrA_expeB_expre™-c%
1 Ing 3.08 - (1-0.47)0.378

0.117 " 0.47x0.117 X 0.0676 x ¢ 01170

=57

*
L

)

Since installation year is used as time ‘0’ in this cal-
culation, actual replacerﬁent year is expressed as {* =
[installation year] + ¢} = 1952 + §7 = 2009.

Fig. 2 shows the plot of the resulting General Pipe
Break Prediction Model (GPBPM) of the pipe. It also
shows the plots of the exponential and the linear
model fitted to the break data.

5. Summary

A new pipe break prediction model, which is coined
as a “General Pipe Break Prediction Model” that can
accommodate linear, exponential or in-between of lin-
ear and exponential break trend is developed in this
paper. The model overcomes the shortcomings of the
exponential model found in the literature which can
over-predict future pipe break incidents. The model is
used with the Threshold Break (Loganathan et al.,
2002) to obtain the optimal replacement time equa-
tion (Eq. (4.3)) of a pipe. Detailed model building
processes of the General Pipe Break Prediction Model
is provided with an example of optimal replacement
time analysis using the Threshold Break Rate. The
newly developed model and replacement analysis
method is expected to contribute to the reduction of

pipe maintenance costs in water distribution systems.
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