교반관법에 의한 Mg 기지 수소저장합금의 대량제조와 반복적 수소화 반용에 따른 수소화 툭성 및 열화특성 평가

하 윈, 이성곤., 훙태환, 깁영직-*
*성균관대학교대학원, **성균관대학교 신소재공학과

Mass Production of Mg based Hydrogen Absorbing Alloys and Evaluation of Hydrogenation and Degradation Properties by Hydriding/Dehydriding Cyclic Test

Won Ha*, Sung Gon Lee*, Tae Whan Hong* and Young Jig Kim**
*Grad. School of Sunkyunkwan Univ.
**Dept. of Advanced Materials Engineering, Sungkyunkwan Univ.
300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746, Korea

Abstract

Hydrogenation properties of $\mathrm{Mg}-\mathrm{Ni}$ and $\mathrm{Mg}-\mathrm{Ti}-\mathrm{Ni}$ alloys were investigated by Pressure-Composition Isotherm (PCI) test. Those alloys were fabricated by a new alloying method, Rotation-Cylinder Method (RCM). The as-cast microstructure of $\mathrm{Mg}-10$ mass\% Ni alloy consists of an island-like hydride forming $\mathrm{a}-\mathrm{Mg}$ phase and the eutectic structure.

After 350 cyclic tests, $\mathrm{Mg}-10$ mass $\% \mathrm{Ni}$ alloy was pulverized into fine particles of 100 nm . The fine particles, which have a large specific surface area, are highly reactive with hydrogen. However, extreme pulverization can separate Mg from $\mathrm{Mg}_{2} \mathrm{Ni}$ in the eutectic structure, so $\mathrm{Mg}_{2} \mathrm{Ni}$ of the eutectic structure cannot behave as a dissociated hydrogen supplier

주요기샬용어 : Mass production(대량생산), $\mathrm{Mg}-\mathrm{Ni}, \mathrm{Mg}-\mathrm{Ti}-\mathrm{Ni}$, Hydrogen absorbing alloy (수소저장합금), Degradation(열화)

1. 서 론

신 대체에너지로 각광받고 있는 수소에너지를 효율적이고 안전하게 저장할 수 있는 매체로서

수소저장합금에 대한 연구가 활발히 진행 중에 있다. 마그네슘은 실용적으로 사용이 가능한 수 소저장합금 중 가장 많은 수소를 저장하고, 가격 이 저렴하며, 비중이 $1.74 \mathrm{~g} / \mathrm{cm}^{3}$ 로 낮아 수소를

원료로 하는 원동기관에 적합한 재료로 받아들 여지고 있다 ${ }^{1)}$. 마그네슘을 기지로 한 수소저장합 금에 대한 연구는 Reilly등의 연굴ㄹㄹㄹ 시초로 하 여 마그네슘의 높은 수소 저장량을 유지하면서 느린 수소화 반응, 높은 탈수소화 온도 등을 개 선하기 위해 합금설계, 공정제어 등올 중심으로 이루어지고 있고, 어느 정도 가시적인 결과도 보 고되고 있다. 합금 설계적 측면에서는 수소화 반 응특성의 향상에는 기여하지만 수소저장량의 감 소를 초래하는 Ni 의 첨가량을 줄이는 방향으로 연구가 진행되고 있다. Song 등 $^{3)}$ 은 기계적 합금 화법을 이용하여 Ni 를 $10 \mathrm{mass} \%$ 정도만 첨가하 여도 양호한 수소화 거동을 보인다고 보고한 바 있다. Friedlmeier 등 4 은 Ni 의 첨가량을 $13-55 \%$ 로, Yang 둥 ${ }^{5}$ 은 $0-45 \%$ 로 변화시켜 그 수소화 톡성을 고찰하여, $350^{\circ} \mathrm{C}$ 에서 $5.8 \mathrm{mass} \% \mathrm{H}_{2}, 305$ ${ }^{\circ} \mathrm{C}$ 에서 $4.8 \mathrm{mass} \% \mathrm{H}_{2}$ 의 우수한 수소저장량을 각각 보고하였다. 공정 제어적 측면에서는 우수 한 수소화 특성을 가지는 수소저장합금의 대랑 생산을 위해 연소합성법 ${ }^{6)}$, melt-spinning ${ }^{4)}$, induc- tion melting ${ }^{7}$ 등의 다양한 공정이 시도되 고 있다. 그러나, 대기 중에서 대량생산이 가능 한 공정에 대한 연구는 미비한 실정이다.

현재 수소저장합금의 제조에 있어서 가장 널 리 이용되는 방법은 기계적 합금화밥 (Mechanical Alloying)이다. 기계적 합금화법은 제조시간, 합금화 분위기, BPR(Ball to Powder Ratio)등 공정변수의 변화에 의해 나노 또는 비 정질 결정구조에 기인한 우수한 수소화특성을 갖는 재료의 제조가 가능하다. 또한, 마그네슘과 같이 액체상태에서 대단히 활성인 금속을 고체 상태에서 합금화시킬 수 있다는 장점이 있다. 그 러나, 기계적 합금화법에 사용되는 원료는 분말 상으로 고가이며, 합금화에 장시간이 필요한 반 면 생산량은 적고, 제조된 분말은 합금화공정 중 Ball에 의해 심한 응럭을 받아 반복적인 수소화/ 탈수소화 반웅시 불안정한 단점이 있다 ${ }^{8)}$.

본 연구에서는 합금설계적 측면에서 수소 해 리반응의 촉매원소로서 거동하는 Ni 의 첨가량을

최소화하여 마그네슘의 수소저장량올 유지하면 서, 공정제어를 통해 Ni 의 수소해리반응을 극대 화 시켜 수소화 반응특성을 최대화하였다. 동시 에 대량생산이 가능한 교반관법을 적용하여 시 료를 제조하고 그 수소화 특성 및 열화특성을 평 가하였다. 또한, 높은 수소저장량과 낮은 수소화 반웅온도를 나타내는 TiFe 에 착안하여 Ti 를 $\mathrm{Mg}-\mathrm{Ni}$ 수소저장합금에 첨가하고 그 수소화 특 성을 고찰하고자 하였다.

2. 실험방법

2.1 교반관법

비중이 $8.9 \mathrm{~g} / \mathrm{cm}^{3}$ 로 Mg 보다 5 배 이상 높고 윤 점이 $1453^{\circ} \mathrm{C}$ 로 높은 Ni 를 Mg 와 합금화시키기 위해 대기 중에서의 입자강화 금속기지 복합재 료 제조법으로 제안되어 진 교반관법을 적용시 ㅋㅕㅕㄷㅏ. 교반관법은 단시간 내에 강력한 교반력을 용탕에 가함으로써 기화로 인한 Mg 의 합금화 공정 중 손실을 줄여 목적조성에 맞는 합금의 제 조가 가능하며, 융점이 높은 Ni 의 빠른 합금화가 가능하다. Fig. 1에 교반관 회전시 용탕표면의 형상을 나타내었다. 교반관이 회전하면서 중력과 원심력의 합력방향으로 힘이 작용하여 강력한 교반력 하에서도 U자 형태의 안정한 용탕

Fig. 1. A U shaped melt surface.

Fig. 2. Flow chart of the experimental procedure.

표면을 형성한다. 이로 인하여 활성금속인 Mg 의 발화를 방지하고 단시간 안에 강화상이 고르게 분산된 건전한 복합재료의 제조가 가능한 것으 로 보고되고 있는 공정이다 ${ }^{9)}$.

2.2 시료의 제조

본 연구에서의 실험과정을 Fig. 2에 나타내었 으며 구체적인 시료제조조건은 다음과 같다. XUZHOU CHANGHONG MAGNESIUM Co. LTD 에서 제조한 순도 99.93% 의 Mg 잉고트와 INCO. Co. LTD의 순도 $99.92 \% \mathrm{Ni}$ 잉고트, sponge Ti 를 원재료로서 사용하였다. 첨가된 Ni 는 고가의 분말사용을 지양하면서 용탕과의 접촉 면적을 최대화하여 빠른 합금화를 도모하기 위해 범용 드릴링 머신을 사용하여 절삭유를 배제한 상태에서 Fig. 3과 같은 형상의 chips로 가공하 였다. 넓은 표면적을 가진 sponge Ti 는 별도의 가공 없이 합금화에 사용하였다. 약 850 g 의 Mg 를 $\mathrm{SF}_{6}+\mathrm{CO}_{2}$ 혼합가스 분위기의 전기로 내에서 주철제 도가니를 이용하여 $680^{\circ} \mathrm{C}$ 로 승온하여 용 융시킨 후 Fig. 4 의 장치를 교반관이 용탕 직상

Fig. 3. Ni chips.

(1) motor (2) Ni or Ti chips
(3) controller (4) rpm sensor
(5) $\mathrm{SF}_{6}+\mathrm{Co}_{2}$ gas (6) stirrer
(7) rotation-cylinder
(8) electric resistance furnace
(9) crucible

Fig. 4. Schematic illustration of rotationcylinder apparatus.

까지 오도록 하강하여 용탕과의 반응을 최소화하 고자 3 분간 예열하였다.
이후 Fig. 5과 같은 조건으로 교반관을 삽입하여 용탕을 교반시킨다. 교반관은 회전시 강한 교반 하에서도 넓고 안정한 U자형의 용탕표면을 유지

rotation-cylinder

crucible
Fig. 5. Schematic illustration of rotationcylinder and crucible.

하여 혼입된 Ni 및 Ti 의 빠른 합금화와 용탕표면 의 난류형성에 의한 기포혼입 방지, 활성금속인 Mg 의 발화 방지가 가능하다. 교반관의 회전속도 는 안정한 용탕표면 및 Ni, Ti 의 빠른 합금화를 고려하여 800 rpm 으로 고정하였다. Ni 와 Ti 는 첨가시 용탕과의 온도차를 쳐소화하기 위해 270 ${ }^{\circ} \mathrm{C}$ 로 예열하였으며, 교반관을 퉇해 분당 4 g 의 속 도로 첨가하였다. $\mathrm{Mg}-\mathrm{Ni}$ 합금의 경우 첨가된 Ni 의 양은 $1,5,10 \mathrm{mass} \%$ 로 변화시켰다. Mg -$\mathrm{Ti}-\mathrm{Ni}$ 의 경우 첨가된 Ti 및 Ni 의 양을 $1: 1$ 비율 로서, 총 첨가량이 $3,5 \mathrm{mass} \%$ 가 되도록 합금화 하였다. 소정의 Ni 및 $\mathrm{Ti}-\mathrm{Ni}$ 첨가가 완료된 후 직 경 32 mm , 높이 220 mm 의 금형에 중력 주조하 였다.

2.3 시료의 상문석

제조된 시료는 광학현미경으로 관찰 후 Image--Pro ${ }^{(\mathbb{B})}$ PLUS (Media Cybernetics.)를 사 용하여 image analysis를 행하였다. 그리고 수소 화 특성평가를 위해 파쇄공정을 행한 후 분말화 된 시료는 Macscience사의 M18XHF-
SRA XRD를 이용하여 상분석을 실시하였다. 분 석조건으로 target은 $1.5405 \AA$ 의 CuKa , 조사범

위는 $10 \sim 70^{\circ}$, 조사속도는 $10 \mathrm{deg} / \mathrm{min}$. 이었다.

2.4 수소화톡성 및 열화거동 평가

수소화특성 평가는 Automatic sievert type의 static device를 사용하였다. 측정시 시료의 무게 는 $1.0-1.5 \mathrm{~g}$, 본 측정에 앞서 활성화처리로는 350 ${ }^{\circ} \mathrm{C}$ 에서 10 회의 수소화/탈수소화반웅을 반복 행하 였다. 반복적 수소화 반응에 따른 합금의 열화거 동은 $\mathrm{Mg}-10$ mass $\% \mathrm{Ni}$ 합금에 대하여 $350^{\circ} \mathrm{C}$ 에 서 350 회의 수소화/탈수소화 반응에 따른 수소화 특성의 변화를 관찰하였다. 주사전자헌미경 (Scanning Electron Microscopy)으로 시료의 형상변화를 관찰하였다. 실험에 사용한 수소는 extrinsic degradation의 영향을 최소화 하기 위 해 99.999% 의 초고순도수소 $\left(\mathrm{O}_{2}\right.$: $\left\langle 1.0 \mathrm{ppm}, \mathrm{H}_{2} \mathrm{O}\right.$: $\left\langle 1.0 \mathrm{ppm}, \mathrm{CO}_{2}: 0.1 \mathrm{ppm}, \mathrm{THC}:\langle 0.1 \mathrm{ppm})\right.$ 를 사용 하였다.

3. 결과 및 고찰

3.1 $\mathrm{Mg}-\mathrm{Ni}$ 및 $\mathrm{Mg}-\mathrm{TI}-\mathrm{Ni}$ 합금의 미세 조직 및 상분석

Fig. 6은 Mg 잉고트 (a), $\mathrm{Mg}-1$ mass $\% \mathrm{Ni}$ (b), $\mathrm{Mg}-5 \mathrm{mass} \% \mathrm{Ni}$ (c), $\mathrm{Mg}-10$ mass\% Ni (d), Mg-1 mass\% (Ti-Ni) (e), Mg-3 mass\% ($\mathrm{Ti}-\mathrm{Ni}$) (f)의 조직사진이다. Image-Pro PLUS 를 이용한 image analysis결과 $\mathrm{Mg}-\mathrm{Ni}$ 합금의 경우, Ni 첨가량이 $1,5,10$ mass $\%$ 로 증가할수록 공정영역의 분율이 $19.96,30.45,47.58 \%$ 로 증가 함을 확인할 수 있었다. Mg 의 MgH_{2} 형성에 있 어서 촉매거동을 하는 것으로 알려진 $\mathrm{Mg}_{2} \mathrm{Ni}$ 가 Mg 와 lamellar structure를 이루는 공정영역이 증가함으로써 $\mathrm{Mg}_{2} \mathrm{Ni}$ 에 의해 해리된 수소원자가 보다 쉽게 Mg 와 MgH_{2} 를 형성할 수 있음을 예 상할 수 있다. $\mathrm{Mg}-\mathrm{Ni}$ 합금의 경우 Ni 첨가량의 증가에 따라 초정 Mg 의 평균입경이 감소하는 경 향을 보였으나, $\mathrm{Mg}-\mathrm{Ti}-\mathrm{Ni}$ 합금의 경우 Ti 와 Ni 의 첨가에 따라 Mg 의 평균입경에 큰 변화가 없

Fig. 6. Microstructure of as - cast specimens, (a)
Mg ingot, (b) $\mathrm{Mg}-1$ mass $\% \mathrm{Ni}$ alloy, (c)
$\mathrm{Mg}-5$ mass\% Ni alloy, (d) $\mathrm{Mg}-10$ mass\% Ni alloy, (e) $\mathrm{Mg}-1$ mass $\%$ ($\mathrm{Ti}-\mathrm{Ni}$) and (f) Mg-3 mass\% (Ti-Ni).

음을 관찰할 수 있었다. 전체적인 조직의 차이가 크지 않아 $\mathrm{Mg}-\mathrm{Ni}$ 합금과 달리 조직적 차이에 따 른 수소화 특성의 변화는 크지 않을 것으로 사려 된다.

3.2 Mg-[1, 5, 10mass\%] NI 합금의 수소화 특성

Fig. 7, 8 및 9 의 (a), (b)는 $250,300,350^{\circ} \mathrm{C}$ 에 서 PCI 측정을 통한 $\mathrm{Mg}-1$ mass $\% \mathrm{Ni}, \mathrm{Mg}-5$ $\operatorname{mass} \% \mathrm{Ni}, \mathrm{Mg}-10 \operatorname{mass} \% \mathrm{Ni}$ 합금의 수소화/ 탈수소화 특성평가 결과이다. $350^{\circ} \mathrm{C}$ 에서 측정된 각 합금의 최대 수소저장량은 약 $4.5,6,6.3$ $\operatorname{mass} \%$ 로 측정되어 Ni 첨가량의 증가에 따른 수 소저장량의 상승을 확인할 수 있었다. 1 mass $\%$ Ni 가 첨가된 시료의 경우 수소 해리반응의 촉매 원소인 Ni 양이 부족하여 수소 해리반응에 고압 이 요구되고 수소 해리반응 및 확산퉁로의 역할 을 하느 $\mathrm{Mg}_{2} \mathrm{Ni}$ 가 부족하여 주된 수소화물형성상 인 a 상까지 해리된 수소원자를 원활히 공급해 주 지 못하여 plateau의 기울기가 급하거나(300, 350

Fig. 7. PCI profiles of $\mathrm{Mg}-1$ mass $\% \mathrm{Ni}$ specimen (a) hydriding, (b) dehydriding

Fig. 8. PCI profiles of $\mathrm{Mg}-5$ mass \% Ni specimen (a) hydriding, (b) dehydriding.

Fig. 9. PCl profiles of $\mathrm{Mg}-10$ mass $\% \mathrm{Ni}$ specimen (a) hydriding, (b) dehydriding.
$\left.{ }^{\circ} \mathrm{C}\right)$ plateau가 관찰되지 않았다 $\left(250^{\circ} \mathrm{C}\right)$. 수소해 리반응의 촉매 역할을 하는 Ni 첨가량 증가에 따 라 $5 \mathrm{mass} \% \mathrm{Ni}$ 와 $10 \mathrm{mass} \% \mathrm{Ni}$ 가 첨가된 시료 의 경우 약 $4 \mathrm{mass} \%$ 에 달하는 높은 가역용량을 나타내고 수소화 평형압력이 감소하였다. 그리고, plateau 기울기가 감소함으로써 수소화 반응이 보다 원활히 진행되었음을 확인할 수 있다. 즉, a -고용체상에서 β-수소화물상으로의 상전이가 Ni 첨가량의 증가에 따라 용이해짐을 알 수 있다. 10
$\mathrm{mass} \% \mathrm{Ni}$ 가 첨가된 시료의 경우 $350^{\circ} \mathrm{C}$ 에서 최 대수소 저장량은 약 $6.3 \mathrm{mass} \%$ 로 중가하였다. 이는 $\mathrm{Mg}-10 \mathrm{mass} \% \mathrm{Ni}$ 합금의 이론수소 저장 량인 $6.86 \mathrm{mass} \%$ 의 약 92% 에 달하는 값이다. 공정영역이 a 상을 포위하는 형상을 이룸으로써 해리된 수소원자가 주된 수소화물 형성상인 \mathbf{a} 상 까지 원활히 도달하여 이론수소 저장량에 근접한 값을 나타낸 것으로 사려된다. 또한 $1,5 \mathrm{mass} \%$ Ni 첨가시료와 달리 수소화 반응시 $250^{\circ} \mathrm{C}$ 에서도

Fig. 10. PCI profiles of Mg - 1 mass $\%$ (Ti-Ni) specimen (a) hydriding, (b) dehydriding.

Fig. 11. PCl profiles of $\mathrm{Mg}-3$ mass\% ($\mathrm{Ti}-\mathrm{Ni}$) specimen (a) hydriding, (b) dehydriding.
plateau를 보이는데, 동일한 이유로 인해 비교적 저온인 $250^{\circ} \mathrm{C}$ 에서도 α-고용체상에서 β-수소화물 상으로의 전이가 원활히 이루어짐을 수소화 반웅 시 plateau 생성을 퉁해 알 수 있다. 이것은 탈수 소화 반웅시에서도 $250^{\circ} \mathrm{C}$ 에서 $1,5 \mathrm{mass} \% \mathrm{Ni}$ 첨가시료보다 안정적인 plateau 기울기를 보임으 로써 확인할 수 있다. $300^{\circ} \mathrm{C}$ 에서 탈수소화 평형 압력이 약 0.183 MPa 로 측정되어 상압의 두 배 에 가까운 높은 탈수소화 평형압력 값을 나타내

었다.
Ni 는 수소 해리반웅의 촉매원소로서 거동하며 수소화물을 형성하지 않는다. 따라서 Ni 의 양이 증가할수록 수소화 반웅은 촉진되는 반면 전체 합금의 수소저장량은 감소하게 된다. $\mathrm{Mg}-\mathrm{Ni}$ 합 금에서도 Ni 의 양이 $1,5,10$ mass\%로 증가할수 록 이론수소 저장량은 $7.54,7.23,6.86 \mathrm{mass} \%$ 로 감소한다. 그러나, 교반관법으로 제조된 합금의 실제 수소저장량은 $350^{\circ} \mathrm{C}$ 에서 $4.5,6.0,6.3$
$\mathrm{mass} \%$ 로 증가하는 경향을 보였다. 이는 $\mathrm{Mg}_{2} \mathrm{Ni}$ 가 풍부한 공정영역이 수소화특성에 미치는 영향 을 단적으로 보여주는 예이다. Ni 가 1 mass \%로 소량 첨가된 경우 공정영역의 $\mathrm{Mg}_{2} \mathrm{Ni}$ 가 적어 수 소 해리반응이 용이하지 못하고 해리된 수소원자 가 주된 수소화물형성상인 a상까지 미처 도달하 지 못하여, 수소화물형성의 여지는 많지만 실제 형성된 수소화물은 적다. 그러나, image analysis 결과에서 보듯이 공정영역이 47.58% 를 차지하고 있는 $\mathrm{Mg}-10 \mathrm{mass} \% \mathrm{Ni}$ 합금의 경우, $\mathrm{Mg}_{2} \mathrm{Ni}$ 가 풍부한 공정영역이 많고 이들이 주된 수소화물형 성상인 a 상을 포위하고 있어서 수소 해리반응이 용이하고 해리된 수소원자가 a 상까지 원활히 도 달하여 실제 형성된 수소화물이 많음을 알 수 있 다.
$\mathrm{Mg}-1,5,10 \mathrm{mass} \% \mathrm{Ni}$ 합금의 수소화 반응 시 반응엔탈픠는 각각 $-53.98 \pm 2.89,-55.28 \pm$ $0.00,-67.31 \pm 2.14 \mathrm{~kJ} / \mathrm{mol}$ 로 측정되어 Ni 첨가 량의 증가에 따라 수소화 반응이 보다 용이하게 일어남을 확인할 수 있었다. 이와 같은 반응엔탈 피의 감소는 Ni 첨가량의 증가로 인한 $\mathrm{Mg}_{2} \mathrm{Ni}$ 의 증가와 상호 고용한이 없는 $\mathrm{Mg}-\mathrm{Ni}$ 계에서 저장 계, 촉매계의 상분리로 인한 수소화 반응의 촉진 에 기인한 것으로 사려된다. Reilly등 ${ }^{2}$ 은 유도가 열방식으로 제조한 $\mathrm{Mg}_{2} \mathrm{Ni}$ 가 $-64.5 \mathrm{~kJ} / \mathrm{mol}$ 의 반 응엔탈피를 보였다고 보고된 바 있다. 그러나, 교 반관법으로 제조한 $\mathrm{Mg}-10$ mass \% Ni 합금은 Ni 의 양이 $\mathrm{Mg}_{2} \mathrm{Ni}$ 에 비해 상대적으로 적음에도 불구하고, $-67.31 \mathrm{~kJ} / \mathrm{mol}$ 의 엔탈피 값을 보여 우 수한 수소화 반응특성을 나타냄을 확인할 수 있 었다.

3.3 Mg-[1, 3mass\%] Ti-Ni 합금의 수소화 특성

Fig. 10 과 11 은 각각 $\mathrm{Mg}-1$ mass $\% ~(~(~ T i-N i), ~$ $\mathrm{Mg}-3$ mass\% ($\mathrm{Ti}-\mathrm{Ni}$) 합금을 $250-350^{\circ} \mathrm{C}$ 에서 수소화 특성평가한 결과이다. $\mathrm{Mg}-1$ mass\% $(\mathrm{Ti}-\mathrm{Ni})$ 합금의 경우 $300^{\circ} \mathrm{C}$ 에서 최대 수소저장

Fig. 12. Morphology of the specimens after the given cycles of (a) 0 cycle, (b) 10 cycles, and (c) 350 cycles.

량이 $6.2 \mathrm{mass} \%$ 로. 측정되어, $\mathrm{Mg}-1 \mathrm{mass} \%$
$\mathrm{Ni}, \mathrm{Mg}-5 \mathrm{mass} \% \mathrm{Ni}$ 합금보다 높은 수소저장 량을 나타내었다. 탈수소화 반응시 모든 측정온 도에서 plateau를 관찰할 수 있었으나, $250^{\circ} \mathrm{C}$ 의 경우 탈수소화 반응이 원활히 일어나지 못하는 지연반응을 관찰할 수 있었다. $300^{\circ} \mathrm{C}$ 에서의 탈수 소화 반응시 평형압력은 약 0.133 MPa 로 측정되 어 상압보다 높은 압력으로 탈수소화 반웅이 이 루어짐을 확인할 수 있었다. $\mathrm{Mg}-3 \mathrm{mass} \%$ $(\mathrm{Ti}-\mathrm{Ni})$ 합금의 경우 최대 수소저장량은 $\mathrm{Mg}-1$ $\mathrm{mass} \%$ ($\mathrm{Ti}-\mathrm{Ni}$) 합금보다 오히려 작아 $300^{\circ} \mathrm{C}$ 에 서 $5.7 \mathrm{mass} \%$ 로 측정되었다. 탈수소화 반응시

Fig. 13. Schematic illustration of volume expansion during hydriding and dehydriding reactions.

평형압력도 $300^{\circ} \mathrm{C}$ 에서 0.125 MPa 로 측정되어 $\mathrm{Mg}-1 \mathrm{mass} \%$ ($\mathrm{Ti}-\mathrm{Ni}$) 합금보다 낮은 것으로 나타났다. 반면, $250^{\circ} \mathrm{C}$ 에서의 탈수소화 반웅시 $\mathrm{Mg}-3 \mathrm{mass} \%$ ($\mathrm{Ti}-\mathrm{Ni}$) 합금의 지연반웅이 $\mathrm{Mg}-1 \mathrm{mass} \%(\mathrm{Ti}-\mathrm{Ni})$ 합금보다 감소되어 탈수 소화 반응이 보다 용이하게 이루어 졌음을 확인 할 수 있었다. $\mathrm{Mg}-\mathrm{Ni}$ 합금과 달리 $\mathrm{Mg}-\mathrm{Ti}-\mathrm{Ni}$ 합금에서는 Ni 첨가량의 중가에 따라 수소화 특 성이 전체적으로 향상되지 않고, 수소저장량이 약간 감소하거나, 지연반응이 감소하여 탈수소화 반웅이 원활해지는 등 전체적으로 큰 변동이 없 음을 관찰할 수 있었다. Ti 및 Ni 의 첨가에 따른 수소화 특성의 변화에 대한 실험적 검증과 재고 찰이 필요할 것으로 사려된다.

3.4 $\mathrm{Mg}-10 \mathrm{mass} \% \mathrm{NI}$ 합금의 열화폭성

Fig. 12 는 주사전자 현미경올 이용한 0,10 , 350회의 수소화/탈수소화 cyclic test 후 시편의 형상변화를 관찰한 결과이다. (a)는 합금과 수소 와의 접촉면적을 극대화하기 위해 4시간동안의 파쇄공정을 거친 시료이며, 날카로운 전단면과

Fig. 14. Variations of hydrogenation proper-ties of $\mathrm{Mg}-10 \mathrm{mass} \% \mathrm{Ni}$ alloy during cyclic test (a) hydrogen capacity and (b) plateau pressure.

매끄러운 표면을 관찰할 수 있다. (b)와 (c)는 각 각 10 회, 350 회의 수소화/탈수소화 반응을 거친 후의 시료이다. 합금의 수소화물을 형성으로 인 한 체적팽창으로 표면이 미분화되기 시작하며, 350 회 cyclic test후 시료는 약 100 nm 까지 미분 화가 진행되었다.

Fig. 13에 나타낸 개략도와 같이 수소화 반웅 은 합금의 표면으로부터 내부로 진행하고, 탈수 소화반웅은 합금의 내부로부터 표면으로 진행한 다. 이에 따라 합금에는 매우 큰 응력이 발생하며 합금은 미분화된다 ${ }^{10)}$. 그리고 표면이 산화되지 않 은 새로운 면이 생기므로 수소와의 접촉 면적이 증가하여 초기 수소화 반응은 촉진되나 미분화가 심화될 경우 상분리, 결정구조의 변화 등으로 인 해 수소화특성이 악화된다.

Fig. 14 의 (a)는 PCI 측정을 통한 $\mathrm{Mg}-10$ $\mathrm{mass} \% \mathrm{Ni}$ 합금의 최대수소 저장량변화이고 (b)

는 평형수소압의 변화이다. (a)에서와 같이 160 cycle까지는 수소저장량이 급격히 증가하여 6.97 mass\%에 까지 이르고 이후 서서히 감소하여 350 cycle 후에는 이론수소저장량의 80% 까지 감 소하였다. $\mathrm{Mg}-10$ mass\% Ni 합금의 이론수소저 장량은 $6.86 \mathrm{mass} \%$ 이나 본 측정에서는 최대수 소저장량이 $6.97 \mathrm{mass} \%$ 로 측정되었다. 이와 같 은 결과는 시료의 불균질성에 기인한 것으로 판 단된다. 수소화 반응시 평형수소압의 변화는 (b) 와 같이 지속적으로 감소하며, 탈수소화반웅시 평형수소압은 증가하는 것으로 측정되었다. 이것 은 합금의 미분화로 인한 표면적의 증가와 합금 내로의 수소확산거리의 감소 둥이 원인인 것으로 판단된다. Cycle이 증가함에 따라 수소저장량은 감소하지만 수소화 평형압력이 감소하고 탈수소 화 평형압력이 증가하는 것은 합금의 열화로 인 한 저장계와 촉매계의 상분리에 기인한 것으로 사려된다. 저장계와 촉매계가 분리될 경우 비교 적 고온에서 수소화물을 형성하는 a 는 수소화 반 응이 원활히 진행되지 못하므로 합금의 총수소저 장량은 감소한다. 그러나 분리된 촉매계는 a 에 비해 수소저장량은 상대적으로 적지만 풍부한 Ni 의 촉매역할로 인해 수소화/탈수소화반응이 용이 하므로 수소화 평형압력은 감소하고 탈수소화평 형압력은 중가하는 것으로 사려된다.

4. 결 른

교반관법으로 $\mathrm{Mg}-(1,5,10$ mass\%) Ni 합금 과 $\mathrm{Mg}-(1,3 \mathrm{mass} \%) \mathrm{Ti}-\mathrm{Ni}$ 합금을 제조하고 조직관찰, 상분석, image analysis, 수소화 특성 평가, 열화 거동평가를 통하여 다음과 같은 결론 을 얻었다

1) 교반관법을 사용하여 $\mathrm{Mg}-\mathrm{Ni}, \mathrm{Mg}-\mathrm{Ti}-\mathrm{Ni}$ 수소저장합금을 제조함으로써, 대기 중에서 단시간 내에 목적조성에 준하는 건전한 수소 저장합금의 대량 제조가 가능함을 확인하였 으며, $\mathrm{Mg}-10 \mathrm{mass} \% \mathrm{Ni}$ 합금의 경우 최대

수소저장량은 $350^{\circ} \mathrm{C}$ 에서 약 $6.3 \mathrm{mass} \%$, 가 역용량은 약 $4 \mathrm{mass} \%$ 로 측정되어 이론수소 저장량에 근접하는 높은 수소저장량을 나타 내었다.
2) 조직관찰 및 image analysis결과 $\mathrm{Mg}-\mathrm{Ni}$ 합 금의 경우 Ni 첨가량의 증가에 따라 초정 a 상 이 미세화되고 공정영역의 분율이 증가하였으 나, $\mathrm{Mg}-\mathrm{Ti}-\mathrm{Ni}$ 합금의 경우 Ti 및 Ni 의 첨가 에 따라 \mathfrak{a} 상의 미세화는 관찰되지 않았다. $\mathrm{Mg}-\mathrm{Ni}$ 합금에서 $\mathrm{Mg}_{2} \mathrm{Ni}$ 가 풍부한 정영역의 증가와 공정영역이 a 상을 포위하는 형상은 수 소 해리반응 및 a 상으로의 수소확산에 기여하 고, 이에 따라 수소화 반응이 촉진되는 것으로 사려된다. 또한, Ni 첨가량의 증가에 따라 반 응엔탈피가 감소함으로써 수소화 반응특성의 향상을 확인할 수 있었다.
3) $\mathrm{Mg}-10 \mathrm{mass} \% \mathrm{Ni}$ 합금의 열화거동 평가결 과 수소화/탈수소화반응의 반복에 따라 합금 이 미분화하여 350 cycle 후에는 100 nm 까지 미분화되었으며, 저장계와 촉매계의 상분리로 인해 합금전체의 수소저장량은 감소하고 수 소화 반웅특성은 향상되는 것으로 사려된다.
4) $\mathrm{Mg}-\mathrm{Ti}-\mathrm{Ni}$ 합금의 경우 Ti 및 Ni 첨가량의 증가에 따른 수소화특성의 큰 변화는 관찰되 지 않았으며, $\mathrm{Mg}-1$ mass\% ($\mathrm{Ti}-\mathrm{Ni}$)합금의 경우 최대수소저장량이 $6.2 \mathrm{mass} \%$ 로 측정되 어 $\mathrm{Mg}-5 \mathrm{mass} \% \mathrm{Ni}$ 합금보다 우수한 수소 저장능을 나타내었다.

참 교 문 헌

1) L. Schlapbach: "Hydrogen inIntermetallic Compounds I", Springer - Verlag, Berlin, Germany, 1978, p. 193.
2) J. J. Reilly, R. H. Wiswall : "The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of $\mathrm{Mg}_{2} \mathrm{NiH}_{4}{ }^{\prime \prime}$, Jr. Inorg. Chem., Vol. 7, 1968, p. 2254.
3) M. Y. Song, J. P. Manaud, B. Darriet : "Dehydriding kinetics of a mechanically alloyed mixture $\mathrm{Mg}-10 \mathrm{wt} . \% \mathrm{Ni}^{\prime \prime}$, J. Alloys Comp., Vol. 282, 1999, p. 243.
4) G. Friedlmeier, M. Arakawa, T. Hirai, E. Akiba : "Preparation and structural, ther-mal and hydriding characteristics of melt-spun Mg-Ni alloys", J. Alloys Comp., Vol. 292, 1999, p. 107.
5) J. Yang, M. Ciureanu, R. Roberge : "Preparation and hydrogen storage properties of $\quad \mathrm{Mg}_{1-x} \mathrm{Ni}_{x} \quad(x=0-45 \quad$ wt.\%) composites", J. Alloys Comp., Vol. 287, 1999, p. 251.
6) L. Li, T. Akiyama, J. Yagi : "Activity and capacity of hydrogen storage alloy $\mathrm{Mg}_{2} \mathrm{NiH}_{4}$ produced by hydriding combustion synthesis", J. Alloys Comp., Vol. 316, 2001, p. 118.
7) S. Nohara, H. Inoue, Y. Fukumoto, C. Iwakura : "Compositional and structural characteristics of MgNi alloy prepared by mechanical alloying for use as negative electrodes in nickel-metal hydride batteries", J. Alloys Comp., Vol. 259, 1997, p. 183.
8) T. W. Hong, S. K. Kim, G. S. Park, Y. J. Kim : "Fabrication of $\mathrm{Mg}_{2} \mathrm{NiH}_{x}$ from Mg and Ni Chips by Hydrogen Induced Planetary Ball Milling", Materials Transactions, JIM, Vol. 41, 2000, p. 393.
9) 이경태, 하홍수, 김영직 : "교반관법에 의 한 $\mathrm{A} 291 \mathrm{HP} / \mathrm{SiCp} \mathrm{Mg}$ 복합재료의 제조", 대 한금속학회지, Vol. 34, 1996, p. 1651.
10) 권호영, 이갑호, 강길구: "신소재 시리즈 (IV), 수소저장합금의 웅용기술", 원창출판 사, 1998, p. 6.
