Kangweon-Kyungki Math. Jour. 10 (2002), No. 1, pp. 1-3

HARMONIC MAPPING

SOOK HEUI JUN

ABSTRACT. In this paper, we obtain some coefficient bounds of harmonic, orientation-preserving, univalent mappings defined on $\Delta = \{z : |z| > 1\}.$

1. Introduction

A continuous function f = u + iv defined in a domain $D \subseteq \mathbb{C}$ is harmonic in D if u and v are real harmonic in D. Let Σ be the set of all complex-valued, harmonic, orientation-preserving, univalent mappings

(1.1)
$$f(z) = h(z) + \overline{g(z)} + Alog|z|$$

of $\Delta = \{z : |z| > 1\}$, where

$$h(z) = z + \sum_{k=1}^{\infty} a_k z^{-k}$$
 and $g(z) = \sum_{k=1}^{\infty} b_k z^{-k}$

are analytic in Δ and $A \in \mathbb{C}$. Hengartner and Schober[3] used the representation (1.1) to obtain some coefficient estimates and distortion theorems. Some coefficient bounds for $f \in \Sigma$ are also obtained by Jun[4] when $f(\Delta) = \Delta$.

In this article, we obtain some coefficient bounds of $f \in \Sigma$ by using properties of the analytic function h - g.

Received January 10, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 30C45, 30C50.

Key words and phrases: Harmonic, univalent functions.

This work was supported by the research fund of Nat. Sci. Inst., Seoul Women's University, 2000.

Sook Heui Jun

2. Some coefficient bounds

Let S be the class of functions $H(z) = z + \sum_{n=0}^{\infty} c_n z^{-n}$ that are analytic and univalent for |z| > 1. The coefficient problems for this class appear to be difficult. One reason is that there can be no single extremal function for all coefficients. Sharp bounds for $|c_n|$ are known only for $1 \le n \le 3$:

(2.1)
$$|c_1| \le 1 \quad [2], \quad |c_2| \le \frac{2}{3} \quad [5], \quad |c_3| \le \frac{1}{2} + e^{-6} \quad [1].$$

Although information beyond the third coefficient is incomplete, we have some useful results proved by Schober and Williams[6].

Theorem 2.1[6]. Let $H \in S$.

- (1) If c_1 is real, then $Re\{c_4 + 4c_1\} \le 4$. (2) If c_1 and c_2 are real, and $c_1 \ge \frac{1}{3}$, then $Re\{c_5 + c_3 + c_1\} \le 1$.
- (3) If c_1 and c_2 are real, then $Re\{c_5 + c_3 2c_1\} \le 2$.
- (4) If c_1 is real, and c_2 is imaginary, then $Re\{5c_1 c_5\} \leq 5$.

Corollary 2.2. Let $H \in S$. Then we have

(1)
$$Re\{c_4\} \le 8$$
 if c_1 is real,
(2) $Re\{c_5\} = \begin{cases} \le \frac{9}{2} + e^{-6} & \text{if } c_1 \text{ and } c_2 \text{ are real, and } c_1 \ge \frac{1}{3} \\ \le \frac{9}{2} + e^{-6} & \text{if } c_1 \text{ and } c_2 \text{ are real} \\ \ge -10 & \text{if } c_1 \text{ is real, and } c_2 \text{ is imaginary.} \end{cases}$

Proof. By simple calculation, one can easily show this from (2.1)and Theorem 2.1. \square

Theorem 2.3. If $f \in \Sigma$ and h - g is univalent, then

$$|a_1 - b_1| \le 1$$
, $|a_2 - b_2| \le \frac{2}{3}$, $|a_3 - b_3| \le \frac{1}{2} + e^{-6}$.

Proof. Let $H(z) = h(z) - g(z) = z + \sum_{n=1}^{\infty} c_n z^{-n}$, where $c_n =$ $a_n - b_n$. Then H(z) is univalent and analytic. Thus $H(z) \in S$. By using the sharp bounds for $|c_n|$ in (2.1), we obtain our sharp estimates.

Harmonic Mapping

Theorem 2.4. For each
$$f \in \Sigma$$
 with univalent $h - g$, we have
(1) $Re\{a_4 - b_4\} \leq 8$ if $a_1 - b_1$ is real,
(2) $Re\{a_5 - b_5\} = \begin{cases} \leq \frac{7}{6} + e^{-6} \text{ if } a_1 - b_1 \text{ and } a_2 - b_2 \text{ are real}, \\ = \frac{9}{2} + e^{-6} \text{ if } a_1 - b_1 \text{ and } a_2 - b_2 \text{ are real}, \\ \geq -10 \quad \text{if } a_1 - b_1 \text{ is real}, \\ = and a_2 - b_2 \text{ is imaginary.} \end{cases}$

Proof. $H(z) = h(z) - g(z) \in S$. Thus we have estimates by Corollary 2.2.

References

- 1. P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. **61** (1955), 116-136.
- T. H. Gronwall, Some remarks on conformal representation, Ann. of Math. 16 (1914-15), 72-76.
- W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
- 4. S. H. Jun, Univalent harmonic mappings on $\Delta = \{z : |z| > 1\}$, Proc. Amer. Math. Soc. **119** (1993), 109-114.
- M. Schiffer, Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48-55.
- G.Schober and J. K. Williams, On coefficient estimates and conjectures for the class Σ, Math. Z. 186 (1984), 309-320.

Department of Mathematics Seoul Women's University 126 Kongnung 2-dong, Nowon-Gu Seoul, 139-774, Korea