HARMONIC MAPPING

Sook Heui Jun

Abstract

In this paper, we obtain some coefficient bounds of harmonic, orientation-preserving, univalent mappings defined on $\Delta=\{z:|z|>1\}$.

1. Introduction

A continuous function $f=u+i v$ defined in a domain $\mathrm{D} \subseteq \mathbb{C}$ is harmonic in D if u and v are real harmonic in D . Let Σ be the set of all complex-valued, harmonic, orientation-preserving, univalent mappings

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}+A \log |z| \tag{1.1}
\end{equation*}
$$

of $\Delta=\{z:|z|>1\}$, where

$$
h(z)=z+\sum_{k=1}^{\infty} a_{k} z^{-k} \text { and } g(z)=\sum_{k=1}^{\infty} b_{k} z^{-k}
$$

are analytic in Δ and $A \in \mathbb{C}$. Hengartner and Schober[3] used the representation (1.1) to obtain some coefficient estimates and distortion theorems. Some coefficient bounds for $f \in \Sigma$ are also obtained by $\operatorname{Jun}[4]$ when $f(\Delta)=\Delta$.

In this article, we obtain some coefficient bounds of $f \in \Sigma$ by using properties of the analytic function $h-g$.

[^0]
2. Some coefficient bounds

Let S be the class of functions $H(z)=z+\sum_{n=0}^{\infty} c_{n} z^{-n}$ that are analytic and univalent for $|z|>1$. The coefficient problems for this class appear to be difficult. One reason is that there can be no single extremal function for all coefficients. Sharp bounds for $\left|c_{n}\right|$ are known only for $1 \leq n \leq 3$:

$$
\begin{equation*}
\left|c_{1}\right| \leq 1 \quad[2], \quad\left|c_{2}\right| \leq \frac{2}{3} \quad[5], \quad\left|c_{3}\right| \leq \frac{1}{2}+e^{-6} \quad[1] . \tag{2.1}
\end{equation*}
$$

Although information beyond the third coefficient is incomplete, we have some useful results proved by Schober and Williams[6].

Theorem 2.1[6]. Let $H \in S$.
(1) If c_{1} is real, then $\operatorname{Re}\left\{c_{4}+4 c_{1}\right\} \leq 4$.
(2) If c_{1} and c_{2} are real, and $c_{1} \geq \frac{1}{3}$, then $\operatorname{Re}\left\{c_{5}+c_{3}+c_{1}\right\} \leq 1$.
(3) If c_{1} and c_{2} are real, then $\operatorname{Re}\left\{c_{5}+c_{3}-2 c_{1}\right\} \leq 2$.
(4) If c_{1} is real, and c_{2} is imaginary, then $\operatorname{Re}\left\{5 c_{1}-c_{5}\right\} \leq 5$.

Corollary 2.2. Let $H \in S$. Then we have
(1) $\operatorname{Re}\left\{c_{4}\right\} \leq 8$ if c_{1} is real,
(2) $\operatorname{Re}\left\{c_{5}\right\}= \begin{cases}\leq \frac{7}{6}+e^{-6} & \text { if } c_{1} \text { and } c_{2} \text { are real, and } c_{1} \geq \frac{1}{3} \\ \leq \frac{9}{2}+e^{-6} & \text { if } c_{1} \text { and } c_{2} \text { are real } \\ \geq-10 & \text { if } c_{1} \text { is real, and } c_{2} \text { is imaginary. }\end{cases}$

Proof. By simple calculation, one can easily show this from (2.1) and Theorem 2.1.

Theorem 2.3. If $f \in \Sigma$ and $h-g$ is univalent, then

$$
\left|a_{1}-b_{1}\right| \leq 1, \quad\left|a_{2}-b_{2}\right| \leq \frac{2}{3}, \quad\left|a_{3}-b_{3}\right| \leq \frac{1}{2}+e^{-6}
$$

Proof. Let $H(z)=h(z)-g(z)=z+\sum_{n=1}^{\infty} c_{n} z^{-n}$, where $c_{n}=$ $a_{n}-b_{n}$. Then $H(z)$ is univalent and analytic. Thus $H(z) \in S$. By using the sharp bounds for $\left|c_{n}\right|$ in (2.1), we obtain our sharp estimates.

Theorem 2.4. For each $f \in \Sigma$ with univalent $h-g$, we have
(1) $\operatorname{Re}\left\{a_{4}-b_{4}\right\} \leq 8$ if $a_{1}-b_{1}$ is real,
(2) $\operatorname{Re}\left\{a_{5}-b_{5}\right\}=\left\{\begin{array}{l}\leq \frac{7}{6}+e^{-6} \text { if } a_{1}-b_{1} \text { and } a_{2}-b_{2} \text { are real, } \\ \text { and } a_{1}-b_{1} \geq \frac{1}{3} \\ \leq \frac{9}{2}+e^{-6} \\ \text { if } a_{1}-b_{1} \text { and } a_{2}-b_{2} \text { are real } \\ \geq-10 \\ \text { if } a_{1}-b_{1} \text { is real, } \\ \text { and } a_{2}-b_{2} \text { is imaginary. }\end{array}\right.$

Proof. $H(z)=h(z)-g(z) \in S$. Thus we have estimates by Corollary 2.2.

References

1. P. R. Garabedian and M. Schiffer, A coefficient inequality for schlicht functions, Ann. of Math. 61 (1955), 116-136.
2. T. H. Gronwall, Some remarks on conformal representation, Ann. of Math. 16 (1914-15), 72-76.
3. W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
4. S. H. Jun, Univalent harmonic mappings on $\Delta=\{z:|z|>1\}$, Proc. Amer. Math. Soc. 119 (1993), 109-114.
5. M. Schiffer, Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48-55.
6. G.Schober and J. K. Williams, On coefficient estimates and conjectures for the class Σ, Math. Z. 186 (1984), 309-320.

Department of Mathematics
Seoul Women's University
126 Kongnung 2-dong, Nowon-Gu
Seoul, 139-774, Korea

[^0]: Received January 10, 2002.
 2000 Mathematics Subject Classification: 30C45, 30C50.
 Key words and phrases: Harmonic, univalent functions.
 This work was supported by the research fund of Nat. Sci. Inst., Seoul Women's University, 2000.

