Kangweon-Kyungki Math. Jour. 10 (2002), No. 1, pp. 5-10

CONVERGENCE OF PREFILTER BASE ON THE FUZZY SET

YOUNG-KEY KIM AND HEE-YOUNG BYUN

ABSTRACT. In this paper, we investigate the prefilter base on a fuzzy set and fuzzy net φ on the fuzzy topological space (X, δ) . And we show that the prefilter base $\mathcal{B}(\varphi)$ determines by the fuzzy net φ converge to a fuzzy point p iff the fuzzy net φ converge to a fuzzy point p. Also we prove that if the prefilter base \mathcal{B} converge to a fuzzy point p, then the \mathcal{B} has the cluster point p.

1. Introduction

The concept of a fuzzy set, which was introduced in [1], provides a natural framework for generalizing many of the concepts of general topology to what might be called fuzzy topological spaces. Throughout this paper, the symbol I will denote the unit interval. Let X be a nonempty set. A fuzzy set in X is a function with domain X and value in I, that is, an element of I^X .

2. Preliminaries

DEFINITION 1. A fuzzy point p in X in a fuzzy set with membership function:

$$p(x) = \begin{cases} t_0, & \text{if } x = x_0 \\ 0, & \text{otherwise} \end{cases}$$

where $0 < t_0 < 1$. p is said to have support x_0 and value t_0 , and is noted by $p(x_0, t_0)$ or even (x_0, t_0) . We denote by $B_F(X)$ the collection of all fuzzy points in X.

Received September 29, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 03E72, 54A40.

Key words and phrases: prefilter base, converges, cluster point, maximal pre-filter base.

DEFINITION 2. Let $\{\mu_i \mid i \in \Lambda\}$ be a fuzzy sets in X. We define the following fuzzy sets:

- (1) $\wedge \{\mu_i | i \in \Lambda\}(x) = \inf \{\mu_i(x) | i \in \Lambda\}$ for each $x \in X$.
- (2) $\vee \{\mu_i | i \in \Lambda\}(x) = \sup\{\mu_i(x) | i \in \Lambda\}$ for each $x \in X$.
- (3) $c_t \in I^X$, by $c_t(x) = t$ for each $x \in X$ and $t \in I$.

In 1968, C.L.Chang define a fuzzy topology on X as a subset $\delta \subset I^X$ such that

- (1) $c_0, c_1 \in \delta$.
- (2) If $\mu_1, \mu_2 \in \delta$, then $\mu_1 \wedge \mu_2 \in \delta$.
- (3) If $\{\mu_{\alpha} | \alpha \in \Lambda\} \subset \delta$, then $\lor \{\mu_{\alpha} \mid \alpha \in \Lambda\} \in \delta$.

Several articles on the subject all involve this definition. Amongst these the most important ones are [3, 6]. It is concept of fuzzy topology that will be used throughout the sequel. Chang's definition we will refer to as quasi fuzzy topology.

The fuzzy sets in δ are called open fuzzy sets. A fuzzy set $A \in I^X$ is called closed iff A^c is open.

DEFINITION 3. A prefilter \mathcal{F} on X is a nonempty collection of subsets of I^X with the properties:

- (1) If $F_1, F_2 \in \mathcal{F}$, then $F_1 \wedge F_2 \in \mathcal{F}$ (2) If $F_1 \in \mathcal{F}$ and $F_2 \geq F_1$, then $F_2 \in \mathcal{F}$
- (3) $0 \notin \mathcal{F}$

DEFINITION 4. A collection \mathcal{B} of subsets of I^X is a prefilter base iff $\mathcal{B} \neq \emptyset$ and

(1) If $B_1, B_2 \in \mathcal{B}$ then $B_3 \leq B_1 \wedge B_2$ for some $B_3 \in \mathcal{B}$;

The collection $\mathcal{F} = \{F \in I^X | \exists B \in \mathcal{B} \text{ s.t } F \geq B\}$ is prefilter. \mathcal{F} is said to be generated by \mathcal{B} and denoted $\langle \mathcal{B} \rangle$.

3. Converges and Cluster Point

A directed set (D, \prec) is a set with partial order \prec such that for each pair a, b of elements of D, there exists an element c of D having the property that $a \prec c$ and $b \prec c$.

Let (D, \prec) be a directed set. The terminal set T_a determined by an $a \in D$ is $\{b \in D | a \prec b\}$

6

⁽²⁾ $0 \notin \mathcal{B}$

Let (D, \prec) be a directed set. A fuzzy net in X is a map $\varphi : D \to$ $B_F(X).$

If $\varphi(b) = p_b(x_b, t_b)$, we also denote φ by $\{\varphi(b)|b \in D\}$ or $\{p_b|b \in D\}$. From now on, x_b and t_b will be the support and the value of the fuzzy point p_b . If $a \in D$, the fuzzy set $\varphi(T_a) = \vee \{\varphi(b) \mid a \prec b\}$ is called a F-tail of φ .

DEFINITION 3.1. Let (X, δ) be an f.t.s. Let φ be fuzzy nets on X and $p(x,t) \in B_F(X)$. We say that ;

- (1) φ converges to p (written $\varphi \to p$), if for all $N \in N_p^{\delta} \exists a \in D, \forall b \succ$ $a \text{ s.t } \varphi(b) \in N$.
- (2) p is a cluster point of φ (written $\varphi \propto p$), if $\forall N \in N_p^{\delta}, \forall a \in$ $D, \exists b \succ a \text{ s.t } \varphi(b) \in N.$

Let $\varphi : D \to B_F(X)$ be a fuzzy net. Then the family $\mathcal{B}(\varphi) =$ $\{\varphi(T_a)|a \in D\}$ is a prefilter base in X. For, given $\varphi(T_a)$ and $\varphi(T_b)$, first find a $c \in D$ such that $a \prec c, b \prec c$, and then observe that $T_c \leq T_a \wedge T_b$ because \prec is transitive. $\mathcal{B}(\varphi)$ is called the prefilter base determined by the fuzzy net φ .

DEFINITION 3.2. Let (D, \prec) be a directed set and T_a be a terminal set. Then, for a fuzzy net $\varphi: D \to B_F(X)$, we have:

- (1) $\varphi \to p \text{ if } \forall N \in N_p^{\delta}, \exists T_a \text{ s.t } \varphi(T_a) \leq N.$ (2) $\varphi \propto p \text{ if } \forall N \in N_p^{\delta}, \forall T_a, \varphi(T_a) \land N \neq 0.$

DEFINITION 3.3.

- (1) A prefilter \mathcal{F} is said to converge to the fuzzy point p (written $\mathcal{F} \to p$) iff $N_p^{\delta} \subset \mathcal{F}$, that is, \mathcal{F} is finer than the nhood prefilter at p.
- (2) We say \mathcal{F} has p as a cluster point (written $\mathcal{F} \propto p$) iff $\forall N \in N_p^{\delta}$, then $N \wedge F \neq 0, \forall F \in \mathcal{F}.$

We can express these notions in terms of prefilter base as follows:

- (1) A prefilter base converges to a fuzzy point $p (\mathcal{B} \to p)$ iff each $N \in N_p^{\delta}$ contains some $B \in \mathcal{B}$.
- (2) A prefilter base has p as a cluster point $(\mathcal{B} \propto p)$ iff each $N \in N_n^{\delta}$ meets each $B \in \mathcal{B}$.

These definitions are still valid if we use nhood bases at $p, \mathcal{B}_p^{\delta}$, instead of nhood systems as p, N_p^{δ} . Clearly, if $\mathcal{F} \to p$, then $\mathcal{F} \propto p$.

LEMMA 3.4. Let $\mathcal{B}(\varphi)$ be the prefilter base determined by the fuzzy net $\varphi: D \to B_F(X)$: Then

(1) $\varphi \to p \text{ iff } \mathcal{B}(\varphi) \to p.$

(2) $\varphi \propto p$ iff $\mathcal{B}(\varphi) \propto p$.

THEOREM 3.5. Let (X, δ) be a f.t.s., and \mathcal{F} a prefilter on X and \mathcal{B} a prefilter base of \mathcal{F} . Then \mathcal{B} converges to a fuzzy point p iff \mathcal{F} converges to the fuzzy point p.

Proof. Let \mathcal{B} converges to a fuzzy point p. Since there exists $B_{\alpha} \in \mathcal{B}$ such that $B_{\alpha} \leq N$ for all N in N_{p}^{δ} . Then $N \in \mathcal{F}$ and $N_{p}^{\delta} \subset \mathcal{F}$. Hence $\mathcal{F} \to p$. Conversely, if $\mathcal{F} \to p$, then $N_{p}^{\delta} \subset \mathcal{F}$ and since \mathcal{B} is prefilter base \mathcal{F} . There exists $B_{\alpha} \in \mathcal{B}$ such that $B_{\alpha} \leq N \in \mathcal{F}$ for all $N \in N_{p}^{\delta} \subset \mathcal{F}$. Hence $\mathcal{B} \to p$.

DEFINITION 3.6. Let $\mathcal{U} = \{A_{\alpha} | \alpha \in \Lambda\}$ and $\mathcal{B} = \{B_{\beta} | \beta \in \Gamma\}$ be two prefilter bases on X. \mathcal{B} is subordinate to \mathcal{U} , written $\mathcal{B} \vdash \mathcal{U}$, if there exist B_{β} in \mathcal{B} such that $B_{\beta} \leq A_{\alpha}$ for all $A_{\alpha} \in \mathcal{U}$.

THEOREM 3.7. Let $\mathcal{U} = \{A_{\alpha} | \alpha \in \Lambda\}$ and $\mathcal{B} = \{B_{\beta} | \beta \in \Gamma\}$ be two prefilter bases on X.

(1) If $\mathcal{U} \subset \mathcal{B}$ then $\mathcal{B} \vdash \mathcal{U}$.

(2) If $\mathcal{B} \vdash \mathcal{U}$, then each member of \mathcal{B} meets every member of \mathcal{U} .

Proof. (1) is obvious. (2). Assume there exist B_{β}, A_{α} such that $A_{\alpha} \wedge B_{\beta} = 0$; since $\mathcal{B} \vdash \mathcal{U}$, for this A_{α} we can find a $B_{\gamma} \leq A_{\alpha}$, and then $B_{\gamma} \wedge B_{\beta} = 0$ contradicts that \mathcal{B} is a prefilter base.

THEOREM 3.8. An f.t.s. (X, δ) is Hausdorff iff each convergent prefilter base in X converges to exactly one fuzzy point.

Proof. Assume that X is fuzzy Hausdorff and \mathcal{B} is a prefilter base and $\mathcal{B} \to p$. For any pair of distinct fuzzy points p, q in X. Then there exists fuzzy open set μ, ν in I^X such that $p \in \mu$, $q \in \nu$ and $\mu \wedge \nu = 0$. Since by hypothesis there is some $B_1 \leq \mu$ and and since any two B_1, B_2 have nonempty intersection, there can be no $B_2 \leq \nu$, thus, \mathcal{B} cannot converge to $q \neq p$.

Conversely, assume that X is not Hausdorff. Then there must exist p, q such that $N \wedge M \neq 0$ for all N in N_p^{δ} and M in N_q^{δ} .

8

 $\mathcal{B} = N_p^{\delta} \cap N_q^{\delta}$ is therefore a prefilter base, and evidently $\mathcal{B} \to p, \ \mathcal{B} \to q$.

THEOREM 3.9. Let $\mathcal{U} = \{A_{\alpha} | \alpha \in \Lambda\}$ and $\mathcal{B} = \{B_{\beta} | \beta \in \Gamma\}$ be two prefilter bases on X.

- (1) $(\mathcal{U} \to p) \Rightarrow (\mathcal{U} \propto p)$ and, in Hausdorff spaces, at no point other than p.
- (2) Let $\mathcal{B} \vdash \mathcal{U}$. Then;
- (a) $(\mathcal{U} \to p) \Rightarrow (\mathcal{B} \to p)$
- (b) $(\mathcal{B} \propto p) \Rightarrow (\mathcal{U} \propto p)$

Proof. (1). Given $N \in N_p^{\delta}$, there is some $A_{\alpha} \in \mathcal{U}$ such that $A_{\alpha} \leq N$; since each A_{β} must intersect A_{α} , it follows that $A_{\beta} \wedge N \neq 0$ for all A_{β} , so $\mathcal{U} \propto p$.

Now let X be fuzzy Hausdorff and let $p \neq q$; choosing disjoint fuzzy nbds $N \in N_p^{\delta}, M \in N_q^{\delta}$, there must be some $A_{\alpha} \in \mathcal{U}$ contained in N; then $A_{\alpha} \wedge M = 0$, and so \mathcal{U} cannot cluster point at q.

(2a). There is some $A_{\alpha} \in \mathcal{U}$ such that $A_{\alpha} \leq N$ for all $N \in N_p^{\delta}$; since $\mathcal{B} \vdash \mathcal{U}$, there is a $B_{\beta} \leq A_{\alpha}$, so $\mathcal{B} \to p$ also.

(2b) . Given $N \in N_p^{\delta}$ and A_{α} , there is some $B_{\beta} \leq A_{\alpha}$, and since $B_{\beta} \wedge N \neq 0$ for all B_{β} , we can find $A_{\alpha} \wedge N \neq 0$ for all A_{α} , which proves $\mathcal{U} \propto p$.

As a immediately, we have the follows.

COROLLARY 3.10. (1) $\mathcal{U} \to p$ iff $\forall \mathcal{B} \vdash \mathcal{U}, \exists \mathcal{C} \vdash \mathcal{B} \text{ s.t } \mathcal{C} \to p$ (2) $\mathcal{U} \propto p$ iff $\exists \mathcal{B} \vdash \mathcal{U} \text{ s.t } \mathcal{B} \to p$

Let \mathcal{B} be a prefilter base on X. We say that a subset Y of X contains \mathcal{B} if every member of \mathcal{B} is an element of fuzzy set with support Y.

DEFINITION 3.11. Let \mathcal{M} be a prefilter base in X is called fuzzy maximal if it has no property subordinated prefilter base, that is, if for all $\mathcal{U}, \mathcal{U} \vdash \mathcal{M} \Rightarrow \mathcal{M} \vdash \mathcal{U}$.

THEOREM 3.12. A prefilter base \mathcal{M} is fuzzy maximal iff for each $Y \subset X$, either Y or Y^c contains a member of \mathcal{M} .

Proof. Assume $\mathcal{M} = \{M_{\beta} | \beta \in \Gamma\}$ is a fuzzy maximal prefilter base. Let $Y \subset X$ and A be a fuzzy set with support Y and B is a fuzzy set with support Y^c . Then we cannot have an Y contains M_{β} and Y^c contains M_{γ} , since $M_{\beta} \wedge M_{\gamma} = 0$. Assume now that Y not contains M_{β} for all M_{β} . Then $A \wedge M_{\beta} \neq 0$ and also then all $M_{\beta} \wedge B \neq 0$, so $\mathcal{U} = \{M_{\beta} \wedge B | M_{\beta} \in \mathcal{M}\}$ is a prefilter base. Since $\mathcal{U} \vdash \mathcal{M}$, also $\mathcal{M} \vdash \mathcal{U}$. Hence we have $M_{\gamma} \leq M_{\beta} \wedge B \leq B$. Therefore $M_{\gamma} \leq B$, that is Y^c contains M_{γ} .

Conversely, assume that for each $Y \subset X$, Y or Y^c contains a member of \mathcal{M} and that $\mathcal{U} \vdash \mathcal{M}$. Given any $A \in \mathcal{U}$, the condition assures that either there is an $M_{\beta} \leq A$ or $M_{\beta} \leq B$ the latter possibility is excluded, since the assumption $\mathcal{U} \vdash \mathcal{M}$ implies [Theorem 3.7 (2)] that all $M_{\beta} \land A \neq 0$. Thus $\mathcal{M} \vdash \mathcal{U}$ and \mathcal{M} is fuzzy maximal. \Box

COROLLARY 3.13. Let \mathcal{M} be a fuzzy maximal prefilter base in X. Then $\mathcal{M} \propto p$ iff $\mathcal{M} \to p$.

Proof. Only the implication $(\mathcal{M} \propto p) \Rightarrow (\mathcal{M} \to p)$ need be proved. Given $N \in N_p^{\delta}$, there is an $M_{\alpha} \leq N$ or an $M_{\alpha} \leq N^c$; since $\mathcal{M} \propto p$, so that $M_{\alpha} \wedge N \neq 0$ for each M_{α} , the latter possibility is excluded, and therefore $\mathcal{M} \to p$.

References

- [1] L.A.Zadeh, Fuzzy sets, Inform.Control 8 (1965), 338–353.
- [2] M. A. De Prada, Entornos de puntos fuzzy y continuidad, Actas VIII Jornadas Luso-Spanholas Matematicas I (1981), 357–362.
- [3] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl 24 (1968), 182–190.
- [4] M.A.De Prada and M.SaralegulI, Una nota sobre convergencia en espacios topologicos fuzzy, Actas IX Jornadas Matematicas Hispano-Lusas J II (1982), 763–766.
- [5] R. Lowen, Convergence in fuzzy topological spaces, Gen. Toplogy Appl. 10 (1979), 147–160.
- [6] J.Goguen, Fuzzy Tychonoff theorem, J.Math.Anal.Appl. 48 (1973).
- [7] M. A.De Prada and M. Saralegul, Fuzzy Filters, J. Math. Anal. Appl. 2 (1988), 560–568.

Department of Mathematics Myong Ji University Korea

10