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FIXED POINTS OF SUMS OF NONEXPANSIVE
MAPS AND COMPACT MAPS

Jongsook Bae and Daejong An

Abstract. Let X be a Banach space satisfying Opial’s condition,
C a weakly compact convex subset of X, F : C → X a nonexpansive
map, and let G : C → X be a compact and demiclosed map. We
prove that F + G has a fixed point in C if F + G : C → X is a
weakly inward map.

1. Introduction

Let C be a nonempty subset of a Banach space X. A map T : C →
X is called nonexpansive if ‖T (x)−T (y)‖ ≤ ‖x−y‖ for all x, y ∈ C. A
map T : C → X is said to be a Lipschitzian if there exists k ≥ 0 such
that for all x, y ∈ C, ‖T (x) − T (y)‖ ≤ k‖x − y‖; it is a contraction if
0 < k < 1 and is a compact if it is continuous and maps bounded sets
to relatively compact sets.

In 1955, Krasnoselskii proved the following theorem which can be
found in [1].

Theorem 1. Let C be a nonempty bounded closed convex set in
a Banach space X. Let F : C → X be a contraction map, and let
G : C → X be a compact map. If (F + G)(C) ⊆ C, then F + G has a
fixed point in C.

Let X be a Banach space and B the family of its bounded subsets.
Then α : B → [0,∞], defined by

α(B) = inf{d > 0|B admits a finite cover by sets of diameter ≤ d },
is called the Kuratowski measure of noncompactness ([2]). It is not
only natural but also useful since α has interesting properties, some of
which are listed in Proposition 2 ([4]).
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Proposition 2. Let X be a Banach space, B the family of all
bounded sets of X, and let α : B → [0,∞) be the Kuratowski measure
of noncompactness. Then
(a) α(B) = 0 iff B̄ is compact.
(b) α is a seminorm, i.e.,

α(λB) = |λ|α(B) and

α(B1 + B2) ≤ α(B1) + α(B2).

(c) B1 ⊆ B2 implies α(B1) ≤ α(B2);
α(B1 ∪B2) = max{α(B1), α(B2)}.

(d) α(convB) = α(B).
(e) α is continuous with respect to the Hausdorff metric H, defined by

H(B1, B2) = max{supB1
d(x, B2), supB2

d(x,B1)}; in particular

α(B̄) = α(B).

For D ⊂ X, T : D → X is called condensing if α(T (B)) < α(B) for
any bounded subset B of D with α(B) > 0. Let K be a convex subset
of a Banach space X and x ∈ K. The inward set IK(x) of K at x is
defined by

IK(x) = {r(y − x) + x|y ∈ K, r ≥ 1}.
A map T : K → X is called inward if for all x ∈ K, T (x) ∈ IK(x), and
T is said to be weakly inward if for all x ∈ K, T (x) ∈ IK(x).

In 1979, Deimling proved the following theorem which can be found
in [3].

Theorem 3. Let X be a Banach space, D ⊂ X closed bounded
convex, F : D → X a continuous, condensing and weakly inward map.
Then F has a fixed point.

Remark. Let C be a nonempty bounded closed convex set in a
Banach space X. Let F : C → X be a contraction map and G : C → X
a compact map. Then T = F +G is a continuous and condensing map.
Indeed, if B is a subset of C and α(B) > 0, then we have

α(T (B)) = α(F (B) + G(B))

≤ α(F (B)) + α(G(B))

≤ α(F (B)) + α(G(B))

= α(F (B))

< α(B).
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From Theorem 3 and Remark, Theorem 1 can be restated as follows;
Let C be a nonempty bounded closed convex set in a Banach space X.
Let F : C → X be a contraction map, and let G : C → X be a compact
map. If T = F + G : C → X is a weakly inward map, then T has a
fixed point.

The purpose of this paper generalizes the above result by replacing
nonexpansive maps instead of contraction maps.

2. The results

A Banach space X is said to satisfy Opial’s condition if whenever a
sequence {xn} in X converges weakly to x0, then for x 6= x0,

lim
n→∞

inf ‖xn − x0‖ < lim
n→∞

inf ‖xn − x‖ ([5]).

Let D be a subset of a Banach space X. A map T : D → X is said to
be demiclosed if for any sequence {xn} in D the following implication
holds:

w − lim
n→∞

xn = x and lim
n→∞

‖T (xn)− w‖ = 0

implies
x ∈ D and T (x) = w.

Theorem 4. Let X be a Banach space which satisfies Opial’s con-
dition, and C a nonempty weakly compact convex subset of X. Let
F : C → X be a nonexpansive map and G : C → X a compact and
demiclosed map. If T = F + G : C → X is a weakly inward map, then
T has a fixed point.

Proof. Without loss of generality we may assume 0 ∈ C. Let 0 <
k < 1. Then by the same way as in Remark we can show that, kT =
kF + kG is continuous, k-condensing. Also it can be easily shown that
kT : C → X is a weakly inward map (See [3]). From Theorem 3, kT
has a fixed point, i.e., there exists xk in C such that kTxk = xk. In
this case we have

‖xk − Txk‖ = ‖xk − xk

k
‖ =

1− k

k
‖xk‖ → 0 as k → 1−.
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Since C is weakly compact and G is a compact map we can take a
sequence {xn} in C such that {xn} converges weakly to x for some
x ∈ C, ‖Txn − xn‖ → 0 and G(xn) → y for some y ∈ X. Then we
have

‖Txn − Fx− y‖ ≤ ‖Fxn − Fx‖+ ‖Txn − Fxn − y‖
≤ ‖xn − x‖+ ‖Txn − Fxn − y‖.

Hence we have

lim inf ‖xn − (Fx + y)‖
≤ lim inf(‖xn − Txn‖+ ‖Txn − (Fx + y)‖)
≤ lim inf(‖xn − Txn‖+ ‖xn − x‖+ ‖Txn − (Fxn + y)‖)
= lim inf ‖xn − x‖.

Since X satisfies Opial’s condition, we have Fx + y = x. And since G
is demiclosed Gx = y so that Tx = Fx + Gx = x. Hence T has a fixed
point. ¤

Corollary 5. Let X be a reflexive Banach space which satisfies
Opial’s condition, and C a bounded closed convex subset of X. Let
F : C → X be a nonexpansive map and G : C → X a compact and
demiclosed map. If T = F + G : C → X is a weakly inward map, then
T has a fixed point.

Applications of our results will be given sufficient conditions so that
there exist solutions of difference equations which are asypmtotically
constant ([6]).
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