Kangweon-Kyungki Math. Jour. 10 (2002), No. 1, pp. 19–23

FIXED POINTS OF SUMS OF NONEXPANSIVE MAPS AND COMPACT MAPS

JONGSOOK BAE AND DAEJONG AN

ABSTRACT. Let X be a Banach space satisfying Opial's condition, C a weakly compact convex subset of $X, F : C \to X$ a nonexpansive map, and let $G : C \to X$ be a compact and demiclosed map. We prove that F + G has a fixed point in C if $F + G : C \to X$ is a weakly inward map.

1. Introduction

Let C be a nonempty subset of a Banach space X. A map $T: C \to X$ is called nonexpansive if $||T(x) - T(y)|| \le ||x - y||$ for all $x, y \in C$. A map $T: C \to X$ is said to be a Lipschitzian if there exists $k \ge 0$ such that for all $x, y \in C$, $||T(x) - T(y)|| \le k ||x - y||$; it is a contraction if 0 < k < 1 and is a compact if it is continuous and maps bounded sets to relatively compact sets.

In 1955, Krasnoselskii proved the following theorem which can be found in [1].

THEOREM 1. Let C be a nonempty bounded closed convex set in a Banach space X. Let $F : C \to X$ be a contraction map, and let $G : C \to X$ be a compact map. If $(F + G)(C) \subseteq C$, then F + G has a fixed point in C.

Let X be a Banach space and \mathcal{B} the family of its bounded subsets. Then $\alpha : \mathcal{B} \to [0, \infty]$, defined by

 $\alpha(B) = \inf\{d > 0 | B \text{ admits a finite cover by sets of diameter} \le d\},\$

is called the Kuratowski measure of noncompactness ([2]). It is not only natural but also useful since α has interesting properties, some of which are listed in Proposition 2 ([4]).

Received December 22, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 47H10.

Key words and phrases: nonexpansive map, compact map, Krasnoselskii fixed point theorem, Opial's condition, weakly inward map.

PROPOSITION 2. Let X be a Banach space, \mathcal{B} the family of all bounded sets of X, and let $\alpha : \mathcal{B} \to [0, \infty)$ be the Kuratowski measure of noncompactness. Then

(a) $\alpha(B) = 0$ iff B is compact.

(b) α is a seminorm, i.e.,

$$\alpha(\lambda B) = |\lambda|\alpha(B) \text{ and}$$

$$\alpha(B_1 + B_2) < \alpha(B_1) + \alpha(B_2).$$

- (c) $B_1 \subseteq B_2$ implies $\alpha(B_1) \le \alpha(B_2)$; $\alpha(B_1 \cup B_2) = \max\{\alpha(B_1), \alpha(B_2)\}.$
- (d) $\alpha(convB) = \alpha(B).$
- (e) α is continuous with respect to the Hausdorff metric H, defined by $H(B_1, B_2) = \max\{\sup_{B_1} d(x, B_2), \sup_{B_2} d(x, B_1)\}; \text{ in particular } \alpha(\bar{B}) = \alpha(B).$

For $D \subset X$, $T: D \to X$ is called condensing if $\alpha(T(B)) < \alpha(B)$ for any bounded subset B of D with $\alpha(B) > 0$. Let K be a convex subset of a Banach space X and $x \in K$. The inward set $I_K(x)$ of K at x is defined by

$$I_K(x) = \{ r(y - x) + x | y \in K, r \ge 1 \}.$$

A map $T: K \to X$ is called inward if for all $x \in K$, $T(x) \in I_K(x)$, and T is said to be weakly inward if for all $x \in K$, $T(x) \in \overline{I_K(x)}$.

In 1979, Deimling proved the following theorem which can be found in [3].

THEOREM 3. Let X be a Banach space, $D \subset X$ closed bounded convex, $F: D \to X$ a continuous, condensing and weakly inward map. Then F has a fixed point.

REMARK. Let C be a nonempty bounded closed convex set in a Banach space X. Let $F: C \to X$ be a contraction map and $G: C \to X$ a compact map. Then T = F + G is a continuous and condensing map. Indeed, if B is a subset of C and $\alpha(B) > 0$, then we have

$$\begin{aligned} \alpha(T(B)) &= \alpha(F(B) + G(B)) \\ &\leq \alpha(F(B)) + \alpha(G(B)) \\ &\leq \alpha(F(B)) + \alpha(\overline{G(B)}) \\ &= \alpha(F(B)) \\ &< \alpha(B). \end{aligned}$$

20

From Theorem 3 and Remark, Theorem 1 can be restated as follows; Let C be a nonempty bounded closed convex set in a Banach space X. Let $F: C \to X$ be a contraction map, and let $G: C \to X$ be a compact map. If $T = F + G: C \to X$ is a weakly inward map, then T has a fixed point.

The purpose of this paper generalizes the above result by replacing nonexpansive maps instead of contraction maps.

2. The results

A Banach space X is said to satisfy Opial's condition if whenever a sequence $\{x_n\}$ in X converges weakly to x_0 , then for $x \neq x_0$,

$$\lim_{n \to \infty} \inf \|x_n - x_0\| < \lim_{n \to \infty} \inf \|x_n - x\| \quad ([5]).$$

Let D be a subset of a Banach space X. A map $T: D \to X$ is said to be demiclosed if for any sequence $\{x_n\}$ in D the following implication holds:

$$w - \lim_{n \to \infty} x_n = x$$
 and $\lim_{n \to \infty} ||T(x_n) - w|| = 0$

implies

$$x \in D$$
 and $T(x) = w$.

THEOREM 4. Let X be a Banach space which satisfies Opial's condition, and C a nonempty weakly compact convex subset of X. Let $F: C \to X$ be a nonexpansive map and $G: C \to X$ a compact and demiclosed map. If $T = F + G: C \to X$ is a weakly inward map, then T has a fixed point.

Proof. Without loss of generality we may assume $0 \in C$. Let 0 < k < 1. Then by the same way as in Remark we can show that, kT = kF + kG is continuous, k-condensing. Also it can be easily shown that $kT : C \to X$ is a weakly inward map (See [3]). From Theorem 3, kT has a fixed point, i.e., there exists x_k in C such that $kTx_k = x_k$. In this case we have

$$||x_k - Tx_k|| = ||x_k - \frac{x_k}{k}|| = \frac{1-k}{k}||x_k|| \to 0 \text{ as } k \to 1^-.$$

Since C is weakly compact and G is a compact map we can take a sequence $\{x_n\}$ in C such that $\{x_n\}$ converges weakly to x for some $x \in C$, $||Tx_n - x_n|| \to 0$ and $G(x_n) \to y$ for some $y \in X$. Then we have

$$|Tx_n - Fx - y|| \le ||Fx_n - Fx|| + ||Tx_n - Fx_n - y||$$

$$\le ||x_n - x|| + ||Tx_n - Fx_n - y||.$$

Hence we have

$$\begin{split} &\lim \inf \|x_n - (Fx + y)\| \\ &\leq \liminf (\|x_n - Tx_n\| + \|Tx_n - (Fx + y)\|) \\ &\leq \liminf (\|x_n - Tx_n\| + \|x_n - x\| + \|Tx_n - (Fx_n + y)\|) \\ &= \liminf \|x_n - x\|. \end{split}$$

Since X satisfies Opial's condition, we have Fx + y = x. And since G is demiclosed Gx = y so that Tx = Fx + Gx = x. Hence T has a fixed point.

COROLLARY 5. Let X be a reflexive Banach space which satisfies Opial's condition, and C a bounded closed convex subset of X. Let $F: C \to X$ be a nonexpansive map and $G: C \to X$ a compact and demiclosed map. If $T = F + G: C \to X$ is a weakly inward map, then T has a fixed point.

Applications of our results will be given sufficient conditions so that there exist solutions of difference equations which are asymptotically constant ([6]).

References

- M. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Math. Nauk 1 (1955), 123-127.
- 2. K. Kuratowski, Sur les espaces complets, Fund. Math 15 (1930), 301-309.
- K. Deimling, Fixed points of condensing maps, Lecture note in Math, Springer-Verlag, Berlin 737 (1979), 67-82.
- 4. K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin (1985).
- 5. K. Goebel and W. A. Kirk, *Topics in metric fixed point theory*, Cambridge University press, (1990).

Fixed points of sums of nonexpansive maps and compact maps

 G. Gonzalez and A. Jimeuez-Melado, An application of Krasnoselskii fixed point theorem to the Asymptotic behavior of solutions of difference equations in Banach spaces, J. Math. Anal. Appl 247 (2000), 290-299.

Department of Mathematics College of Science Myong Ji University Yongin-Si, 449-728, Korea