HAMILTONICITY OF QUASI-RANDOM GRAPHS

TAE KEUG LEE AND CHANGWOO LEE

ABSTRACT. It is well known that a random graph $G_{1/2}(n)$ is Hamiltonian almost surely. In this paper, we show that every quasirandom graph G(n) with minimum degree (1 + o(1))n/2 is also Hamiltonian.

1. Introduction

Let us consider the random graph model for graphs with n vertices and edge probability p = 1/2. Thus the probability space $\Omega(n)$ consists of all labeled graphs G of order n, and the probability P(G) of G in $\Omega(n)$ is given by $P(G) = 2^{-\binom{n}{2}}$. For a graph property \mathcal{P} , it may happen that

 $P\{G \in \Omega(n) \mid G \text{ satisfies } \mathcal{P}\} \to 1 \text{ as } n \to \infty.$

In this case, a typical graph in $\Omega(n)$, which we denote by $G_{1/2}(n)$, will have property \mathcal{P} with overwhelming probability as n becomes large. We abbreviate this by saying that a random graph $G_{1/2}(n)$ has property \mathcal{P} *almost surely*. For details of these concepts, see [1] or [8].

One would like to construct graphs that behave just like a random graph $G_{1/2}(n)$. Of course, it is logically impossible to construct a truly random graph. Thus Chung, Graham, and Wilson defined in [4] quasi-random graphs, which simulate $G_{1/2}(n)$ without much deviation. Among many equivalent quasi-random properties studied in [4] and [3], we list only three needed in this paper. Let G(n) denote a graph on n vertices. A family $\{G(n)\}$ of graphs (or for brevity, a graph G = G(n)) is quasi-random if it satisfies any one of and hence all of the following.

Received January 10, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 05C80.

Key words and phrases: quasi-random, Hamiltonian, independence number, connectivity.

This research of the first author was supported by the 2001 Research Fund of the University of Seoul.

Tae Keug Lee and Changwoo Lee

 $P_1(s)$: For fixed s, each labeled graph M(s) on s vertices occurs $(1+o(1))n^s/2^{\binom{s}{2}}$ times as an induced subgraph of G.

 P_4 : For each subset $S \subseteq V(G)$, the number e(S) of edges in G[S] is $e(S) = \frac{1}{4}|S|^2 + o(n^2)$. Here, G[S] denotes the subgraph of G induced by S.

Q: For each subset $S \subseteq V(G)$, the number $e(S,\overline{S})$ of edges between S and \overline{S} satisfies $e(S,\overline{S}) = \frac{1}{2}|S||\overline{S}| + o(n^2)$, where $\overline{S} = V(G) - S$.

Another property of G(n), which is weaker than quasi-randomness, is the following.

 P'_0 : All but o(n) vertices have degree $(1 + o(1))\frac{n}{2}$. In this case we say that G(n) is almost-regular.

Note that the Paley graph Q_p on p vertices is quasi-random [4] and strongly regular with parameters ((p-1)/2, (p-5)/4, (p-1)/4) [1].

We showed in [7] how much quasi-random graphs deviate from random graphs $G_{1/2}(n)$ in connectedness. In this paper, we show the same in Hamiltonicity. All definitions and notation are the same as in [4] and [3].

2. The Main Result

In this section, we investigate the Hamiltonicity of quasi-random graphs. To do this we estimate the independence number $\beta(G(n))$ and the connectivity $\kappa(G(n))$ of a quasi-random graph G(n). We know that $G_{1/2}(n)$ has independence number r(n)-1 or r(n) almost surely for some integer r(n) such that $r(n) \sim 2 \log_2 n$ [1]. But quasi-random graphs satisfy the following.

THEOREM 1. Let G = G(n) be a quasi-random graph on *n* vertices. Then the independence number $\beta(G)$ of *G* satisfies $\beta(G) = o(n)$ and is bounded away from zero by any positive constant.

Proof. Let S be any independent set of vertices of G. Then from property P_4 , we have $e(S) = |S|^2/4 + o(n^2) = 0$ and so |S| = o(n). Thus, $\beta(G) = o(n)$.

Let l be any fixed number. Then property $P_1(s)$ implies that for sufficiently large n, G contains a copy of $\overline{K_l}$, an empty graph of order l, as an induced subgraph. Therefore, $\beta(G) \ge (1 + o(1))l$.

We know that $G_{1/2}$ has connectivity equal to the minimum degree almost surely [1]. For quasi-random graphs, we have the following.

30

THEOREM 2. Let G = G(n) be a quasi-random graph on n vertices. If $\delta(G) = (1 + o(1))n/2$, then

$$\kappa(G) = (1 + o(1))\frac{n}{2} = \delta(G).$$

Proof. Let $\delta(G(n)) = (1 + o(1))n/2$. Then we can see from Corollary 3 in [7] that G is connected. Let S be a subset of vertices of G such that the removal of all vertices in S results in a disconnected graph. Since $\kappa(G) \leq \delta(G)$, we may assume that $|S| \leq \delta(G)$. Therefore for a given $0 < \epsilon < 1$, there exists $n_0(\epsilon)$ such that

$$|S| \le \delta(G) \le (1+\epsilon)\frac{n}{2}$$

for all $n \ge n_0$. Hence

$$|V - S| \ge n - (1 + \epsilon)\frac{n}{2} = (1 - \epsilon)\frac{n}{2}$$

for all $n \ge n_0$. Therefore, the induced subgraph H = G[V - S] is quasi-random by Corollary 1 in [7] and is disconnected. Hence, by the Theorem in [7], a smallest component of H has order o(n). But such a component together with S contains at least $\delta(G) + 1$ vertices, that is, $|S| + o(n) \ge \delta(G) + 1$ and so $|S| \ge \delta(G) + o(n)$. Hence, we have

$$\delta(G) + o(n) \le \kappa(G) \le \delta(G)$$

and so

$$\kappa(G) = \delta(G) + o(n) = (1 + o(1))\frac{n}{2}.$$

I 1		н
I 1		н

It is well known that every $G_{1/2}(n)$ is Hamiltonian almost surely. But as we have already seen in [7], there is a quasi-random graph G(n) that is not even connected and hence not Hamiltonian. However, once again imposing appropriate degree restrictions on quasi-random graphs, this can be corrected. The Chvátal-Erdös theorem says that if a graph Ghas at least three vertices and $\beta(G) \leq \kappa(G)$, then G is Hamiltonian [5]. Hence the following is immediate from Theorems 1 and 2.

COROLLARY 3. Let G = G(n) be a quasi-random graph on n vertices. If $\delta(G) = (1 + o(1))n/2$, then G is Hamiltonian.

Even in case that a given quasi-random graph is not Hamiltonian, it contains a sufficiently large cycle.

COROLLARY 4. Let G = G(n) be a quasi-random graph on n vertices. Then G has a cycle of length (1 + o(1))n.

Proof. Let G = G(n) = (V, E) be a quasi-random graph and let H = H(m) = (W, F) denote the subgraph of G(n) induced by

$$S = \{ v \in V | \deg_G(v) \ge (1 + o(1))^n + 2 \}$$

Then observe that

(1) H(m) is a quasi-random graph in its own right by Corollary 1 in [7],

(2) m = |W| = |S| = (1 + o(1))n and $\deg_H(v) \ge (1 + o(1))n/2 \ge (1 + o(1))m/2$ for all v in W, and

(3) H(m) is connected for sufficiently large m by Corollary 3 in [7].

Therefore, H(m) is a Hamiltonian subgraph with m = (1 + o(1))n vertices.

3. Examples

In this section, we find some examples of quasi-random graphs that are Hamiltonian.

EXAMPLE 5. Let p be a prime satisfying $p \equiv 1 \pmod{4}$. Then the Paley graph Q_p on p vertices is quasi-random and (p-1)/2-regular. Hence, by Corollary 3, both Q_p and the complement $\overline{Q_p}$ are Hamiltonian for sufficiently large p. Of course, it follows immediately from its definition that Q_p is Hamiltonian for all p.

EXAMPLE 6. Let F_n be a field with n elements (of course, n must be a positive power of a prime) and let $AP(F_n)$ be the affine plane of order n. Let S be a subset of "slopes" of the n + 1 parallel classes of lines such that $|S| \sim n/2$. We define a graph $G(n^2) = (V, E)$ as follows. Let V be the set of all points in $AP(F_n)$ and let $xy \in E$ if and only if the slope of the line in $AP(F_n)$ containing x and y belongs to S. Then $G(n^2)$ is a quasi-random graph of order n^2 [4], and every vertex of $G(n^2)$ has degree $(n - 1)|S| \sim n^2/2$. Hence, by Corollary 3, both $G(n^2)$ and the complement $\overline{G(n^2)}$ are Hamiltonian for sufficiently large n.

EXAMPLE 7. We define a graph $G_n = (V, E)$ as follows. Let V be the set of all *n*-subsets of a fixed 2*n*-set and let $xy \in E$ iff $|x \cap y| \equiv 0$

32

(mod 2). Then G_n is a quasi-random graph of order $\binom{2n}{n}$ (see [4] or [2]). Every vertex v of G_n has degree

$$\deg(v) = \begin{cases} \frac{1}{2} \binom{2n}{n} & \text{if } n \text{ is odd} \\ \frac{1}{2} \binom{2n}{n} + \frac{(-1)^{n/2}}{2} \binom{n}{n/2} - 1 & \text{if } n \text{ is even} \end{cases}$$

and hence $\deg(v) \sim \frac{1}{2} {\binom{2n}{n}}$. Therefore both G_n and the complement $\overline{G_n}$ are Hamiltonian for sufficiently large n. Of course, it follows immediately from Dirac's theorem [6] that G_n is Hamiltonian when n is odd or when n/2 is even. However, it seems to be difficult to show without using quasi-randomness that G_n is Hamiltonian when n/2 is a sufficiently large odd integer.

REMARK 8. Let G = G(n) be a quasi-random graph. We showed in Theorem 1 that $\beta(G) = o(n)$ and $\beta(G)$ is bounded away from zero by any positive constant. Can we find better bounds for independence numbers of quasi-random graphs? Consider the following example. Let G = G(n) be any quasi-random graph and let a_n be any sequence of positive numbers such that $a_n = o(n)$. Choose any $X \subseteq V(G)$ with $|X| = \lceil a_n \rceil$ and remove all edges in G[X] from G. Then the resulting graph H(n) is quasi-random and $\lceil a_n \rceil \leq \beta(H(n)) = o(n)$. This example shows that there is a quasi-random graph whose independence number is at least a_n for any $a_n = o(n)$.

Let G = G(n) be any graph of order n and let $X \subseteq V(G)$. Then we know from [2] that

$$e(G) \ge \frac{n^2}{4} \left(1 - (devG)^{\frac{1}{4}} \right)$$

and that

$$devG[X] \le \left(\frac{n}{|X|}\right)^4 devG$$

Hence, we obtain

$$e(G(X)) \ge \frac{|X|^2}{4} \left(1 - (devG[X])^{\frac{1}{4}} \right)$$
$$\ge \frac{|X|^2}{4} \left(1 - \frac{n}{|X|} (devG)^{\frac{1}{4}} \right).$$

Now, we assume that $X \subseteq V$ is an independent set of G. Then e(G[X]) = 0 and hence we have

$$\frac{|X|^2}{4} \left(1 - \frac{n}{|X|} (devG)^{\frac{1}{4}} \right) \le 0.$$

Therefore, we have

$$|X| \le n(devG)^{\frac{1}{4}}$$

and hence we have

$$\beta(G) \le n(devG)^{\frac{1}{4}}$$

for any graph G of order n. We know from [2] that a quasi-random graph G = G(n) has devG = o(1). Hence the inequality above implies that $\beta(G) = o(n)$ if G is quasi-random and is thus stronger than the result in Theorem 1.

The problem of finding a better lower bound remains.

References

- [1] B. Bollobás, Random Graphs, Academic, London, 1985.
- [2] F. R. K. Chung and R. L. Graham, Quasi-random Set Systems, J. Amer. Math. Soc. 4 (1991), 151–196.
- [3] F. R. K. Chung and R. L. Graham, Maximum Cuts and Quasi-random Graphs, Random Graphs 2 (A. Frieze and T. Luczak, eds), Wiley, New York 1992, 23–33.
- [4] F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random Graphs, Combinatorica 9 (1989), 345–362.
- [5] V. Chvátal and P. Erdös, A Note on Hamiltonian Circuits, Discrete Math. 2, (1972), 111–113.
- [6] G. A. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. 2 (1952), 69–81.
- [7] C. Lee, A Note on Connectedness of Quasi-random Graphs, Comm. Korean Math. Soc. 14 (1999), 295–299.
- [8] E. M. Palmer, Graphical Evolution, Wiley, New York, 1985.

34

Department of Mathematics University of Seoul Seoul 130–743, Korea *E-mail*: tklee@uoscc.uos.ac.kr

Department of Mathematics University of Seoul Seoul 130–743, Korea *E-mail*: chlee@uoscc.uos.ac.kr