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HAMILTONICITY OF QUASI-RANDOM GRAPHS

Tae Keug Lee and Changwoo Lee

Abstract. It is well known that a random graph G1/2(n) is Hamil-
tonian almost surely. In this paper, we show that every quasi-
random graph G(n) with minimum degree (1 + o(1))n/2 is also
Hamiltonian.

1. Introduction

Let us consider the random graph model for graphs with n vertices
and edge probability p = 1/2. Thus the probability space Ω(n) consists
of all labeled graphs G of order n, and the probability P (G) of G in Ω(n)

is given by P (G) = 2−(n
2). For a graph property P , it may happen that

P{G ∈ Ω(n) | G satisfies P} → 1 as n →∞.

In this case, a typical graph in Ω(n), which we denote by G1/2(n), will
have property P with overwhelming probability as n becomes large. We
abbreviate this by saying that a random graph G1/2(n) has property P
almost surely. For details of these concepts, see [1] or [8].

One would like to construct graphs that behave just like a random
graph G1/2(n). Of course, it is logically impossible to construct a truly
random graph. Thus Chung, Graham, and Wilson defined in [4] quasi-
random graphs, which simulate G1/2(n) without much deviation. Among
many equivalent quasi-random properties studied in [4] and [3], we list
only three needed in this paper. Let G(n) denote a graph on n vertices.
A family {G(n)} of graphs (or for brevity, a graph G = G(n)) is quasi-
random if it satisfies any one of and hence all of the following.
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P1(s): For fixed s, each labeled graph M(s) on s vertices occurs

(1 + o(1))ns/2(s
2) times as an induced subgraph of G.

P4: For each subset S ⊆ V (G), the number e(S) of edges in G[S] is
e(S) = 1

4
|S|2 + o(n2). Here, G[S] denotes the subgraph of G induced by

S.
Q: For each subset S ⊆ V (G), the number e(S, S) of edges between

S and S satisfies e(S, S) = 1
2
|S||S|+ o(n2), where S = V (G)− S.

Another property of G(n), which is weaker than quasi-randomness, is
the following.

P ′
0: All but o(n) vertices have degree (1 + o(1))n

2
. In this case we say

that G(n) is almost-regular.
Note that the Paley graph Qp on p vertices is quasi-random [4] and

strongly regular with parameters ((p− 1)/2, (p− 5)/4, (p− 1)/4) [1].
We showed in [7] how much quasi-random graphs deviate from random

graphs G1/2(n) in connectedness. In this paper, we show the same in
Hamiltonicity. All definitions and notation are the same as in [4] and
[3].

2. The Main Result

In this section, we investigate the Hamiltonicity of quasi-random
graphs. To do this we estimate the independence number β(G(n)) and
the connectivity κ(G(n)) of a quasi-random graph G(n). We know that
G1/2(n) has independence number r(n)−1 or r(n) almost surely for some
integer r(n) such that r(n) ∼ 2 log2 n [1]. But quasi-random graphs sat-
isfy the following.

Theorem 1. Let G = G(n) be a quasi-random graph on n vertices.
Then the independence number β(G) of G satisfies β(G) = o(n) and is
bounded away from zero by any positive constant.

Proof. Let S be any independent set of vertices of G. Then from
property P4, we have e(S) = |S|2/4 + o(n2) = 0 and so |S| = o(n).
Thus, β(G) = o(n).

Let l be any fixed number. Then property P1(s) implies that for
sufficiently large n, G contains a copy of Kl, an empty graph of order l,
as an induced subgraph. Therefore, β(G) ≥ (1 + o(1))l.

We know that G1/2 has connectivity equal to the minimum degree
almost surely [1]. For quasi-random graphs, we have the following.
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Theorem 2. Let G = G(n) be a quasi-random graph on n vertices.
If δ(G) = (1 + o(1))n/2, then

κ(G) = (1 + o(1))
n

2
= δ(G).

Proof. Let δ(G(n)) = (1 + o(1))n/2. Then we can see from Corollary
3 in [7] that G is connected. Let S be a subset of vertices of G such that
the removal of all vertices in S results in a disconnected graph. Since
κ(G) ≤ δ(G), we may assume that |S| ≤ δ(G). Therefore for a given
0 < ε < 1, there exists n0(ε) such that

|S| ≤ δ(G) ≤ (1 + ε)
n

2

for all n ≥ n0. Hence

|V − S| ≥ n− (1 + ε)
n

2
= (1− ε)

n

2

for all n ≥ n0. Therefore, the induced subgraph H = G[V − S] is
quasi-random by Corollary 1 in [7] and is disconnected. Hence, by the
Theorem in [7], a smallest component of H has order o(n). But such a
component together with S contains at least δ(G) + 1 vertices, that is,
|S|+ o(n) ≥ δ(G) + 1 and so |S| ≥ δ(G) + o(n). Hence, we have

δ(G) + o(n) ≤ κ(G) ≤ δ(G)

and so

κ(G) = δ(G) + o(n) = (1 + o(1))
n

2
.

It is well known that every G1/2(n) is Hamiltonian almost surely. But
as we have already seen in [7], there is a quasi-random graph G(n) that
is not even connected and hence not Hamiltonian. However, once again
imposing appropriate degree restrictions on quasi-random graphs, this
can be corrected. The Chvátal-Erdös theorem says that if a graph G
has at least three vertices and β(G) ≤ κ(G), then G is Hamiltonian [5].
Hence the following is immediate from Theorems 1 and 2.

Corollary 3. Let G = G(n) be a quasi-random graph on n vertices.
If δ(G) = (1 + o(1))n/2, then G is Hamiltonian. ¤

Even in case that a given quasi-random graph is not Hamiltonian, it
contains a sufficiently large cycle.
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Corollary 4. Let G = G(n) be a quasi-random graph on n vertices.
Then G has a cycle of length (1 + o(1))n.

Proof. Let G = G(n) = (V, E) be a quasi-random graph and let
H = H(m) = (W,F ) denote the subgraph of G(n) induced by

S = {v ∈ V | degG(v) ≥ (1 + o(1))
n

2
}.

Then observe that
(1) H(m) is a quasi-random graph in its own right by Corollary 1 in

[7],
(2) m = |W | = |S| = (1 + o(1))n and degH(v) ≥ (1 + o(1))n/2 ≥

(1 + o(1))m/2 for all v in W , and
(3) H(m) is connected for sufficiently large m by Corollary 3 in [7].
Therefore, H(m) is a Hamiltonian subgraph with m = (1 + o(1))n

vertices.

3. Examples

In this section, we find some examples of quasi-random graphs that
are Hamiltonian.

Example 5. Let p be a prime satisfying p ≡ 1 (mod 4). Then the
Paley graph Qp on p vertices is quasi-random and (p − 1)/2-regular.
Hence, by Corollary 3, both Qp and the complement Qp are Hamilton-
ian for sufficiently large p. Of course, it follows immediately from its
definition that Qp is Hamiltonian for all p.

Example 6. Let Fn be a field with n elements (of course, n must
be a positive power of a prime) and let AP (Fn) be the affine plane of
order n. Let S be a subset of “slopes” of the n + 1 parallel classes of
lines such that |S| ∼ n/2. We define a graph G(n2) = (V, E) as follows.
Let V be the set of all points in AP (Fn) and let xy ∈ E if and only if
the slope of the line in AP (Fn) containing x and y belongs to S. Then
G(n2) is a quasi-random graph of order n2 [4], and every vertex of G(n2)
has degree (n − 1)|S| ∼ n2/2. Hence, by Corollary 3, both G(n2) and

the complement G(n2) are Hamiltonian for sufficiently large n.

Example 7. We define a graph Gn = (V,E) as follows. Let V be
the set of all n-subsets of a fixed 2n-set and let xy ∈ E iff |x ∩ y| ≡ 0
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(mod 2). Then Gn is a quasi-random graph of order
(
2n
n

)
(see [4] or [2]).

Every vertex v of Gn has degree

deg(v) =

{
1
2

(
2n
n

)
if n is odd

1
2

(
2n
n

)
+ (−1)n/2

2

(
n

n/2

)− 1 if n is even

and hence deg(v) ∼ 1
2

(
2n
n

)
. Therefore both Gn and the complement Gn

are Hamiltonian for sufficiently large n. Of course, it follows immediately
from Dirac’s theorem [6] that Gn is Hamiltonian when n is odd or when
n/2 is even. However, it seems to be difficult to show without using
quasi-randomness that Gn is Hamiltonian when n/2 is a sufficiently large
odd integer.

Remark 8. Let G = G(n) be a quasi-random graph. We showed
in Theorem 1 that β(G) = o(n) and β(G) is bounded away from zero
by any positive constant. Can we find better bounds for independence
numbers of quasi-random graphs? Consider the following example. Let
G = G(n) be any quasi-random graph and let an be any sequence of
positive numbers such that an = o(n). Choose any X ⊆ V (G) with
|X| = dane and remove all edges in G[X] from G. Then the resulting
graph H(n) is quasi-random and dane ≤ β(H(n)) = o(n). This example
shows that there is a quasi-random graph whose independence number
is at least an for any an = o(n).

Let G = G(n) be any graph of order n and let X ⊆ V (G). Then we
know from [2] that

e(G) ≥ n2

4

(
1− (devG)

1
4

)

and that

devG[X] ≤
( n

|X|
)4

devG.

Hence, we obtain

e(G(X)) ≥ |X|2
4

(
1− (devG[X])

1
4

)

≥ |X|2
4

(
1− n

|X|(devG)
1
4

)
.
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Now, we assume that X ⊆ V is an independent set of G. Then e(G[X]) =
0 and hence we have

|X|2
4

(
1− n

|X|(devG)
1
4

)
≤ 0.

Therefore, we have

|X| ≤ n(devG)
1
4

and hence we have

β(G) ≤ n(devG)
1
4

for any graph G of order n. We know from [2] that a quasi-random graph
G = G(n) has devG = o(1). Hence the inequality above implies that
β(G) = o(n) if G is quasi-random and is thus stronger than the result
in Theorem 1.

The problem of finding a better lower bound remains.
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