# HAMILTONICITY OF QUASI-RANDOM GRAPHS 

Tae Keug Lee and Changwoo Lee


#### Abstract

It is well known that a random graph $G_{1 / 2}(n)$ is Hamiltonian almost surely. In this paper, we show that every quasirandom graph $G(n)$ with minimum degree $(1+o(1)) n / 2$ is also Hamiltonian.


## 1. Introduction

Let us consider the random graph model for graphs with $n$ vertices and edge probability $p=1 / 2$. Thus the probability space $\Omega(n)$ consists of all labeled graphs $G$ of order $n$, and the probability $P(G)$ of $G$ in $\Omega(n)$ is given by $P(G)=2^{-\binom{n}{2}}$. For a graph property $\mathcal{P}$, it may happen that

$$
P\{G \in \Omega(n) \mid G \text { satisfies } \mathcal{P}\} \rightarrow 1 \text { as } n \rightarrow \infty
$$

In this case, a typical graph in $\Omega(n)$, which we denote by $G_{1 / 2}(n)$, will have property $\mathcal{P}$ with overwhelming probability as $n$ becomes large. We abbreviate this by saying that a random graph $G_{1 / 2}(n)$ has property $\mathcal{P}$ almost surely. For details of these concepts, see [1] or [8].

One would like to construct graphs that behave just like a random graph $G_{1 / 2}(n)$. Of course, it is logically impossible to construct a truly random graph. Thus Chung, Graham, and Wilson defined in [4] quasirandom graphs, which simulate $G_{1 / 2}(n)$ without much deviation. Among many equivalent quasi-random properties studied in [4] and [3], we list only three needed in this paper. Let $G(n)$ denote a graph on $n$ vertices. A family $\{G(n)\}$ of graphs (or for brevity, a graph $G=G(n)$ ) is quasirandom if it satisfies any one of and hence all of the following.

[^0]$P_{1}(s)$ : For fixed $s$, each labeled graph $M(s)$ on $s$ vertices occurs $(1+o(1)) n^{s} / 2^{\binom{s}{2}}$ times as an induced subgraph of $G$.
$P_{4}$ : For each subset $S \subseteq V(G)$, the number $e(S)$ of edges in $G[S]$ is $e(S)=\frac{1}{4}|S|^{2}+o\left(n^{2}\right)$. Here, $G[S]$ denotes the subgraph of $G$ induced by $S$.
$Q$ : For each subset $S \subseteq V(G)$, the number $e(S, \bar{S})$ of edges between $S$ and $\bar{S}$ satisfies $e(S, \bar{S})=\frac{1}{2}|S||\bar{S}|+o\left(n^{2}\right)$, where $\bar{S}=V(G)-S$.

Another property of $G(n)$, which is weaker than quasi-randomness, is the following.
$P_{0}^{\prime}$ : All but $o(n)$ vertices have degree $(1+o(1)) \frac{n}{2}$. In this case we say that $G(n)$ is almost-regular.

Note that the Paley graph $Q_{p}$ on $p$ vertices is quasi-random [4] and strongly regular with parameters $((p-1) / 2,(p-5) / 4,(p-1) / 4)[1]$.

We showed in [7] how much quasi-random graphs deviate from random graphs $G_{1 / 2}(n)$ in connectedness. In this paper, we show the same in Hamiltonicity. All definitions and notation are the same as in [4] and [3].

## 2. The Main Result

In this section, we investigate the Hamiltonicity of quasi-random graphs. To do this we estimate the independence number $\beta(G(n))$ and the connectivity $\kappa(G(n))$ of a quasi-random graph $G(n)$. We know that $G_{1 / 2}(n)$ has independence number $r(n)-1$ or $r(n)$ almost surely for some integer $r(n)$ such that $r(n) \sim 2 \log _{2} n$ [1]. But quasi-random graphs satisfy the following.

Theorem 1. Let $G=G(n)$ be a quasi-random graph on $n$ vertices. Then the independence number $\beta(G)$ of $G$ satisfies $\beta(G)=o(n)$ and is bounded away from zero by any positive constant.

Proof. Let $S$ be any independent set of vertices of $G$. Then from property $P_{4}$, we have $e(S)=|S|^{2} / 4+o\left(n^{2}\right)=0$ and so $|S|=o(n)$. Thus, $\beta(G)=o(n)$.

Let $l$ be any fixed number. Then property $P_{1}(s)$ implies that for sufficiently large $n, G$ contains a copy of $\overline{K_{l}}$, an empty graph of order $l$, as an induced subgraph. Therefore, $\beta(G) \geq(1+o(1)) l$.

We know that $G_{1 / 2}$ has connectivity equal to the minimum degree almost surely [1]. For quasi-random graphs, we have the following.

Theorem 2. Let $G=G(n)$ be a quasi-random graph on $n$ vertices. If $\delta(G)=(1+o(1)) n / 2$, then

$$
\kappa(G)=(1+o(1)) \frac{n}{2}=\delta(G) .
$$

Proof. Let $\delta(G(n))=(1+o(1)) n / 2$. Then we can see from Corollary 3 in [7] that $G$ is connected. Let $S$ be a subset of vertices of $G$ such that the removal of all vertices in $S$ results in a disconnected graph. Since $\kappa(G) \leq \delta(G)$, we may assume that $|S| \leq \delta(G)$. Therefore for a given $0<\epsilon<1$, there exists $n_{0}(\epsilon)$ such that

$$
|S| \leq \delta(G) \leq(1+\epsilon) \frac{n}{2}
$$

for all $n \geq n_{0}$. Hence

$$
|V-S| \geq n-(1+\epsilon) \frac{n}{2}=(1-\epsilon) \frac{n}{2}
$$

for all $n \geq n_{0}$. Therefore, the induced subgraph $H=G[V-S]$ is quasi-random by Corollary 1 in [7] and is disconnected. Hence, by the Theorem in [7], a smallest component of $H$ has order $o(n)$. But such a component together with $S$ contains at least $\delta(G)+1$ vertices, that is, $|S|+o(n) \geq \delta(G)+1$ and so $|S| \geq \delta(G)+o(n)$. Hence, we have

$$
\delta(G)+o(n) \leq \kappa(G) \leq \delta(G)
$$

and so

$$
\kappa(G)=\delta(G)+o(n)=(1+o(1)) \frac{n}{2} .
$$

It is well known that every $G_{1 / 2}(n)$ is Hamiltonian almost surely. But as we have already seen in [7], there is a quasi-random graph $G(n)$ that is not even connected and hence not Hamiltonian. However, once again imposing appropriate degree restrictions on quasi-random graphs, this can be corrected. The Chvátal-Erdös theorem says that if a graph $G$ has at least three vertices and $\beta(G) \leq \kappa(G)$, then $G$ is Hamiltonian [5]. Hence the following is immediate from Theorems 1 and 2.

Corollary 3. Let $G=G(n)$ be a quasi-random graph on $n$ vertices. If $\delta(G)=(1+o(1)) n / 2$, then $G$ is Hamiltonian.

Even in case that a given quasi-random graph is not Hamiltonian, it contains a sufficiently large cycle.

Corollary 4. Let $G=G(n)$ be a quasi-random graph on $n$ vertices. Then $G$ has a cycle of length $(1+o(1)) n$.

Proof. Let $G=G(n)=(V, E)$ be a quasi-random graph and let $H=H(m)=(W, F)$ denote the subgraph of $G(n)$ induced by

$$
S=\left\{v \in V \left\lvert\, \operatorname{deg}_{G}(v) \geq(1+o(1)) \frac{n}{2}\right.\right\}
$$

Then observe that
(1) $H(m)$ is a quasi-random graph in its own right by Corollary 1 in [7],
(2) $m=|W|=|S|=(1+o(1)) n$ and $\operatorname{deg}_{H}(v) \geq(1+o(1)) n / 2 \geq$ $(1+o(1)) m / 2$ for all $v$ in $W$, and
(3) $H(m)$ is connected for sufficiently large $m$ by Corollary 3 in [7].

Therefore, $H(m)$ is a Hamiltonian subgraph with $m=(1+o(1)) n$ vertices.

## 3. Examples

In this section, we find some examples of quasi-random graphs that are Hamiltonian.

Example 5. Let $p$ be a prime satisfying $p \equiv 1(\bmod 4)$. Then the Paley graph $Q_{p}$ on $p$ vertices is quasi-random and $(p-1) / 2$-regular. Hence, by Corollary 3 , both $Q_{p}$ and the complement $\overline{Q_{p}}$ are Hamiltonian for sufficiently large $p$. Of course, it follows immediately from its definition that $Q_{p}$ is Hamiltonian for all $p$.

Example 6. Let $F_{n}$ be a field with $n$ elements (of course, $n$ must be a positive power of a prime) and let $A P\left(F_{n}\right)$ be the affine plane of order $n$. Let $S$ be a subset of "slopes" of the $n+1$ parallel classes of lines such that $|S| \sim n / 2$. We define a graph $G\left(n^{2}\right)=(V, E)$ as follows. Let $V$ be the set of all points in $A P\left(F_{n}\right)$ and let $x y \in E$ if and only if the slope of the line in $A P\left(F_{n}\right)$ containing $x$ and $y$ belongs to $S$. Then $G\left(n^{2}\right)$ is a quasi-random graph of order $n^{2}[4]$, and every vertex of $G\left(n^{2}\right)$ has degree $(n-1)|S| \sim n^{2} / 2$. Hence, by Corollary 3, both $G\left(n^{2}\right)$ and the complement $\overline{G\left(n^{2}\right)}$ are Hamiltonian for sufficiently large $n$.

Example 7. We define a graph $G_{n}=(V, E)$ as follows. Let $V$ be the set of all $n$-subsets of a fixed $2 n$-set and let $x y \in E$ iff $|x \cap y| \equiv 0$
$(\bmod 2)$. Then $G_{n}$ is a quasi-random graph of order $\binom{2 n}{n}$ (see [4] or [2]). Every vertex $v$ of $G_{n}$ has degree

$$
\operatorname{deg}(v)= \begin{cases}\frac{1}{2}\binom{2 n}{n} & \text { if } n \text { is odd } \\ \frac{1}{2}\binom{2 n}{n}+\frac{(-1)^{n / 2}}{2}\binom{n}{n / 2}-1 & \text { if } n \text { is even }\end{cases}
$$

and hence $\operatorname{deg}(v) \sim \frac{1}{2}\binom{2 n}{n}$. Therefore both $G_{n}$ and the complement $\overline{G_{n}}$ are Hamiltonian for sufficiently large $n$. Of course, it follows immediately from Dirac's theorem [6] that $G_{n}$ is Hamiltonian when $n$ is odd or when $n / 2$ is even. However, it seems to be difficult to show without using quasi-randomness that $G_{n}$ is Hamiltonian when $n / 2$ is a sufficiently large odd integer.

Remark 8. Let $G=G(n)$ be a quasi-random graph. We showed in Theorem 1 that $\beta(G)=o(n)$ and $\beta(G)$ is bounded away from zero by any positive constant. Can we find better bounds for independence numbers of quasi-random graphs? Consider the following example. Let $G=G(n)$ be any quasi-random graph and let $a_{n}$ be any sequence of positive numbers such that $a_{n}=o(n)$. Choose any $X \subseteq V(G)$ with $|X|=\left\lceil a_{n}\right\rceil$ and remove all edges in $G[X]$ from $G$. Then the resulting graph $H(n)$ is quasi-random and $\left\lceil a_{n}\right\rceil \leq \beta(H(n))=o(n)$. This example shows that there is a quasi-random graph whose independence number is at least $a_{n}$ for any $a_{n}=o(n)$.

Let $G=G(n)$ be any graph of order $n$ and let $X \subseteq V(G)$. Then we know from [2] that

$$
e(G) \geq \frac{n^{2}}{4}\left(1-(\operatorname{dev} G)^{\frac{1}{4}}\right)
$$

and that

$$
\operatorname{dev} G[X] \leq\left(\frac{n}{|X|}\right)^{4} \operatorname{dev} G
$$

Hence, we obtain

$$
\begin{aligned}
e(G(X)) & \geq \frac{|X|^{2}}{4}\left(1-(\operatorname{dev} G[X])^{\frac{1}{4}}\right) \\
& \geq \frac{|X|^{2}}{4}\left(1-\frac{n}{|X|}(\operatorname{dev} G)^{\frac{1}{4}}\right) .
\end{aligned}
$$

Now, we assume that $X \subseteq V$ is an independent set of $G$. Then $e(G[X])=$ 0 and hence we have

$$
\frac{|X|^{2}}{4}\left(1-\frac{n}{|X|}(\operatorname{dev} G)^{\frac{1}{4}}\right) \leq 0 .
$$

Therefore, we have

$$
|X| \leq n(\operatorname{dev} G)^{\frac{1}{4}}
$$

and hence we have

$$
\beta(G) \leq n(\operatorname{dev} G)^{\frac{1}{4}}
$$

for any graph $G$ of order $n$. We know from [2] that a quasi-random graph $G=G(n)$ has $\operatorname{dev} G=o(1)$. Hence the inequality above implies that $\beta(G)=o(n)$ if $G$ is quasi-random and is thus stronger than the result in Theorem 1.

The problem of finding a better lower bound remains.

## References

[1] B. Bollobás, Random Graphs, Academic, London, 1985.
[2] F. R. K. Chung and R. L. Graham, Quasi-random Set Systems, J. Amer. Math. Soc. 4 (1991), 151-196.
[3] F. R. K. Chung and R. L. Graham, Maximum Cuts and Quasi-random Graphs, Random Graphs 2 (A. Frieze and T. Luczak, eds), Wiley, New York 1992, 23-33.
[4] F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random Graphs, Combinatorica 9 (1989), 345-362.
[5] V. Chvátal and P. Erdös, A Note on Hamiltonian Circuits, Discrete Math. 2, (1972), 111-113.
[6] G. A. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. 2 (1952), 69-81.
[7] C. Lee, A Note on Connectedness of Quasi-random Graphs, Comm. Korean Math. Soc. 14 (1999), 295-299.
[8] E. M. Palmer, Graphical Evolution, Wiley, New York, 1985.

Department of Mathematics
University of Seoul
Seoul 130-743, Korea
E-mail: tklee@uoscc.uos.ac.kr
Department of Mathematics
University of Seoul
Seoul 130-743, Korea
E-mail: chlee@uoscc.uos.ac.kr


[^0]:    Received January 10, 2002.
    2000 Mathematics Subject Classification: 05C80.
    Key words and phrases: quasi-random, Hamiltonian, independence number, connectivity.

    This research of the first author was supported by the 2001 Research Fund of the University of Seoul.

