Kangweon-Kyungki Math. Jour. 10 (2002), No. 1, pp. 37-44

SOME PROPERTIES OF MV-ALGEBRAS

JUNG MI KO AND YONG CHAN KIM

ABSTRACT. In this paper, we obtain an algebraic structure which is equivalent to an MV-algebra. Moreover, we show that t-norm and t-conorm can be obtained from MV-algebras.

1. Introduction

Ward and Dilworth [9] introduced residuated lattices as the foundation of the algebraic structures of fuzzy logics. Hájeck [1] introduced a BL-algebra which is a general tool of a fuzzy logic. Recently, Höhle [2,3] extended the fuzzy set $f: X \to L$ where L is an MV-algebra in stead of an unit interval I or a lattice L.

In this paper, we obtain an algebraic structure which is equivalent to an MV-algebra. Moreover, we show that t-norm and t-conorm can be obtained from MV-algebras.

2. Preliminaries

DEFINITION 2.1 ([3,8]). A lattice $(L, \leq, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a *residuated lattice* if it satisfies the following conditions: for each $x, y, z \in L$,

(R1) $(L, \odot, 1)$ is a commutative monoid,

(R2) if $x \leq y$, then $x \odot z \leq y \odot z$ (\odot is an isotone operation),

(R3) (Galois correspondence): $(x \odot y) \le z$ iff $x \le (y \to z)$.

In a residuated lattice $L, x^* = (x \to 0)$ is called *complement* of $x \in L$.

Received January 21, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 06D35, 03B52, 94D05. Key words and phrases: MV-algebras, t-norms, t-conorms.

DEFINITION 2.2 ([3,8]). A residuated lattice $(L, \leq, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a *BL-algebra* if it satisfies the following conditions: for each $x, y \in L$,

(B1) $x \wedge y = x \odot (x \rightarrow y)$, (B2) $x \lor y = [(x \to y) \to y] \land [(y \to x) \to x],$ (B3) $(x \to y) \lor (y \to x) = 1.$ A BL-algebra L is called an *MV-algebra* if $x = x^{**}$ for each $x \in L$.

LEMMA 2.3 ([3,8]). Let L be an MV-algebra. For $x, y, z \in L$, we have the following properties:

(1) $x = (1 \to x),$ (2) $1 = (x \to x),$ (3) $x \leq y$ iff $1 = (x \rightarrow y)$, (4) x = y iff $1 = (x \rightarrow y) = (y \rightarrow x)$, (5) if $y \leq z$, $(x \to y) \leq (x \to z)$, (6) $(x \odot y) \to z = x \to (y \to z),$ (7) $x \odot y = (x \rightarrow y^*)^*$, (8) $x \leq y$ iff $x^* \geq y^*$, (9) $x \to y = y^* \to x^*$.

DEFINITION 2.4 ([10]). A binary operation \otimes : $[0,1] \times [0,1] \rightarrow$ [0, 1] is called a *t*-norm if it satisfies the following conditions: for each $x, y, z \in L$,

(1) $x \otimes y = y \otimes x$, (2) $x \otimes (y \otimes z) = (x \otimes y) \otimes z$, (3) $x \otimes 1 = x$, (4) if $x \leq y, x \otimes z \leq y \otimes z$.

We define the t-conorm as a dual sense of t-norm.

DEFINITION 2.5 ([10]). A binary operation $\exists : [0,1] \times [0,1] \rightarrow [0,1]$ is called a *t-conorm* if it satisfies the following conditions: for each $x, y, z \in L$,

(1) $x \uplus y = y \uplus x$, (2) $x \uplus (y \uplus z) = (x \uplus y) \uplus z$, (3) $x \uplus 0 = x$,

(4) if $x \leq y, x \uplus z \leq y \uplus z$.

3. Some properties of MV-algebras

THEOREM 3.1. Let $(L, \leq, \land, \lor, \odot, \rightarrow, 0, 1)$ be an MV-algebra. Define $x \oplus y = x^* \to y$. For each $x, y, z \in L$, we have the following properties.

 $(1) x^{**} = x, 1^* = 0.$ $(2) (x \oplus y)^* = x^* \odot y^*, (x \odot y)^* = x^* \oplus y^*.$ $(3) x \oplus y = y \oplus x, x \odot y = y \odot x.$ $(4) x \oplus (y \oplus z) = (x \oplus y) \oplus z, x \odot (y \odot z) = (x \odot y) \odot z.$ $(5) x \oplus x^* = 1, x \odot x^* = 0.$ $(6) x \oplus 0 = x, x \odot 1 = x.$ $(7) x \odot (x^* \oplus y) = y \odot (y^* \oplus x), x \oplus (x^* \odot y) = y \oplus (y^* \odot x).$ $(8) x \oplus [y \odot (y^* \oplus z)] = (x \oplus y) \odot [(x^* \odot y^*) \oplus (x \oplus z)].$ $(9) \text{ if } y \leq z, \text{ then } x \oplus y \leq x \oplus z.$

Proof. (1) Since $1 \to 0 = 0$ from Lemma 2.3(1), $1^* = 0$. (2) Put z = 0 from Lemma 2.3(6). Then $(x \odot y)^* = x \to y^* = x^* \oplus y^*$. Furthermore, $(x \oplus y)^* = (x^* \to y)^* = x^* \odot y^*$ from Lemma 2.3(7).

(3-4) Since (L, \odot) is a commutative monoid, that is, $x \odot y = y \odot x$ and $x \odot (y \odot z) = (x \odot y) \odot z$, by (2), $x \oplus y = y \oplus x$ and $x \oplus (y \oplus z) = (x \oplus y) \oplus z$. (5) By (B1), $0 = x \land 0 = x \odot (x \to 0) = x \odot x^*$. It implies $x \oplus x^* = 1$. (6) Put y = 1 from Lemma 2.3(7). Then $x \odot 1 = (x \to 1^*)^* = x^{**} = x$. Moreover, by (2), $x \oplus 0 = x$.

(7) By (B1), $x \odot (x^* \oplus y) = x \odot (x \to y) = x \land y = y \land x = y \odot (y^* \oplus x)$. By (2), trivially, $x \oplus (x^* \odot y) = y \oplus (y^* \odot x)$.

(8) If $y \leq z$, by Lemma 2.3(8), $y^* \geq z^*$. By (R2), $x^* \odot y^* \geq x^* \odot z^*$. By Lemma 2.3(7-8), $(x^* \to y)^* \geq (x^* \to z)^*$ implies $x^* \to y \leq x^* \to z$. Since $y \land z \leq y, z$, we have

$$x^* \to (y \land z) \le (x^* \to y) \land (x^* \to z).$$

Since $(x^* \to y) \land (x^* \to z) \leq (x^* \to y), (x^* \to z)$, by (R3), $x^* \odot ((x^* \to y) \land (x^* \to z)) \leq y, z$. Then $x^* \odot ((x^* \to y) \land (x^* \to z)) \leq y \land z$. It implies $(x^* \to y) \land (x^* \to z) \leq x^* \to (y \land z)$. So,

$$(x^* \to y) \land (x^* \to z) = x^* \to (y \land z).$$

Thus,

$$(x \oplus y) \land (x \oplus z) = x \oplus (y \land z).$$

Since $x \wedge y = x \odot (x \rightarrow y)$ from (B1), we obtain

$$x \oplus [y \odot (y^* \oplus z)] = (x \oplus y) \odot [(x^* \odot y^*) \oplus (x \oplus z)].$$

(9) Let $y \le z$. By (2) and (8),

$$x \oplus y = x \oplus (y \land z) = (x \oplus y) \land (x \oplus z).$$

Hence, $x \oplus y \leq x \oplus z$.

We can obtain the following corollary from Theorem 3.1.

COROLLARY 3.2. If $([0,1], \leq, \land, \lor, \odot, \rightarrow, 0, 1)$ is an MV-algebra, then $([0,1], \odot)$ is a t-norm and $([0,1], \oplus)$ is a t-conorm.

THEOREM 3.3. Let $(L, \odot, \oplus, *, 0, 1)$ be an algebraic structure which satisfies (1)-(8) in Theorem 3.1. Define

$$x \le y \quad \text{iff} \quad x^* \oplus y = 1$$
$$x \to y = x^* \oplus y$$

Then $(L, \leq, \wedge, \vee, \odot, \rightarrow, 0, 1)$ is an MV-algebra.

Proof. (1) (L, \leq) is a partially ordered set.

(reflexive) Since $x^* \oplus x = 1, x \leq x$.

(transitive) If $x \leq y$ and $y \leq z$, then $x^* \oplus y = 1$ and $y^* \oplus z = 1$. Since $0 \leq 1, 1 = 0^* \oplus 1 = 1 \oplus 1$. It implies $(x^* \oplus y) \oplus (y^* \oplus z) = x^* \oplus z = 1$. Thus $x \leq z$.

(anti-symmetric) If $x \leq y$ and $y \leq x$, then $x^* \oplus y = 1$ and $y^* \oplus x = 1$. By Theorem 3.1(7), we have

$$x = x \odot 1 = x \odot (x^* \oplus y) = y \odot (y^* \oplus x) = y \odot 1 = y.$$

(2) We will show that $x \wedge y = x \odot (x^* \oplus y)$.

Since $[x \odot (x^* \oplus y)]^* \oplus x = [x^* \oplus (x \odot y^*)] \oplus x = (x^* \oplus x) \oplus (x \odot y^*)] = 1 \oplus (x \odot y^*) = 1$ because $0 \le (x \odot y^*)$, we have $x \odot (x^* \oplus y) \le x$. Since $[y \odot (y^* \oplus x)]^* \oplus y = [y^* \oplus (y \odot x^*)] \oplus y = 1$, we have $y \odot (y^* \oplus x) \le y$. If $z \le x$ and $z \le y$, then $z^* \oplus x = 1$ and $z^* \oplus y = 1$. It implies, by Theorem 3.1(8),

$$z^* \oplus [y \odot (y^* \oplus x)] = (z^* \oplus y) \odot [(z \odot y^*) \oplus (z^* \oplus x)]$$
$$= 1 \odot (0 \oplus 1) = 1 \odot 1 = 1.$$

40

Thus, $z \leq y \odot (y^* \oplus x) = x \odot (x^* \oplus y)$. Hence, $x \wedge y = x \odot (x^* \oplus y)$. Since $x \odot (x^* \oplus y) = y \odot (y^* \oplus x)$, we have $x \wedge y = y \wedge z$. (3) $x \leq y$ iff $1 = x^* \oplus y$ iff $1 = y \oplus x^*$ iff $y^* \leq x^*$. (4) By (2) and (3), since $x^* \wedge y^* \leq x^*, y^*$ implies $x, y \leq (x^* \wedge y^*)^*$. Thus, $x \vee y \leq (x^* \wedge y^*)^*$. If $x, y \leq z$, then $z^* \leq x^* \wedge y^*$ implies $(x^* \wedge y^*)^* \leq z$. Hence

$$x \lor y = (x^* \land y^*)^* = x \oplus (x^* \odot y) = y \oplus (y^* \odot x) = y \lor x.$$

Therefore $(L, \leq, \wedge, \vee, ^*)$ is a lattice.

(5) From (2) and Theorem 3.1(8),

$$\begin{aligned} x \oplus (y \wedge z) &= x \oplus [y \odot (y^* \oplus z)] \\ &= (x \oplus y) \odot [(x^* \odot y^*) \oplus (x \oplus z)] \\ &= (x \oplus y) \wedge (x \oplus z). \end{aligned}$$

Let $y \leq z$. Then

$$x \oplus y = x \oplus (y \land z) = (x \oplus y) \land (x \oplus z).$$

Hence $x \oplus y \leq x \oplus z$.

(R2) Let $x \leq y$. From (2),

$$(x \odot z)^* = x^* \oplus z^* \ge y^* \oplus z^* = (y \odot z)^*.$$

Hence $x \odot z \leq y \odot z$.

(6) We show that $x \odot y \le x \land y \le x \lor y \le x \oplus y$. Since $x \odot y \le x \odot 1 \le x$ and $x \odot y \le 1 \odot y \le y$, we have $x \odot y \le x \land y$. Since $x = x \oplus 0 \le x \oplus y$ and $y = 0 \oplus y \le x \oplus y$, we have $x \lor y \le x \oplus y$. (R3) (Galois correspondence): $(x \odot y) \le z$ iff $x \le (y \to z)$. Let $(x \odot y) \le z$. Then

$$1 = (x \odot y)^* \oplus z$$

= $(x^* \oplus y^*) \oplus z$
= $x^* \oplus (y^* \oplus z)$
= $x^* \oplus (y \to z).$

Jung Mi Ko and Yong Chan Kim

Thus, $x \leq (y \to z)$. Let $x \leq y \to z$. Then $x \odot y = y \odot x$ $\leq y \odot (y \to z)$ $= y \odot (y^* \oplus z)$ $= y \wedge z \leq z$. (B1) It is trivial from (2). (7) Since $x^* \oplus y = y \oplus x^*$, we have $x \to y = y^* \to x^*$. (B2)

x

$$\forall y = (x^* \land y^*)^*$$

$$= x \oplus (x^* \odot y)$$

$$= x^* \to (x^* \to y^*)^*$$

$$= (x^* \to y^*) \to x \quad (by (7))$$

$$= (y \to x) \to x.$$

Since $(y \to x) \to x = x \oplus (x^* \odot y) = y \oplus (y^* \odot x) = (x \to y) \to y$ from Theorem 3.1(7), we have

$$x \lor y = [(x \to y) \to y] \land [(y \to x) \to x].$$

(B3) We will show that $(x \to y) \lor (y \to x) = 1$. (a) $x \to (y \to z) = x^* \oplus (y^* \oplus z) = y^* \oplus (x^* \oplus z) = y \to (x \to z)$. (b) $(x \lor y) \to x = (x \lor y)^* \oplus x = (x^* \oplus x) \land (y^* \oplus x) = y^* \oplus x = y \to x$ from (5). Similarly, $(x \lor y) \to y = x \to y$. Since

$$(y \to x) \to (x \to y) = [(x \lor y) \to x] \to [(x \lor y) \to y] \text{ (by (b))}$$
$$= [x^* \to (x \lor y)^*] \to [y^* \to (x \lor y)^*] \text{(by (7))}$$
$$= y^* \to \{[x^* \to (x \lor y)^*] \to (x \lor y)^*\} \text{(by (a))}$$
$$= y^* \to [x^* \lor (x \lor y)^*]$$
$$= [x^* \lor (x \lor y)^*]^* \to y$$
$$= [x \land (x \lor y)] \to y$$
$$= x \to y$$
$$= x^* \oplus y,$$

Some properties of MV-algebras

we have

$$(x \to y) \lor (y \to x) = [(y \to x) \to (x \to y)] \to (x \to y)$$
$$= (x^* \oplus y) \to (x^* \oplus y)$$
$$= (x^* \oplus y)^* \oplus (x^* \oplus y)$$
$$= 1.$$

Hence $(L, \leq, \land, \lor, \odot, \rightarrow, 0, 1)$ is an MV-algebra.

We can obtain the following corollary from Theorem 3.3.

COROLLARY 3.4. Let $([0, 1], \otimes)$ be a t-norm and $([0, 1], \uplus)$ a t-conorm which satisfies the following conditions:

(1) $x^{**} = x$, and $1^* = 0$. (2) $(x \uplus y)^* = x^* \otimes y^*$. (3) $x \uplus x^* = 1$. (4) $x \uplus 0 = x$. (5) $x \otimes (x^* \uplus y) = y \otimes (y^* \uplus x)$. (6) $x \uplus [y \otimes (y^* \uplus z)] = (x \uplus y) \otimes [(x^* \otimes y^*) \uplus (x \otimes z)]$. Then $([0, 1], \leq, \land, \lor, \otimes, \rightarrow, 0, 1)$ is an MV-algebra.

References

- 1. P.Hájek, *Metamathematices of fuzzy logic*, Kluwer Academic Publishers, Dordrecht (1998).
- U.Höhle, On the fundamentals of fuzzy set theory, J.Math.Anal.Appl. 201 (1996), 786–826.
- 3. U .Höhle and S.E. Rodabaugh, *Mathematics of fuzzy sets*, Kluwer Academic Publishers (1999).
- J.M. Ko and Y.C. Kim, Some properties of BL-algebras, J. Korea Fuzzy Logic and Intelligent Systems 11(3) (2001), 286-291.
- M. Mizumoto, *Pictorial representations of fuzzy connectives I*, Fuzzy sets and Systems **31** (1989), 217-245.
- 6. H.T. Nguyen and E.A. Walker, Fuzzy logic, Chapman and Hall (2000).
- E. Turunen, Algebraic structures in fuzzy logic, Fuzzy sets and Systems 52 (1992), 181-188.
- 8. E. Turunen, Mathematics behind fuzzy logic, A Springer-Verlag Co., 1999.
- M.Ward and R.P. Dilworth, *Residuated lattices*, Transactions of American Mathematical Society 45 (1939), 335–354.
- S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy sets and Systems 11 (1983), 115–134.

Jung Mi Ko and Yong Chan Kim

11. R.R. Yager, On a general class of fuzzy connectives, Fuzzy sets and Systems 4 (1980), 235–242.

Department of Mathematics Kangnung National University Kangnung, Kangwondo, 210-702