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SOME PROPERTIES OF MV-ALGEBRAS

Jung Mi Ko and Yong Chan Kim

Abstract. In this paper, we obtain an algebraic structure which
is equivalent to an MV-algebra. Moreover, we show that t-norm
and t-conorm can be obtained from MV-algebras.

1. Introduction

Ward and Dilworth [9] introduced residuated lattices as the founda-
tion of the algebraic structures of fuzzy logics. Hájeck [1] introduced
a BL-algebra which is a general tool of a fuzzy logic. Recently, Höhle
[2,3] extended the fuzzy set f : X → L where L is an MV-algebra in
stead of an unit interval I or a lattice L.

In this paper, we obtain an algebraic structure which is equivalent
to an MV-algebra. Moreover, we show that t-norm and t-conorm can
be obtained from MV-algebras.

2. Preliminaries

Definition 2.1 ([3,8]). A lattice (L,≤,∧,∨,¯,→, 0, 1) is called a
residuated lattice if it satisfies the following conditions: for each x, y, z ∈
L,

(R1) (L,¯, 1) is a commutative monoid,
(R2) if x ≤ y, then x¯ z ≤ y ¯ z ( ¯ is an isotone operation),
(R3) (Galois correspondence): (x¯ y) ≤ z iff x ≤ (y → z).

In a residuated lattice L, x∗ = (x → 0) is called complement of
x ∈ L.
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Definition 2.2 ([3,8]). A residuated lattice (L,≤,∧,∨,¯,→, 0, 1)
is called a BL-algebra if it satisfies the following conditions: for each
x, y ∈ L,

(B1) x ∧ y = x¯ (x → y),
(B2) x ∨ y = [(x → y) → y] ∧ [(y → x) → x],
(B3) (x → y) ∨ (y → x) = 1.

A BL-algebra L is called an MV-algebra if x = x∗∗ for each x ∈ L.

Lemma 2.3 ([3,8]). Let L be an MV-algebra. For x, y, z ∈ L, we
have the following properties:

(1) x = (1 → x),
(2) 1 = (x → x),
(3) x ≤ y iff 1 = (x → y),
(4) x = y iff 1 = (x → y) = (y → x),
(5) if y ≤ z, (x → y) ≤ (x → z),
(6) (x¯ y) → z = x → (y → z),
(7) x¯ y = (x → y∗)∗,
(8) x ≤ y iff x∗ ≥ y∗,
(9) x → y = y∗ → x∗.

Definition 2.4 ([10]). A binary operation ⊗ : [0, 1] × [0, 1] →
[0, 1] is called a t-norm if it satisfies the following conditions: for each
x, y, z ∈ L,

(1) x⊗ y = y ⊗ x,
(2) x⊗ (y ⊗ z) = (x⊗ y)⊗ z,
(3) x⊗ 1 = x,
(4) if x ≤ y, x⊗ z ≤ y ⊗ z.

We define the t-conorm as a dual sense of t-norm.

Definition 2.5 ([10]). A binary operation ] : [0, 1]× [0, 1] → [0, 1]
is called a t-conorm if it satisfies the following conditions: for each
x, y, z ∈ L,

(1) x ] y = y ] x,
(2) x ] (y ] z) = (x ] y) ] z,
(3) x ] 0 = x,
(4) if x ≤ y, x ] z ≤ y ] z.
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3. Some properties of MV-algebras

Theorem 3.1. Let (L,≤,∧,∨,¯,→, 0, 1) be an MV-algebra. De-
fine x ⊕ y = x∗ → y. For each x, y, z ∈ L, we have the following
properties.

(1) x∗∗ = x, 1∗ = 0.
(2) (x⊕ y)∗ = x∗ ¯ y∗, (x¯ y)∗ = x∗ ⊕ y∗.
(3) x⊕ y = y ⊕ x, x¯ y = y ¯ x.
(4) x⊕ (y ⊕ z) = (x⊕ y)⊕ z, x¯ (y ¯ z) = (x¯ y)¯ z.
(5) x⊕ x∗ = 1, x¯ x∗ = 0.
(6) x⊕ 0 = x, x¯ 1 = x.
(7) x¯ (x∗ ⊕ y) = y ¯ (y∗ ⊕ x), x⊕ (x∗ ¯ y) = y ⊕ (y∗ ¯ x).
(8) x⊕ [y ¯ (y∗ ⊕ z)] = (x⊕ y)¯ [(x∗ ¯ y∗)⊕ (x⊕ z)].
(9) if y ≤ z, then x⊕ y ≤ x⊕ z.

Proof. (1) Since 1 → 0 = 0 from Lemma 2.3(1), 1∗ = 0.
(2) Put z = 0 from Lemma 2.3(6). Then (x¯y)∗ = x → y∗ = x∗⊕y∗.

Furthermore, (x⊕ y)∗ = (x∗ → y)∗ = x∗ ¯ y∗ from Lemma 2.3(7).
(3-4) Since (L,¯) is a commutative monoid, that is, x¯y = y¯x and

x¯(y¯z) = (x¯y)¯z, by (2), x⊕y = y⊕x and x⊕(y⊕z) = (x⊕y)⊕z.
(5) By (B1), 0 = x∧0 = x¯ (x → 0) = x¯x∗. It implies x⊕x∗ = 1.
(6) Put y = 1 from Lemma 2.3(7). Then x¯1 = (x → 1∗)∗ = x∗∗ =

x. Moreover, by (2), x⊕ 0 = x.
(7) By (B1), x¯(x∗⊕y) = x¯(x → y) = x∧y = y∧x = y¯(y∗⊕x).

By (2), trivially, x⊕ (x∗ ¯ y) = y ⊕ (y∗ ¯ x).
(8) If y ≤ z, by Lemma 2.3(8), y∗ ≥ z∗. By (R2), x∗¯y∗ ≥ x∗¯ z∗.

By Lemma 2.3(7-8), (x∗ → y)∗ ≥ (x∗ → z)∗ implies x∗ → y ≤ x∗ → z.
Since y ∧ z ≤ y, z, we have

x∗ → (y ∧ z) ≤ (x∗ → y) ∧ (x∗ → z).

Since (x∗ → y)∧ (x∗ → z) ≤ (x∗ → y), (x∗ → z), by (R3), x∗¯ ((x∗ →
y) ∧ (x∗ → z)) ≤ y, z. Then x∗ ¯ ((x∗ → y) ∧ (x∗ → z)) ≤ y ∧ z. It
implies (x∗ → y) ∧ (x∗ → z) ≤ x∗ → (y ∧ z). So,

(x∗ → y) ∧ (x∗ → z) = x∗ → (y ∧ z).

Thus,
(x⊕ y) ∧ (x⊕ z) = x⊕ (y ∧ z).
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Since x ∧ y = x¯ (x → y) from (B1), we obtain

x⊕ [y ¯ (y∗ ⊕ z)] = (x⊕ y)¯ [(x∗ ¯ y∗)⊕ (x⊕ z)].

(9) Let y ≤ z. By (2) and (8) ,

x⊕ y = x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

Hence, x⊕ y ≤ x⊕ z. ¤

We can obtain the following corollary from Theorem 3.1.

Corollary 3.2. If ([0, 1],≤,∧,∨,¯,→, 0, 1) is an MV-algebra, then
([0, 1],¯) is a t-norm and ([0, 1],⊕) is a t-conorm.

Theorem 3.3. Let (L,¯,⊕,∗ , 0, 1) be an algebraic structure which
satisfies (1)-(8) in Theorem 3.1. Define

x ≤ y iff x∗ ⊕ y = 1

x → y = x∗ ⊕ y

Then (L,≤,∧,∨,¯,→, 0, 1) is an MV-algebra.

Proof. (1) (L,≤) is a partially ordered set.
(reflexive) Since x∗ ⊕ x = 1, x ≤ x.
(transitive) If x ≤ y and y ≤ z, then x∗⊕y = 1 and y∗⊕z = 1. Since

0 ≤ 1, 1 = 0∗ ⊕ 1 = 1⊕ 1. It implies (x∗ ⊕ y)⊕ (y∗ ⊕ z) = x∗ ⊕ z = 1.
Thus x ≤ z.

(anti-symmetric) If x ≤ y and y ≤ x, then x∗⊕y = 1 and y∗⊕x = 1.
By Theorem 3.1(7), we have

x = x¯ 1 = x¯ (x∗ ⊕ y) = y ¯ (y∗ ⊕ x) = y ¯ 1 = y.

(2) We will show that x ∧ y = x¯ (x∗ ⊕ y).
Since [x¯ (x∗⊕y)]∗⊕x = [x∗⊕ (x¯y∗)]⊕x = (x∗⊕x)⊕ (x¯y∗)] =

1⊕ (x¯ y∗) = 1 because 0 ≤ (x¯ y∗), we have x¯ (x∗⊕ y) ≤ x. Since
[y¯ (y∗ ⊕ x)]∗ ⊕ y = [y∗ ⊕ (y¯ x∗)]⊕ y = 1, we have y¯ (y∗ ⊕ x) ≤ y.
If z ≤ x and z ≤ y, then z∗ ⊕ x = 1 and z∗ ⊕ y = 1. It implies, by
Theorem 3.1(8),

z∗ ⊕ [y ¯ (y∗ ⊕ x)] = (z∗ ⊕ y)¯ [(z ¯ y∗)⊕ (z∗ ⊕ x)]

= 1¯ (0⊕ 1) = 1¯ 1 = 1.



Some properties of MV-algebras 41

Thus, z ≤ y ¯ (y∗ ⊕ x) = x¯ (x∗ ⊕ y). Hence, x ∧ y = x¯ (x∗ ⊕ y).
Since x¯ (x∗ ⊕ y) = y ¯ (y∗ ⊕ x), we have x ∧ y = y ∧ z.
(3) x ≤ y iff 1 = x∗ ⊕ y iff 1 = y ⊕ x∗ iff y∗ ≤ x∗.
(4) By (2) and (3), since x∗ ∧ y∗ ≤ x∗, y∗ implies x, y ≤ (x∗ ∧ y∗)∗.

Thus, x ∨ y ≤ (x∗ ∧ y∗)∗. If x, y ≤ z, then z∗ ≤ x∗ ∧ y∗ implies
(x∗ ∧ y∗)∗ ≤ z. Hence

x ∨ y = (x∗ ∧ y∗)∗ = x⊕ (x∗ ¯ y) = y ⊕ (y∗ ¯ x) = y ∨ x.

Therefore (L,≤,∧,∨,∗ ) is a lattice.
(5) From (2) and Theorem 3.1(8) ,

x⊕ (y ∧ z) = x⊕ [y ¯ (y∗ ⊕ z)]

= (x⊕ y)¯ [(x∗ ¯ y∗)⊕ (x⊕ z)]

= (x⊕ y) ∧ (x⊕ z).

Let y ≤ z. Then

x⊕ y = x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

Hence x⊕ y ≤ x⊕ z.
(R2) Let x ≤ y. From (2),

(x¯ z)∗ = x∗ ⊕ z∗ ≥ y∗ ⊕ z∗ = (y ¯ z)∗.

Hence x¯ z ≤ y ¯ z.
(6) We show that x¯ y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.
Since x¯y ≤ x¯1 ≤ x and x¯y ≤ 1¯y ≤ y, we have x¯y ≤ x∧y.

Since x = x⊕ 0 ≤ x⊕ y and y = 0⊕ y ≤ x⊕ y, we have x∨ y ≤ x⊕ y.
(R3) (Galois correspondence): (x¯ y) ≤ z iff x ≤ (y → z).
Let (x¯ y) ≤ z. Then

1 = (x¯ y)∗ ⊕ z

= (x∗ ⊕ y∗)⊕ z

= x∗ ⊕ (y∗ ⊕ z)

= x∗ ⊕ (y → z).
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Thus, x ≤ (y → z).
Let x ≤ y → z. Then

x¯ y = y ¯ x

≤ y ¯ (y → z)

= y ¯ (y∗ ⊕ z)
= y ∧ z ≤ z.

(B1) It is trivial from (2).
(7) Since x∗ ⊕ y = y ⊕ x∗, we have x → y = y∗ → x∗.
(B2)

x ∨ y = (x∗ ∧ y∗)∗

= x⊕ (x∗ ¯ y)

= x∗ → (x∗ → y∗)∗

= (x∗ → y∗) → x (by (7))

= (y → x) → x.

Since (y → x) → x = x⊕ (x∗ ¯ y) = y ⊕ (y∗ ¯ x) = (x → y) → y from
Theorem 3.1(7), we have

x ∨ y = [(x → y) → y] ∧ [(y → x) → x].

(B3) We will show that (x → y) ∨ (y → x) = 1.
(a) x → (y → z) = x∗ ⊕ (y∗ ⊕ z) = y∗ ⊕ (x∗ ⊕ z) = y → (x → z).
(b) (x∨y) → x = (x∨y)∗⊕x = (x∗⊕x)∧(y∗⊕x) = y∗⊕x = y → x

from (5). Similarly, (x ∨ y) → y = x → y.
Since

(y → x) → (x → y) = [(x ∨ y) → x] → [(x ∨ y) → y] (by (b))

= [x∗ → (x ∨ y)∗] → [y∗ → (x ∨ y)∗](by (7))

= y∗ → {[x∗ → (x ∨ y)∗] → (x ∨ y)∗}(by (a))

= y∗ → [x∗ ∨ (x ∨ y)∗]

= [x∗ ∨ (x ∨ y)∗]∗ → y

= [x ∧ (x ∨ y)] → y

= x → y

= x∗ ⊕ y,
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we have

(x → y) ∨ (y → x) = [(y → x) → (x → y)] → (x → y)

= (x∗ ⊕ y) → (x∗ ⊕ y)

= (x∗ ⊕ y)∗ ⊕ (x∗ ⊕ y)
= 1.

Hence (L,≤,∧,∨,¯,→, 0, 1) is an MV-algebra. ¤

We can obtain the following corollary from Theorem 3.3.

Corollary 3.4. Let ([0, 1],⊗) be a t-norm and ([0, 1],]) a t-conorm
which satisfies the following conditions:

(1) x∗∗ = x, and 1∗ = 0.
(2) (x ] y)∗ = x∗ ⊗ y∗.
(3) x ] x∗ = 1.
(4) x ] 0 = x.
(5) x⊗ (x∗ ] y) = y ⊗ (y∗ ] x).
(6) x ] [y ⊗ (y∗ ] z)] = (x ] y)⊗ [(x∗ ⊗ y∗) ] (x⊗ z)].
Then ([0, 1],≤,∧,∨,⊗,→, 0, 1) is an MV-algebra.
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