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SOME PROPERTIES OF MV-ALGEBRAS

JUNG M1 Ko AND YONG CHAN KiMm

ABSTRACT. In this paper, we obtain an algebraic structure which
is equivalent to an MV-algebra. Moreover, we show that t-norm
and t-conorm can be obtained from MV-algebras.

1. Introduction

Ward and Dilworth [9] introduced residuated lattices as the founda-
tion of the algebraic structures of fuzzy logics. Hajeck [1] introduced
a BL-algebra which is a general tool of a fuzzy logic. Recently, Hohle
[2,3] extended the fuzzy set f : X — L where L is an MV-algebra in
stead of an unit interval I or a lattice L.

In this paper, we obtain an algebraic structure which is equivalent
to an MV-algebra. Moreover, we show that t-norm and t-conorm can
be obtained from MV-algebras.

2. Preliminaries

DEFINITION 2.1 ([3,8]). A lattice (L, <,A,V,®,—,0,1) is called a
residuated lattice if it satisfies the following conditions: for each x,y, z €
L

(R1) (L,®,1) is a commutative monoid,
(R2) if x <y, then z® z <y ® z ( ® is an isotone operation),
(R3) (Galois correspondence): (z ®y) < z iff x < (y — z).

In a residuated lattice L, z* = (x — 0) is called complement of
x € L.
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DEFINITION 2.2 ([3,8]). A residuated lattice (L, <,A,V,®,—,0,1)
is called a BL-algebra if it satisfies the following conditions: for each
x,y € L,

Bl zAy=20(z—y),

B2) zvy=I[z—y) =ylA[ly—z)— 2],

(B3) (x — y) V (y — o) = L.

A BL-algebra L is called an MV-algebra if x = x** for each x € L.

LEMMA 2.3 ([3,8]). Let L be an MV-algebra. For x,y,z € L, we
have the following properties:

DEFINITION 2.4 ([10]). A binary operation ® : [0,1] x [0,1] —
[0,1] is called a t-norm if it satisfies the following conditions: for each
r,y,z € L,

1)

(2) w®(y®2) =(r®y) ®z,

(3)

(4) if x <y, x®z§y®z.

We define the t-conorm as a dual sense of t-norm.

DEFINITION 2.5 ([10]). A binary operation & : [0,1] x [0, 1] — [0, 1]
is called a t-conorm if it satisfies the following conditions: for each
x,y,z € L,

() zyy=ywaz,

(2) zW (yWz) = (zWy) Wz,

(3) zwW0 = x,

Q) ifr<y,zwWz<ydz.
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3. Some properties of MV-algebras

THEOREM 3.1. Let (L,<,A,V,®,—,0,1) be an MV-algebra. De-
fine x ®y = x* — y. For each x,y,z € L, we have the following

properties.
(1) 2** =z, 1* = 0.

)
)xdy=ydr,xOy=y0Ox.
2B (yYd2)=dy) Pz, 20Yo0z2)=(r0y) O 2.
Jxdaz*r=1, 0z =0.
)xd0=z,201==x.

)20 (@Y =yO [y @x), e (2" 0y) =y (Y O )
)z@ YO (Y @2 =(20y) 0c"0y") @ (zd2))
yify<z, thenx®y<z® z.

Proof. (1) Since 1 — 0 =0 from Lemma 2.3(1), 1* = 0.

(2) Put z = 0 from Lemma 2.3(6). Then (z0y)* =z — y* = 2*®y*.
Furthermore, (z ® y)* = (z* — y)* = 2* © y* from Lemma 2.3(7).

(3-4) Since (L, ®) is a commutative monoid, that is, 2Oy = y®z and
zO(y©2) = (zOY)Oz, by (2), 10y = y©z and & (ydz) = (rOY) D2,

(5) By (B1),0 =2A0 =20 (x — 0) = zOz*. It implies r ™ = 1.

(6) Put y =1 from Lemma 2.3(7). Then 201 = (x — 1*)* = 2™ =
x. Moreover, by (2), c® 0 = z.

(7) By (Bl), z0(z"®y) = 20(z — y) = xAy = yAz =yO(y" da).
By (2), trivially, z ® (z* ©y) =y @ (y* © x).

(8) If y < z, by Lemma 2.3(8), y* > z*. By (R2), z* 0y* > z*© z*.
By Lemma 2.3(7-8), (z* — y)* > (z* — 2)* implies 2* — y < z* — 2.
Since y A z < y, z, we have

et = (yAz) < (@8 —y) A" — 2).
Since (z* — y) A (z* — z) < (z* — y), (z* — z), by (R3), 2* O ((z* —
YN (x* — 2)) <y,z. Then 2" © ((z* -y AN(z* = 2)) <yAz It
implies (z* — y) A (z* — 2) < 2* — (y A 2). So,

(" =y A (2" = 2)=2" = (yAz)

Thus,
(YN (x®2)=2d (YA 2).
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Since z Ay =z ® (z — y) from (B1), we obtain
r@yO Y o) =y or"0y") o (o 2)
(9) Let y < z. By (2) and (8) ,
r@y=c®(YANz)=(@oy Ao 2).
Hence, x oy < x & 2. O

We can obtain the following corollary from Theorem 3.1.

COROLLARY 3.2. If([0,1], <, A, V,®,—,0,1) is an MV-algebra, then
([0,1],®) is a t-norm and ([0, 1], ®) is a t-conorm.

THEOREM 3.3. Let (L,®,®,",0,1) be an algebraic structure which
satisfies (1)-(8) in Theorem 3.1. Define

r<y iff x*dy=1
r—oy=z"dy
Then (L, <,A\,V,®,—,0,1) is an MV-algebra.

Proof. (1) (L, <) is a partially ordered set.

(reflexive) Since z* @z =1, z < z.

(transitive) If < y and y < z, then 2*®y = 1 and y* @z = 1. Since
0<1,1=0"®1=1@1. It implies (z*Dy)d (y* B z)=2" Dz =1.
Thus z < z.

(anti-symmetric) If < y and y < x, then x* @y = 1 and y* dx = 1.
By Theorem 3.1(7), we have

r=z0l=20@" @y =yo Ky dr)=yol=y.

(2) We will show that x Ay =2 © (z* @ y).

Since [z @ (z*@y)|* Br =" @ (zOy")]|Gr = (2" Bx)B(xOy*)] =
1® (x©y*) =1 because 0 < (x ®y*), we have £ ® (z* ®y) < x. Since
oy ex) dy=y e(yos)edy=1 wehaveyo (y* dz) <y.
If z<zand z <y, then z* @z =1 and 2* ®y = 1. It implies, by
Theorem 3.1(8),

ZFohoyor)=0r"0yol(z0y")® (2" S )
=l100el)=101=1.
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Thus, 2 <y 0O (y* @x) =20 (z* Dy). Hence, ANy =20 (z* d y).
Since 2 ® (z* G y) =y © (y* G x), we have t Ay =y A 2.
B)ex<yiff l=a*@yiff l =y z* iff y* < z*.

(4) By (2) and (3), since z* A y* < z*,y* implies z,y < (z* A y*)*.

Thus, x Vy < (" Ay*)*. If 2,y < 2z, then z* < x* A y* implies

(x* ANy*)* < z. Hence

zVy=(@* ANy ) '=zd "0y =y®d Y o0x)=yVz.

Therefore (L, <,A,V,*) is a lattice.
(5) From (2) and Theorem 3.1(8) ,

T®(YANz)=z@[yO (Y @ 2)
=2y ol@" o0y") o (re2)
= (DY) A (r@2).

Let y < z. Then
chy=a®(yNz)=(xdy) A(z®2).

Hence z by <z & 2.
(R2) Let < y. From (2),

(xO2) =" ®z" >y @z =(yo2)".

Hence x © 2 <y ® z.
(6) We show that r Oy <z Ay<zVy<zdy.
SincexOy<zel<zandxey <10y <y, wehave x Oy < xAy.
Sincex=200<rdyandy=00y<zdy,wehavexVy <xdDy.
(R3) (Galois correspondence): (x @ y) < z iff z < (y — 2).
Let (z ®y) < z. Then

l=(z0y) &z
= (" DY) B2
=" & (y" & 2)
=P (y — 2).
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Thus, z < (y — 2).
Let z <y — z. Then
rTOYy=yox
<yo(y—=2)
=y @z
=yANz<z.
(B1) It is trivial from (2).
(7) Since z* @y = y @ x*, we have x — y = y* — z*.
(B2)
rVy=(z"Ay")"
=z® (" Oy)
=@ —=y") —a (by (7))
=(y—z)—a
Since (y »2) 2z =2® (*0y)=y® (y* ©x) = (x — y) — y from
Theorem 3.1(7), we have
zVy=|z—y) =y ry—2z)—a

(B3) We will show that (x — y) V (y — z) = 1.
() —(y—2)=2"0 (@ ©2)=y" @@ D2) =y — (r—2)
(b) (zVy) mx = (zVy) dxr = ("Dx)\(y"Bx) =y"Gr=y —x
frog (5). Similarly, (zVy) —y=2 —y.
(=)= (@—y) =[=Vy —a] = [(zVy) =yl (by (b))
=[2" = (e Vy)l =y = (zVy) by (7))
=y = A" = (@Vvy)]— (xVy) by (a))
=y = [2"V(zVy)]
="V (@Vy)T —y
=[zA(@Vy)l—y
=z —y

=z Dy,
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we have

[
=@ ®y) — (=" DY)
=@ 0y o @@ dy)

Hence (L, <,A,V,®,—,0,1) is an MV-algebra. O

We can obtain the following corollary from Theorem 3.3.

COROLLARY 3.4. Let (]0,1],®) be a t-norm and ([0, 1], W) a t-conorm

which satisfies the following conditions:

10.

(1) 2** =z, and 1* = 0.
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