SOME PROPERTIES OF MV-ALGEBRAS

Jung Mi Ko and Yong Chan Kim

Abstract

In this paper, we obtain an algebraic structure which is equivalent to an MV-algebra. Moreover, we show that t-norm and t -conorm can be obtained from MV-algebras.

1. Introduction

Ward and Dilworth [9] introduced residuated lattices as the foundation of the algebraic structures of fuzzy logics. Hájeck [1] introduced a BL-algebra which is a general tool of a fuzzy logic. Recently, Höhle $[2,3]$ extended the fuzzy set $f: X \rightarrow L$ where L is an MV-algebra in stead of an unit interval I or a lattice L.

In this paper, we obtain an algebraic structure which is equivalent to an MV-algebra. Moreover, we show that t-norm and t-conorm can be obtained from MV-algebras.

2. Preliminaries

Definition $2.1([3,8])$. A lattice $(L, \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ is called a residuated lattice if it satisfies the following conditions: for each $x, y, z \in$ L,
(R1) $(L, \odot, 1)$ is a commutative monoid,
(R2) if $x \leq y$, then $x \odot z \leq y \odot z(\odot$ is an isotone operation),
(R3) (Galois correspondence): $(x \odot y) \leq z$ iff $x \leq(y \rightarrow z)$.
In a residuated lattice $L, x^{*}=(x \rightarrow 0)$ is called complement of $x \in L$.

[^0]Definition $2.2([3,8])$. A residuated lattice $(L, \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ is called a BL-algebra if it satisfies the following conditions: for each $x, y \in L$,
(B1) $x \wedge y=x \odot(x \rightarrow y)$,
(B2) $x \vee y=[(x \rightarrow y) \rightarrow y] \wedge[(y \rightarrow x) \rightarrow x]$,
(B3) $(x \rightarrow y) \vee(y \rightarrow x)=1$.
A BL-algebra L is called an $M V$-algebra if $x=x^{* *}$ for each $x \in L$.
Lemma 2.3 ([3,8]). Let L be an $M V$-algebra. For $x, y, z \in L$, we have the following properties:
(1) $x=(1 \rightarrow x)$,
(2) $1=(x \rightarrow x)$,
(3) $x \leq y$ iff $1=(x \rightarrow y)$,
(4) $x=y$ iff $1=(x \rightarrow y)=(y \rightarrow x)$,
(5) if $y \leq z,(x \rightarrow y) \leq(x \rightarrow z)$,
(6) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)$,
(7) $x \odot y=\left(x \rightarrow y^{*}\right)^{*}$,
(8) $x \leq y$ iff $x^{*} \geq y^{*}$,
(9) $x \rightarrow y=y^{*} \rightarrow x^{*}$.

Definition 2.4 ([10]). A binary operation $\otimes:[0,1] \times[0,1] \rightarrow$ $[0,1]$ is called a t-norm if it satisfies the following conditions: for each $x, y, z \in L$,
(1) $x \otimes y=y \otimes x$,
(2) $x \otimes(y \otimes z)=(x \otimes y) \otimes z$,
(3) $x \otimes 1=x$,
(4) if $x \leq y, x \otimes z \leq y \otimes z$.

We define the t-conorm as a dual sense of t-norm.
Definition 2.5 ([10]). A binary operation $\uplus:[0,1] \times[0,1] \rightarrow[0,1]$ is called a t-conorm if it satisfies the following conditions: for each $x, y, z \in L$,
(1) $x \uplus y=y \uplus x$,
(2) $x \uplus(y \uplus z)=(x \uplus y) \uplus z$,
(3) $x \uplus 0=x$,
(4) if $x \leq y, x \uplus z \leq y \uplus z$.

3. Some properties of MV-algebras

Theorem 3.1. Let $(L, \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ be an $M V$-algebra. Define $x \oplus y=x^{*} \rightarrow y$. For each $x, y, z \in L$, we have the following properties.
(1) $x^{* *}=x, 1^{*}=0$.
(2) $(x \oplus y)^{*}=x^{*} \odot y^{*},(x \odot y)^{*}=x^{*} \oplus y^{*}$.
(3) $x \oplus y=y \oplus x, x \odot y=y \odot x$.
(4) $x \oplus(y \oplus z)=(x \oplus y) \oplus z, x \odot(y \odot z)=(x \odot y) \odot z$.
(5) $x \oplus x^{*}=1, x \odot x^{*}=0$.
(6) $x \oplus 0=x, x \odot 1=x$.
(7) $x \odot\left(x^{*} \oplus y\right)=y \odot\left(y^{*} \oplus x\right), x \oplus\left(x^{*} \odot y\right)=y \oplus\left(y^{*} \odot x\right)$.
(8) $x \oplus\left[y \odot\left(y^{*} \oplus z\right)\right]=(x \oplus y) \odot\left[\left(x^{*} \odot y^{*}\right) \oplus(x \oplus z)\right]$.
(9) if $y \leq z$, then $x \oplus y \leq x \oplus z$.

Proof. (1) Since $1 \rightarrow 0=0$ from Lemma 2.3(1), $1^{*}=0$.
(2) Put $z=0$ from Lemma 2.3(6). Then $(x \odot y)^{*}=x \rightarrow y^{*}=x^{*} \oplus y^{*}$. Furthermore, $(x \oplus y)^{*}=\left(x^{*} \rightarrow y\right)^{*}=x^{*} \odot y^{*}$ from Lemma 2.3(7).
(3-4) Since (L, \odot) is a commutative monoid, that is, $x \odot y=y \odot x$ and $x \odot(y \odot z)=(x \odot y) \odot z$, by (2), $x \oplus y=y \oplus x$ and $x \oplus(y \oplus z)=(x \oplus y) \oplus z$.
(5) By (B1), $0=x \wedge 0=x \odot(x \rightarrow 0)=x \odot x^{*}$. It implies $x \oplus x^{*}=1$.
(6) Put $y=1$ from Lemma 2.3(7). Then $x \odot 1=\left(x \rightarrow 1^{*}\right)^{*}=x^{* *}=$ x. Moreover, by (2), $x \oplus 0=x$.
(7) By (B1), $x \odot\left(x^{*} \oplus y\right)=x \odot(x \rightarrow y)=x \wedge y=y \wedge x=y \odot\left(y^{*} \oplus x\right)$. By (2), trivially, $x \oplus\left(x^{*} \odot y\right)=y \oplus\left(y^{*} \odot x\right)$.
(8) If $y \leq z$, by Lemma 2.3(8), $y^{*} \geq z^{*}$. By (R2), $x^{*} \odot y^{*} \geq x^{*} \odot z^{*}$. By Lemma 2.3(7-8), $\left(x^{*} \rightarrow y\right)^{*} \geq\left(x^{*} \rightarrow z\right)^{*}$ implies $x^{*} \rightarrow y \leq x^{*} \rightarrow z$. Since $y \wedge z \leq y, z$, we have

$$
x^{*} \rightarrow(y \wedge z) \leq\left(x^{*} \rightarrow y\right) \wedge\left(x^{*} \rightarrow z\right) .
$$

Since $\left(x^{*} \rightarrow y\right) \wedge\left(x^{*} \rightarrow z\right) \leq\left(x^{*} \rightarrow y\right),\left(x^{*} \rightarrow z\right)$, by $(\mathrm{R} 3), x^{*} \odot\left(\left(x^{*} \rightarrow\right.\right.$ $\left.y) \wedge\left(x^{*} \rightarrow z\right)\right) \leq y, z$. Then $x^{*} \odot\left(\left(x^{*} \rightarrow y\right) \wedge\left(x^{*} \rightarrow z\right)\right) \leq y \wedge z$. It implies $\left(x^{*} \rightarrow y\right) \wedge\left(x^{*} \rightarrow z\right) \leq x^{*} \rightarrow(y \wedge z)$. So,

$$
\left(x^{*} \rightarrow y\right) \wedge\left(x^{*} \rightarrow z\right)=x^{*} \rightarrow(y \wedge z) .
$$

Thus,

$$
(x \oplus y) \wedge(x \oplus z)=x \oplus(y \wedge z)
$$

Since $x \wedge y=x \odot(x \rightarrow y)$ from (B1), we obtain

$$
x \oplus\left[y \odot\left(y^{*} \oplus z\right)\right]=(x \oplus y) \odot\left[\left(x^{*} \odot y^{*}\right) \oplus(x \oplus z)\right] .
$$

(9) Let $y \leq z$. By (2) and (8),

$$
x \oplus y=x \oplus(y \wedge z)=(x \oplus y) \wedge(x \oplus z)
$$

Hence, $x \oplus y \leq x \oplus z$.
We can obtain the following corollary from Theorem 3.1.
Corollary 3.2. If $([0,1], \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ is an $M V$-algebra, then $([0,1], \odot)$ is a t-norm and $([0,1], \oplus)$ is a t-conorm.

Theorem 3.3. Let $\left(L, \odot, \oplus,{ }^{*}, 0,1\right)$ be an algebraic structure which satisfies (1)-(8) in Theorem 3.1. Define

$$
\begin{aligned}
& x \leq y \quad \text { iff } x^{*} \oplus y=1 \\
& x \rightarrow y=x^{*} \oplus y
\end{aligned}
$$

Then $(L, \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ is an $M V$-algebra.
Proof. (1) (L, \leq) is a partially ordered set.
(reflexive) Since $x^{*} \oplus x=1, x \leq x$.
(transitive) If $x \leq y$ and $y \leq z$, then $x^{*} \oplus y=1$ and $y^{*} \oplus z=1$. Since $0 \leq 1,1=0^{*} \oplus 1=1 \oplus 1$. It implies $\left(x^{*} \oplus y\right) \oplus\left(y^{*} \oplus z\right)=x^{*} \oplus z=1$. Thus $x \leq z$.
(anti-symmetric) If $x \leq y$ and $y \leq x$, then $x^{*} \oplus y=1$ and $y^{*} \oplus x=1$.
By Theorem 3.1(7), we have

$$
x=x \odot 1=x \odot\left(x^{*} \oplus y\right)=y \odot\left(y^{*} \oplus x\right)=y \odot 1=y
$$

(2) We will show that $x \wedge y=x \odot\left(x^{*} \oplus y\right)$.

Since $\left.\left[x \odot\left(x^{*} \oplus y\right)\right]^{*} \oplus x=\left[x^{*} \oplus\left(x \odot y^{*}\right)\right] \oplus x=\left(x^{*} \oplus x\right) \oplus\left(x \odot y^{*}\right)\right]=$ $1 \oplus\left(x \odot y^{*}\right)=1$ because $0 \leq\left(x \odot y^{*}\right)$, we have $x \odot\left(x^{*} \oplus y\right) \leq x$. Since $\left[y \odot\left(y^{*} \oplus x\right)\right]^{*} \oplus y=\left[y^{*} \oplus\left(y \odot x^{*}\right)\right] \oplus y=1$, we have $y \odot\left(y^{*} \oplus x\right) \leq y$. If $z \leq x$ and $z \leq y$, then $z^{*} \oplus x=1$ and $z^{*} \oplus y=1$. It implies, by Theorem 3.1(8),

$$
\begin{aligned}
z^{*} \oplus\left[y \odot\left(y^{*} \oplus x\right)\right] & =\left(z^{*} \oplus y\right) \odot\left[\left(z \odot y^{*}\right) \oplus\left(z^{*} \oplus x\right)\right] \\
& =1 \odot(0 \oplus 1)=1 \odot 1=1 .
\end{aligned}
$$

Thus, $z \leq y \odot\left(y^{*} \oplus x\right)=x \odot\left(x^{*} \oplus y\right)$. Hence, $x \wedge y=x \odot\left(x^{*} \oplus y\right)$.
Since $x \odot\left(x^{*} \oplus y\right)=y \odot\left(y^{*} \oplus x\right)$, we have $x \wedge y=y \wedge z$.
(3) $x \leq y$ iff $1=x^{*} \oplus y$ iff $1=y \oplus x^{*}$ iff $y^{*} \leq x^{*}$.
(4) By (2) and (3), since $x^{*} \wedge y^{*} \leq x^{*}, y^{*}$ implies $x, y \leq\left(x^{*} \wedge y^{*}\right)^{*}$. Thus, $x \vee y \leq\left(x^{*} \wedge y^{*}\right)^{*}$. If $x, y \leq z$, then $z^{*} \leq x^{*} \wedge y^{*}$ implies $\left(x^{*} \wedge y^{*}\right)^{*} \leq z$. Hence

$$
x \vee y=\left(x^{*} \wedge y^{*}\right)^{*}=x \oplus\left(x^{*} \odot y\right)=y \oplus\left(y^{*} \odot x\right)=y \vee x .
$$

Therefore $\left(L, \leq, \wedge, \vee,{ }^{*}\right)$ is a lattice.
(5) From (2) and Theorem 3.1(8),

$$
\begin{aligned}
x \oplus(y \wedge z) & =x \oplus\left[y \odot\left(y^{*} \oplus z\right)\right] \\
& =(x \oplus y) \odot\left[\left(x^{*} \odot y^{*}\right) \oplus(x \oplus z)\right] \\
& =(x \oplus y) \wedge(x \oplus z) .
\end{aligned}
$$

Let $y \leq z$. Then

$$
x \oplus y=x \oplus(y \wedge z)=(x \oplus y) \wedge(x \oplus z) .
$$

Hence $x \oplus y \leq x \oplus z$.
(R2) Let $x \leq y$. From (2),

$$
(x \odot z)^{*}=x^{*} \oplus z^{*} \geq y^{*} \oplus z^{*}=(y \odot z)^{*} .
$$

Hence $x \odot z \leq y \odot z$.
(6) We show that $x \odot y \leq x \wedge y \leq x \vee y \leq x \oplus y$.

Since $x \odot y \leq x \odot 1 \leq x$ and $x \odot y \leq 1 \odot y \leq y$, we have $x \odot y \leq x \wedge y$. Since $x=x \oplus 0 \leq x \oplus y$ and $y=0 \oplus y \leq x \oplus y$, we have $x \vee y \leq x \oplus y$.
(R3) (Galois correspondence): $(x \odot y) \leq z$ iff $x \leq(y \rightarrow z)$.
Let $(x \odot y) \leq z$. Then

$$
\begin{aligned}
1 & =(x \odot y)^{*} \oplus z \\
& =\left(x^{*} \oplus y^{*}\right) \oplus z \\
& =x^{*} \oplus\left(y^{*} \oplus z\right) \\
& =x^{*} \oplus(y \rightarrow z) .
\end{aligned}
$$

Thus, $x \leq(y \rightarrow z)$.
Let $x \leq y \rightarrow z$. Then

$$
\begin{aligned}
x \odot y & =y \odot x \\
& \leq y \odot(y \rightarrow z) \\
& =y \odot\left(y^{*} \oplus z\right) \\
& =y \wedge z \leq z .
\end{aligned}
$$

(B1) It is trivial from (2).
(7) Since $x^{*} \oplus y=y \oplus x^{*}$, we have $x \rightarrow y=y^{*} \rightarrow x^{*}$.
(B2)

$$
\begin{aligned}
x \vee y & =\left(x^{*} \wedge y^{*}\right)^{*} \\
& =x \oplus\left(x^{*} \odot y\right) \\
& =x^{*} \rightarrow\left(x^{*} \rightarrow y^{*}\right)^{*} \\
& =\left(x^{*} \rightarrow y^{*}\right) \rightarrow x \quad(\text { by }(7)) \\
& =(y \rightarrow x) \rightarrow x .
\end{aligned}
$$

Since $(y \rightarrow x) \rightarrow x=x \oplus\left(x^{*} \odot y\right)=y \oplus\left(y^{*} \odot x\right)=(x \rightarrow y) \rightarrow y$ from Theorem 3.1(7), we have

$$
x \vee y=[(x \rightarrow y) \rightarrow y] \wedge[(y \rightarrow x) \rightarrow x] .
$$

(B3) We will show that $(x \rightarrow y) \vee(y \rightarrow x)=1$.
(a) $x \rightarrow(y \rightarrow z)=x^{*} \oplus\left(y^{*} \oplus z\right)=y^{*} \oplus\left(x^{*} \oplus z\right)=y \rightarrow(x \rightarrow z)$.
(b) $(x \vee y) \rightarrow x=(x \vee y)^{*} \oplus x=\left(x^{*} \oplus x\right) \wedge\left(y^{*} \oplus x\right)=y^{*} \oplus x=y \rightarrow x$
from (5). Similarly, $(x \vee y) \rightarrow y=x \rightarrow y$.
Since

$$
\begin{aligned}
(y \rightarrow x) \rightarrow(x \rightarrow y) & =[(x \vee y) \rightarrow x] \rightarrow[(x \vee y) \rightarrow y](\text { by }(\mathrm{b})) \\
& =\left[x^{*} \rightarrow(x \vee y)^{*}\right] \rightarrow\left[y^{*} \rightarrow(x \vee y)^{*}\right](\mathrm{by}(7)) \\
& =y^{*} \rightarrow\left\{\left[x^{*} \rightarrow(x \vee y)^{*}\right] \rightarrow(x \vee y)^{*}\right\}(\mathrm{by}(\mathrm{a})) \\
& =y^{*} \rightarrow\left[x^{*} \vee(x \vee y)^{*}\right] \\
& =\left[x^{*} \vee(x \vee y)^{*}\right]^{*} \rightarrow y \\
& =[x \wedge(x \vee y)] \rightarrow y \\
& =x \rightarrow y \\
& =x^{*} \oplus y,
\end{aligned}
$$

we have

$$
\begin{aligned}
(x \rightarrow y) \vee(y \rightarrow x) & =[(y \rightarrow x) \rightarrow(x \rightarrow y)] \rightarrow(x \rightarrow y) \\
& =\left(x^{*} \oplus y\right) \rightarrow\left(x^{*} \oplus y\right) \\
& =\left(x^{*} \oplus y\right)^{*} \oplus\left(x^{*} \oplus y\right) \\
& =1 .
\end{aligned}
$$

Hence $(L, \leq, \wedge, \vee, \odot, \rightarrow, 0,1)$ is an MV-algebra.
We can obtain the following corollary from Theorem 3.3.
Corollary 3.4. Let $([0,1], \otimes)$ be a t-norm and $([0,1], \uplus)$ a t-conorm which satisfies the following conditions:
(1) $x^{* *}=x$, and $1^{*}=0$.
(2) $(x \uplus y)^{*}=x^{*} \otimes y^{*}$.
(3) $x \uplus x^{*}=1$.
(4) $x \uplus 0=x$.
(5) $x \otimes\left(x^{*} \uplus y\right)=y \otimes\left(y^{*} \uplus x\right)$.
(6) $x \uplus\left[y \otimes\left(y^{*} \uplus z\right)\right]=(x \uplus y) \otimes\left[\left(x^{*} \otimes y^{*}\right) \uplus(x \otimes z)\right]$.

Then $([0,1], \leq, \wedge, \vee, \otimes, \rightarrow, 0,1)$ is an $M V$-algebra.

References

1. P.Hájek, Metamathematices of fuzzy logic, Kluwer Academic Publishers, Dordrecht (1998).
2. U .Höhle, On the fundamentals of fuzzy set theory, J.Math.Anal.Appl. 201 (1996), 786-826.
3. U .Höhle and S.E. Rodabaugh, Mathematics of fuzzy sets, Kluwer Academic Publishers (1999).
4. J.M. Ko and Y.C. Kim, Some properties of BL-algebras, J. Korea Fuzzy Logic and Intelligent Systems 11(3) (2001), 286-291.
5. M. Mizumoto, Pictorial representations of fuzzy connectives I, Fuzzy sets and Systems 31 (1989), 217-245.
6. H.T. Nguyen and E.A. Walker, Fuzzy logic, Chapman and Hall (2000).
7. E. Turunen, Algebraic structures in fuzzy logic, Fuzzy sets and Systems 52 (1992), 181-188.
8. E. Turunen, Mathematics behind fuzzy logic, A Springer-Verlag Co., 1999.
9. M.Ward and R.P. Dilworth, Residuated lattices, Transactions of American Mathematical Society 45 (1939), 335-354.
10. S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy sets and Systems 11 (1983), 115-134.
11. R.R. Yager, On a general class of fuzzy connectives, Fuzzy sets and Systems 4 (1980), 235-242.

Department of Mathematics
Kangnung National University
Kangnung, Kangwondo, 210-702

[^0]: Received January 21, 2002.
 2000 Mathematics Subject Classification: 06D35, 03B52, 94D05.
 Key words and phrases: MV-algebras, t-norms, t-conorms.

