DOMAIN OF EXISTENCE OF A PERTURBED CAUCHY PROBLEM OF ODE

June Gi Kim

Abstract. In this paper we consider the Cauchy problem

$$
d x(t) / d t=x(t)^{n}, x(0)=x_{0}
$$

The domain of existence is lower semicontinuous for perturbations of the data. We present a simple formula for the time of existence which is exact when there exists no perturbations.

1. Introduction

The simple example of the Cauchy problem

$$
\begin{equation*}
\frac{d x(t)}{d t}=x(t)^{n}, x(t)=x_{0}>0, n \geq 2 \tag{1.1}
\end{equation*}
$$

shows that one cannot expect in general to have global solutions of a nonlinear differential equations. In fact, the solution of (1.1) is

$$
\begin{equation*}
x(t)=\frac{x_{0}}{\sqrt[n-1]{1-(n-1) x_{0}^{n-1} t}} \tag{1.2}
\end{equation*}
$$

so a solution exists in the interval where $(n-1) x_{0}^{n-1} t<1$ but it becomes unbounded as $(n-1) x_{0}^{n-1} t \nearrow 1$.

2. Perturbation of the Cauchy problem

Lemma 2.1[2]. Let $f(t, x)$ and $\frac{\partial f}{\partial x}(t, x)$ be continuous in an open set $\Omega \subset \mathbb{R}^{n+1}$. Assume that the Cauchy problem

$$
\left\{\begin{align*}
\frac{d x(t)}{d t} & =f(t, x(t)) \tag{2.1}\\
x\left(t_{0}\right) & =x_{0}
\end{align*}\right.
$$

Received January 30, 2002.
2000 Mathematics Subject Classification: 34A12.
Key words and phrases: Cauchy problem, perturbation.
has a solution with graph in Ω for $t_{1} \leq t \leq t_{2}$ where $t_{1}<t_{0}<t_{2}$. Then there is a neighborhood U of x_{0} in \mathbb{R}^{n} such that for every $y \in U$ the Cauchy problem (2.1) with x_{0} replaced by y has a unique solution $x(t, y)$ for $t_{1} \leq t \leq t_{2}$. The solution is in $\mathcal{C}^{1}\left(\left[t_{1}, t_{2}\right] \times U\right)$.

Take any function g such that $g(t, x)$ and $\frac{\partial g}{\partial x}(t, x)$ are continuous in the open set $\Omega \subset \mathbb{R}^{1+n}$ of the above theorem.

Corollary 2.2. Under the conditions of Lemma 2.1 the Cauchy problem

$$
\left\{\begin{align*}
\frac{d x(t)}{d t} & =f(t, x(t))+\epsilon g(t, x(t)) \tag{2.2}\\
x\left(t_{0}\right) & =y
\end{align*}\right.
$$

has a unique solution $x(t, \epsilon, y)$ for $t_{1} \leq t \leq t_{2}$ where $t_{1}<t_{0}<t_{2}$. The solution is in $\mathcal{C}^{1}\left(\left[t_{1}, t_{2}\right] \times U \times I\right)$.

Proof. Apply the Lemma 2.1 to the following Cauchy problem

$$
\left\{\begin{aligned}
\frac{d x(t)}{d t} & =f(t, x(t))+\eta(t) g(t, x(t)) \\
\frac{d \epsilon(t)}{d t} & =0 \\
x\left(t_{0}\right) & =y \\
\eta\left(t_{0}\right) & =\epsilon
\end{aligned}\right.
$$

The existence and regularity of solution $(x(t), \eta(t))$ of this equation is guaranteed by the theorem. Then $x(t)$ is a solution of the Cauchy problem (2.2).

Lemma 2.3. Let $x(t)$ be a solution in $[0, T]$ of the ordinary differential equation

$$
\left\{\begin{align*}
\frac{d x(t)}{d t} & =a_{0}(t) x(t)^{n}+a_{1}(t) x(t)+a_{2}(t), \tag{2.3}\\
x(0) & =x_{0}
\end{align*}\right.
$$

with all $a_{j}, j=0,1,2$, are continuous and $a_{0} \geq 0$. Let

$$
\begin{equation*}
K=\int_{0}^{T}\left|a_{2}(s)\right| \exp \left(-\int_{0}^{s} a_{1}(u) d u\right) d s \tag{2.4}
\end{equation*}
$$

If $x(0)>K$ it follows that

$$
K<\frac{1}{n-1}(x(0)-K)^{1-n} .
$$

Proof. Set $x(t)=X(t) \exp \left(\int_{0}^{t} a_{1}(s) d s\right)$. Then

$$
\begin{aligned}
\frac{d x}{d t}= & \frac{d X}{d t} \exp \left(\int_{0}^{t} a_{1}(s) d s\right)+a_{1}(t) X(t) \exp \left(\int_{0}^{t} a_{1}(s) d s\right) \\
= & a_{0}(t) X(t)^{n} \exp \left(n \int_{0}^{t} a_{1}(s) d s\right) \\
& +a_{1}(t) X(t) \exp \left(\int_{0}^{t} a_{1}(s) d s\right)+a_{2}(t)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\frac{d X}{d t}= & a_{0}(t) \exp \left((n-1) \int_{0}^{t} a_{1}(s) d s\right) X(t)^{n} \\
& \quad+a_{2}(t) \exp \left(-\int_{0}^{t} a_{1}(s) d s\right) \\
= & \tilde{a}_{0}(t) X(t)^{n}+\tilde{a}_{2}(t)
\end{aligned}
$$

where $\tilde{a}_{0}(t)=a_{0}(t) \exp \left((n-1) \int_{0}^{t} a_{1}(s) d s\right)$ and $\tilde{a}_{2}(t)=a_{2}(t) \exp (-$ $\left.\int_{0}^{t} a_{1}(s) d s\right)$. Let's introduce

$$
X_{2}(t)=\int_{0}^{t}\left|\tilde{a}_{2}(s)\right| d s
$$

Then $X_{2}(0)=0, X_{2}(T)=K$. Let X_{1} be the solution of the Cauchy problem

$$
\left\{\begin{aligned}
\frac{d X_{1}(t)}{d t} & =\tilde{a}_{0}(t)\left(X_{1}(t)-K\right)^{n}, \\
X_{1}(0) & =x(0) .
\end{aligned}\right.
$$

Upon integrating this equation we obtain

$$
\left(X_{1}(t)-K\right)^{1-n}-(x(0)-K)^{1-n}=(1-n) \int_{0}^{t} \tilde{a}_{0}(s) d s
$$

Since $\tilde{a}_{0} \geq 0, X_{1}$ is increasing if X_{1} exists in $[0, T]$ and

$$
\begin{aligned}
\int_{0}^{T} \tilde{a}_{0}(s) d s & =\frac{1}{n-1}(x(0)-K)^{1-n}-\frac{1}{n-1}\left(X_{1}(T)-K\right)^{1-n} \\
& <\frac{1}{n-1}(x(0)-K)^{1-n}
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{d\left(X_{1}(t)-X_{2}(t)\right)}{d t} & =\tilde{a}_{0}(t)\left(X_{1}(t)-K\right)^{n}-\left|\tilde{a}_{2}(t)\right| \\
& \leq \tilde{a}_{0}(t)\left(X_{1}(t)-X_{2}(t)\right)^{n}+\tilde{a}_{2}(t)
\end{aligned}
$$

Observe that $X_{1}(t)-X_{2}(t)=x(t)$ when $t=0$. Therefore $X_{1}(t)-$ $X_{2}(t) \leq x(t)$ in $[0, t]$ as long as $X_{1}(t)$ exists. Thus X_{1} cannot become infinite in $[0, T]$, which proves that

$$
\begin{aligned}
\int_{0}^{T}\left|a_{0}(t)\right| d t \cdot \exp & \left((1-n) \int_{0}^{T}\left|a_{1}(t)\right| d t\right) \\
& \leq \int_{0}^{T}\left|a_{0}(t)\right| \cdot \exp \left((1-n) \int_{0}^{t}\left|a_{1}(u)\right| d u\right) d t \\
& <\frac{1}{n-1}(x(0)-K)^{1-n}
\end{aligned}
$$

Theorem 2.4. Let $a_{j}, j=0,1,2$, be continuous functions in $[0, T]$, set $a_{0}^{+}=\max \left(a_{0}, 0\right)$, and define K by (2.4). If $x_{0} \geq 0$ and

$$
\begin{align*}
& \int_{0}^{T} a_{0}^{+}(t) d t \cdot \exp \left((n-1) \int_{0}^{T}\left|a_{1}(t)\right| d t\right)<\left(x_{0}+K\right)^{1-n} \\
& \int_{0}^{T}\left|a_{0}(t)\right| d t \cdot \exp \left((n-1) \int_{0}^{T}\left|a_{1}(t)\right| d t\right) \tag{2.5}
\end{align*}
$$

then

$$
\left\{\begin{aligned}
\frac{d x(t)}{d t} & =a_{0}(t) x(t)^{n}+a_{1}(t) x(t)+a_{2}(t), \\
x(0) & =x_{0}
\end{aligned}\right.
$$

has a solution in $[0, T]$ with $x(0)=x_{0}$, and

$$
x(T)^{1-n} \geq\left(x_{0}+K\right)^{1-n}+(1-n) \int_{0}^{T} a_{0}^{+}(t) d t \cdot \exp \left((n-1) \int_{0}^{T}\left|a_{1}(t)\right| d t\right)
$$

if $x(T) \geq 0$.

Proof. We set

$$
x(t)=X(t) \exp \left(\int_{0}^{t} a_{1}(s) d s\right)
$$

Let $X_{2}(t)$ again be the integral of $\left|\tilde{a}_{2}\right|$ with $X_{2}(0)=0$. Thus $X_{2}(T)=$ K. Now let X_{1} be the solution of

$$
\frac{d X_{1}(t)}{d t}=\tilde{a}_{0}^{+}(t)\left(X_{1}(t)+K\right)^{n}, \quad X_{1}(0)=x_{0}
$$

which is

$$
\left(X_{1}(t)+K\right)^{1-n}=\left(x_{0}+K\right)^{1-n}+(1-n) \int_{0}^{t} \tilde{a}_{0}^{+}(s) d s
$$

Since

$$
\begin{aligned}
\int_{0}^{T} a_{0}^{+}(t) \cdot \exp & \left((n-1) \int_{0}^{t} a_{1}(s) \mid d s\right) d t \\
& \leq \int_{0}^{T} a_{0}^{+}(t) d t \cdot \exp \left((n-1) \int_{0}^{T}\left|a_{1}(t)\right| d t\right)
\end{aligned}
$$

we obtain by (2.5) an increasing function X_{1} existing in $[0, T]$. Since

$$
\begin{aligned}
\frac{d\left(X_{1}(t)+X_{2}(t)\right)}{d t} & =\tilde{a}_{0}^{+}(t)\left(X_{1}(t)+K\right)^{n}+\left|\tilde{a}_{2}(t)\right| \\
& \geq \tilde{a}_{0}(t)\left(X_{1}(t)+X_{2}(t)\right)^{n}+\tilde{a}_{2}(t)
\end{aligned}
$$

and $X_{1}+X_{2}=X$ at $t=0$, we have $X \leq X_{1}+X_{2} \leq X_{1}+K$ in $[0, T]$ if X exists. Hence

$$
\begin{aligned}
X(T)^{1-n} \geq & \left(X_{1}(T)+K\right)^{1-n} \\
= & \left(x_{0}+K\right)^{1-n}+(1-n) \int_{0}^{T} \tilde{a}_{0}^{+}(s) d s \\
\geq & \left(x_{0}+K\right)^{1-n} \\
& \quad+(1-n) \int_{0}^{T} a_{0}^{+}(t) d t \cdot \exp \left((n-1) \int_{0}^{T}\left|a_{1}(t)\right| d t\right)
\end{aligned}
$$

Since $x(T)^{1-n}=X(T)^{1-n} \exp \left((1-n) \int_{0}^{T} a_{1}(t) d t\right)$ we have

$$
\begin{aligned}
x(T)^{1-n} \geq & \left(x_{0}+K\right)^{1-n} \\
& +(1-n) \int_{0}^{T} a_{0}^{+}(t) \exp \left((n-1) \int_{0}^{T}\left|a_{1}(t)\right| d t\right) .
\end{aligned}
$$

When $a_{0} \equiv 1, a_{1} \equiv 0, a_{2} \equiv 0,(2.6)$ reduces to

$$
T \leq \frac{x_{0}^{1-n}}{n-1}
$$

This agrees with (1.2).

References

[1] E. A. Coddington, N. Levisson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1955.
[2] E. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Springer Verlag, Berlin, Heidelberg, 1997.
[3] F. Boese, Stability cirteria for second-order dynamical systems involving several time delays, SIAM Journal of Mathematical Analysis 26 (1997), no. 25, Springer Verlag, Berlin, Heidelberg, 1306-1330.

Department of Mathematics
Kangwon National University
Chunchon, Kangwon 200-701

