Kangweon-Kyungki Math. Jour. 10 (2002), No. 1, pp. 53-58

DOMAIN OF EXISTENCE OF A PERTURBED CAUCHY PROBLEM OF ODE

JUNE GI KIM

ABSTRACT. In this paper we consider the Cauchy problem

$$dx(t)/dt = x(t)^n, \ x(0) = x_0.$$

The domain of existence is lower semicontinuous for perturbations of the data. We present a simple formula for the time of existence which is exact when there exists no perturbations.

1. Introduction

The simple example of the Cauchy problem

(1.1)
$$\frac{dx(t)}{dt} = x(t)^n, x(t) = x_0 > 0, n \ge 2$$

shows that one cannot expect in general to have global solutions of a nonlinear differential equations. In fact, the solution of (1.1) is

(1.2)
$$x(t) = \frac{x_0}{\sqrt[n-1]{1 - (n-1)x_0^{n-1}t}},$$

so a solution exists in the interval where $(n-1)x_0^{n-1}t < 1$ but it becomes unbounded as $(n-1)x_0^{n-1}t \nearrow 1$.

2. Perturbation of the Cauchy problem

LEMMA 2.1[2]. Let f(t,x) and $\frac{\partial f}{\partial x}(t,x)$ be continuous in an open set $\Omega \subset \mathbb{R}^{n+1}$. Assume that the Cauchy problem

(2.1)
$$\begin{cases} \frac{dx(t)}{dt} = f(t, x(t)), \\ x(t_0) = x_0 \end{cases}$$

Received January 30, 2002.

2000 Mathematics Subject Classification: 34A12.

Key words and phrases: Cauchy problem, perturbation.

June Gi Kim

has a solution with graph in Ω for $t_1 \leq t \leq t_2$ where $t_1 < t_0 < t_2$. Then there is a neighborhood U of x_0 in \mathbb{R}^n such that for every $y \in U$ the Cauchy problem (2.1) with x_0 replaced by y has a unique solution x(t,y) for $t_1 \leq t \leq t_2$. The solution is in $\mathcal{C}^1([t_1,t_2] \times U)$.

Take any function g such that g(t, x) and $\frac{\partial g}{\partial x}(t, x)$ are continuous in the open set $\Omega \subset \mathbb{R}^{1+n}$ of the above theorem.

COROLLARY 2.2. Under the conditions of Lemma 2.1 the Cauchy problem

(2.2)
$$\begin{cases} \frac{dx(t)}{dt} &= f(t, x(t)) + \epsilon g(t, x(t)), \\ x(t_0) &= y \end{cases}$$

has a unique solution $x(t, \epsilon, y)$ for $t_1 \leq t \leq t_2$ where $t_1 < t_0 < t_2$. The solution is in $\mathcal{C}^1([t_1, t_2] \times U \times I)$.

Proof. Apply the Lemma 2.1 to the following Cauchy problem

$$\begin{array}{ll} \frac{dx(t)}{dt} &= f(t,x(t)) + \eta(t)g(t,x(t)), \\ \frac{d\epsilon(t)}{dt} &= 0, \\ x(t_0) &= y, \\ \eta(t_0) &= \epsilon. \end{array}$$

The existence and regularity of solution $(x(t), \eta(t))$ of this equation is guaranteed by the theorem. Then x(t) is a solution of the Cauchy problem (2.2).

LEMMA 2.3. Let x(t) be a solution in [0,T] of the ordinary differential equation

(2.3)
$$\begin{cases} \frac{dx(t)}{dt} = a_0(t)x(t)^n + a_1(t)x(t) + a_2(t), \\ x(0) = x_0 \end{cases}$$

with all $a_j, j = 0, 1, 2$, are continuous and $a_0 \ge 0$. Let

(2.4)
$$K = \int_0^T |a_2(s)| \exp\left(-\int_0^s a_1(u) du\right) ds$$

If x(0) > K it follows that

$$K < \frac{1}{n-1} \left(x(0) - K \right)^{1-n}.$$

Domain of existence of a perturbed Cauchy problem of ODE

Proof. Set
$$x(t) = X(t) \exp\left(\int_0^t a_1(s)ds\right)$$
. Then

$$\frac{dx}{dt} = \frac{dX}{dt} \exp\left(\int_0^t a_1(s)ds\right) + a_1(t)X(t)\exp\left(\int_0^t a_1(s)ds\right)$$

$$= a_0(t)X(t)^n \exp\left(n\int_0^t a_1(s)ds\right)$$

$$+ a_1(t)X(t)\exp\left(\int_0^t a_1(s)ds\right) + a_2(t).$$

Thus we have

$$\frac{dX}{dt} = a_0(t) \exp\left((n-1)\int_0^t a_1(s)ds\right)X(t)^n$$
$$+ a_2(t) \exp\left(-\int_0^t a_1(s)ds\right)$$
$$= \tilde{a}_0(t)X(t)^n + \tilde{a}_2(t)$$

where $\tilde{a}_0(t) = a_0(t) \exp\left((n-1)\int_0^t a_1(s)ds\right)$ and $\tilde{a}_2(t) = a_2(t) \exp\left(-\int_0^t a_1(s)ds\right)$. Let's introduce

$$X_2(t) = \int_0^t |\tilde{a}_2(s)| ds.$$

Then $X_2(0) = 0, X_2(T) = K$. Let X_1 be the solution of the Cauchy problem

$$\begin{cases} \frac{dX_1(t)}{dt} &= \tilde{a}_0(t) \Big(X_1(t) - K \Big)^n, \\ X_1(0) &= x(0). \end{cases}$$

Upon integrating this equation we obtain

$$\left(X_1(t) - K\right)^{1-n} - \left(x(0) - K\right)^{1-n} = (1-n) \int_0^t \tilde{a}_0(s) ds.$$

Since $\tilde{a}_0 \ge 0, X_1$ is increasing if X_1 exists in [0, T] and

$$\int_0^T \tilde{a}_0(s)ds = \frac{1}{n-1} \left(x(0) - K \right)^{1-n} - \frac{1}{n-1} \left(X_1(T) - K \right)^{1-n} < \frac{1}{n-1} \left(x(0) - K \right)^{1-n}.$$

June Gi Kim

Now

$$\frac{d\Big(X_1(t) - X_2(t)\Big)}{dt} = \tilde{a}_0(t)\Big(X_1(t) - K\Big)^n - |\tilde{a}_2(t)| \\ \leq \tilde{a}_0(t)\Big(X_1(t) - X_2(t)\Big)^n + \tilde{a}_2(t).$$

Observe that $X_1(t) - X_2(t) = x(t)$ when t = 0. Therefore $X_1(t) - X_2(t) \le x(t)$ in [0, t] as long as $X_1(t)$ exists. Thus X_1 cannot become infinite in [0, T], which proves that

$$\int_{0}^{T} |a_{0}(t)| dt \cdot \exp\left((1-n) \int_{0}^{T} |a_{1}(t)| dt\right)$$

$$\leq \int_{0}^{T} |a_{0}(t)| \cdot \exp\left((1-n) \int_{0}^{t} |a_{1}(u)| du\right) dt$$

$$< \frac{1}{n-1} \left(x(0) - K\right)^{1-n}.$$

THEOREM 2.4. Let $a_j, j = 0, 1, 2$, be continuous functions in [0, T], set $a_0^+ = \max(a_0, 0)$, and define K by (2.4). If $x_0 \ge 0$ and

(2.5)
$$\int_{0}^{T} a_{0}^{+}(t)dt \cdot \exp\left((n-1)\int_{0}^{T} |a_{1}(t)|dt\right) < (x_{0}+K)^{1-n},$$
$$\int_{0}^{T} |a_{0}(t)|dt \cdot \exp\left((n-1)\int_{0}^{T} |a_{1}(t)|dt\right),$$

then

$$\begin{cases} \frac{dx(t)}{dt} &= a_0(t)x(t)^n + a_1(t)x(t) + a_2(t), \\ x(0) &= x_0 \end{cases}$$

has a solution in [0, T] with $x(0) = x_0$, and

$$x(T)^{1-n} \ge (x_0 + K)^{1-n} + (1-n) \int_0^T a_0^+(t) dt \cdot \exp\left((n-1) \int_0^T |a_1(t)| dt\right)$$

if $x(T) \ge 0$.

Proof. We set

$$x(t) = X(t) \exp\Big(\int_0^t a_1(s)ds\Big).$$

Let $X_2(t)$ again be the integral of $|\tilde{a}_2|$ with $X_2(0) = 0$. Thus $X_2(T) = K$. Now let X_1 be the solution of

$$\frac{dX_1(t)}{dt} = \tilde{a}_0^+(t) \left(X_1(t) + K \right)^n, \quad X_1(0) = x_0,$$

which is

$$(X_1(t) + K)^{1-n} = (x_0 + K)^{1-n} + (1-n) \int_0^t \tilde{a}_0^+(s) ds.$$

Since

$$\int_{0}^{T} a_{0}^{+}(t) \cdot \exp\left((n-1) \int_{0}^{t} a_{1}(s) | ds\right) dt$$
$$\leq \int_{0}^{T} a_{0}^{+}(t) dt \cdot \exp\left((n-1) \int_{0}^{T} |a_{1}(t)| dt\right)$$

we obtain by (2.5) an increasing function X_1 existing in [0,T]. Since

$$\frac{d\Big(X_1(t) + X_2(t)\Big)}{dt} = \tilde{a}_0^+(t)\Big(X_1(t) + K\Big)^n + |\tilde{a}_2(t)|$$
$$\geq \tilde{a}_0(t)\Big(X_1(t) + X_2(t)\Big)^n + \tilde{a}_2(t)$$

and $X_1 + X_2 = X$ at t = 0, we have $X \le X_1 + X_2 \le X_1 + K$ in [0, T] if X exists. Hence

$$X(T)^{1-n} \ge \left(X_1(T) + K\right)^{1-n}$$

= $(x_0 + K)^{1-n} + (1-n) \int_0^T \tilde{a}_0^+(s) ds$
 $\ge (x_0 + K)^{1-n}$
 $+ (1-n) \int_0^T a_0^+(t) dt \cdot \exp\left((n-1) \int_0^T |a_1(t)| dt\right).$

June Gi Kim

Since $x(T)^{1-n} = X(T)^{1-n} \exp\left((1-n)\int_0^T a_1(t)dt\right)$ we have $x(T)^{1-n} \ge (x_0 + K)^{1-n}$ (2.6) $+ (1-n)\int_0^T a_0^+(t) \exp\left((n-1)\int_0^T |a_1(t)|dt\right).$

When $a_0 \equiv 1, a_1 \equiv 0, a_2 \equiv 0$, (2.6) reduces to

$$T \le \frac{x_0^{1-n}}{n-1}.$$

This agrees with (1.2).

References

- E. A. Coddington, N. Levisson, *Theory of Ordinary Differential Equations*, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1955.
- [2] E. Hörmander, *Lectures on Nonlinear Hyperbolic Differential Equations*, Springer Verlag, Berlin, Heidelberg, 1997.
- [3] F. Boese, Stability cirteria for second-order dynamical systems involving several time delays, SIAM Journal of Mathematical Analysis 26 (1997), no. 25, Springer Verlag, Berlin, Heidelberg, 1306–1330.

Department of Mathematics Kangwon National University Chunchon, Kangwon 200–701