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PRODUCT SPACE AND QUOTIENT SPACE IN
Ky»-PROXIMITY SPACES

SoNG Ho HAN

ABSTRACT. We introduce the ko-proximity space as a generaliza-
tion of the Efremovi¢-proximity space. We define a product ko-
proximity and the quotient kg-proxmity and show some properties
of ko-proximity space.

1. Introduction

In this article, we propose some generalization of the concept of the
Efremovic¢’s proximity, which we call “Ky-proximity”. We show that
Ko-proximity ¢ induces a topology 7(6) in X and this induced topology
is a completely regular topology. Given a Ky-proximity space (X, J), a
subset will be called a proximity d-neighbourhood of A (symbols A < B)
iff for each x € X, dA or z§(X — B).

A Ky-proximity neighbourhood furnishes an alternative approach to
the study of Ky-proximity spaces. We define a product Ky-proximity
d = m{ds : @ € I} on X and we shall introduce the concept of quotient
ko-proximity:.

2. Preliminaries

The proximity relation 0 was introduced in 1950 by Efremovi¢ and he
showed that the proximity relation ¢ induces a topology 7(d) in X and
that the induced topology is completely regular in [1].

He also showed that every completely regular space (X, 7) admits a
compatible proximity ¢ on X such that 7(6) = 7. He axiomatically
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characterized the proximity relation, A is near B, which is denoted by
A0 B, for subsets A and B of any set X. Efremovi¢ axioms of proximity
relation o are as follows;

El. AéB implies B A.

E2. (AU B)oC if and only if ASC or BiC.

E3. A)B implies A # ¢, B # ¢.

E4. A¢B implies there exists a subset £ such that

AJE and (X — E)¢B.

E5. AN B # ¢ implies AdB.

A binary relation § satisfying axioms E1-E5 on the power set of X is
called a (Efremoci¢) proximity on X. If § also satisfies the following;

E6. xdy implies x = y then ¢ is called the separated proximity rela-
tion.

DEFINITION 2.1. Let ¢ be a binary relation between a set X and its
power set P(X) such that

Kol. z6{y} implies yd{x}.

Ky2. 26(AU B) if and only if xdA or zdB.

Ko3. xd¢ for all z € X.

Ko4. © € A implies xd A.

Kob. For each subset E C X, if there is a point x € X such that
either ©0A, xdFE or xdB, x§(X — FE), then we have ydA and ydB for
some y € X. The binary relation 9 is called the Ky-proximity on X iff §
satisfies the axioms Kyl — Ky5. The pair (X, J) is called a Ky-proximity
space.

Ko6. If z6{y} implies + = y, then § is called the separated K-
proximity relation.

LEMMA 2.2. In a Ky-proximity space (X, 0) let 6; be a binary relation

on P(X) defined as follows;
If we define AdB if and only if there is a point x € X such that
xd0A,xd B, then ¢, is an Efremovi¢ proximity.

In what follows, we introduce some properties of the Ky-proximity.
LEMMA 2.3. If x0A and A C B, then x6B.

LEMMA 2.4. If there exists a point x € X such that 6 A, xd{y} then
yoA.

LEMMA 2.5. If a subset A of a Ky-proximity space (X,¢) is defined
to be closed iff ©0A implies x € A, then the collection of complements
of all closed sets so defined yields a topology 7 = 7(J) on X.
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LEMMA 2.6. Let (X,6) be a Ko-proximity space and 7 = 7(0). Then
the T-closure A of A C X is given by A = {x | xdA,z € X}.

DEFINITION 2.7. If on a set X there is a topology 7 and a K-
proximity d such that 7 = 7(9), then 7 and § are said to be compatible.

LEMMA 2.8. If G is a subset of a Ky-proximity space (X,J), then
G e 7(0) iff z§(X — G) for every x € G.

LEMMA 2.9. If A and B are subsets of a Ky-proximity space (X, 0)
then for each v € X, A or x HB implies (i) B C (X — A) and (ii)
B C Int(X — A), where the closure and interior are taken with respect
to 7(0).

LEMMA 2.10. In a Ky-proximity space (X,0), if A° is defined to be

a set {x | xdA,x € X} for each subset A of X, then § is a Kuratowski
closure operator.

DEFINITION 2.11. If §; and d, are two Ky-proximities on a set X, we
define 0; < s iff x> A implies xd; A.

The above is expressed by saying that §; is finer than &y, or 6 is
coarser than ds.

The following Lemma shows that a finer Ky-proximity structure in-
duces a finer topology.

LEMMA 2.12. Let 4,1, 0o be two Ky-proximities defined on a set X.
Then we have;
1. 0y < 9y implies 7(61) C 7(d2)
2. Let 7 and 1 be two completely regular topologies on X, and let
01 and do be the Ky-proximities on X with respect to 71 and 7
respectively. Then 7 C 15 implies 1 < 5.

DEFINITION 2.13. A subset B of a Ky-proximity space (X,0) is a
d-neighbourhood of A ( in symbols A < B ) iff for each x € X, 2§A or
z§(X — B).

LEMMA 2.14. Let (X,8) be a Ky-proximity space let A and Int A
denote, respectively, the closure and interior of A in 7(8). Then

1. A< B implies A < B, and

2. A< B implies A < Int B.

Therefore A C Int B, showing that a 6-neighbourhood is a topologi-
cal neighbourhood.
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LEMMA 2.15. For each point x € X, y§A or x§ B implies there exist
subsets C' and D such that A < C, B < D and for each y € X, y§C or

ygD.

LEMMA 2.16. Let 0 be a compatible Ky-proximity on a completely
regular space (X, 7). If A is compact, B is closed and AN B = ¢, then
for each x € X, x§ A or x§B.

LEMMA 2.17. Given a Ky-proximity space (X, ), the relation < sat-
isfies the following properties;

1. X < X.

A < B implies A C B.

AC B« (CCD implies A< D

AL B, fori=1,2,....niff AN, B.

A < B implies (X — B) < (X — A).

A < B implies there is C such that A < C' < D.

O Ot WD

LEMMA 2.18. If < is a binary relation on the power set of X satisfying
Lemma 2.17 and § is defined by that for each x € X, x§A or x§B iff
A < (X — B), then ¢ is an Ky-proximity on X. B is a 6-neighbourhood
of A iff A< B.

DEFINITION 2.19. Let (X, ;) and (Y, d2) be two Ky-proximity spaces.
A function f : X — Y is said to be a Ky-proximity mapping iff for some
r € X, x01 A, £61 B implies f(z)dof(A), f(x)0of(B).

LEMMA 2.20. Let (X, d1) and (Y, d2) be two Ky-proximity spaces and
let f: X — Y be a function. The following properties of [ are equiva-
lent:

1. f is a Ky-proximity mapping.

2. ydo B implies x§, f 1 (B) for each x € f~'(y).

3. y < B implies v <; f~*(B) for each x € f~'(y).

LEMMA 2.21. A Ky-proximity mapping f : (X, d1) — (Y, 02) is con-
tinuous with respect to 7(61) and 7(ds).

LEMMA 2.22. Given a function f : X — (Y, ;) the binary relation §
defined by xdA iff f(x)d1f(A), is the coarsest Ky-proximity on X such
that f is a Ky-proximity mapping.

DEFINITION 2.23. Two Kj-proximity spaces (X,d;) and (Y, ) are
said to be Ky-proximity isomorphic iff there exists a one-to-one mapping
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f from X onto Y such that both f and f~! are Ky-proximity mappings.
Such a mapping f is called a Ky-proximity isomorphism.

It follows from the Lemma 2.21 that two Ky-proximity spaces are
Koy-proximity isomorphic iff they are homeomorphic.

DEFINITION 2.24. Let (X, d) be a Ky-proximity space, and Y C X.
The induced Ky-proximity dy on Y is the coarsest Ky-proximity such
that the inclusion mapping ¢ : Y +— X is a Ky-proximity mapping.

The Ky-proximity space (Y, dy) is called the subspace of (X,0) and
dy is called the induced Ky-proximity.

3. Main Results

We next consider the product of a family {(X,,d.) : o € I} of Ky-
proximity spaces. Let X = II[{X, : a € I} denote the Cartesian product
of these spaces. We define a product Ky-proximity § = II{d, : a € I}
on X as follows:

DEFINITION 3.1. Let z € X and A be a subset of X. Define xdA
iff for each finite cover N = {A;, As, ..., A, } of A there is A; such that
P,(2)0aPy(A;) for each o € I, where P, denotes the projection of X
onto X,.

THEOREM 3.2. The binary relation ¢ defined in the Definition 3.1 is
a Ky-proximity on the product set X.

Proof. 1. Since each ¢, is symmetric, so is ¢ and Kyl is satisfied.

2. Let A and B be subsets of X. If zdA and N = {E, Es,... E,}
is a finite cover of AU B then N is also a cover of A and there is
some FE; in N such that P,(x)d,P.(E;) for each a € I. That is,
z6(AU B).

Suppose that z§A and z§B. Then there is some finite covers

N ={A,Ay,...,Ap} of Aand L = {By, By,...B,} of B such
that for each A; € N there is a; € I with Py, (2)d, Po,(A;) and
for each B; € L there is a; € I with P, (2)fa,Pa;(B;j). NUL =
{A1, Ay, ..., A, By, Bs, ..., B,} is a cover of AUB and there is no
member A; or B; in NU L such that P,(x)d,P,(A;) for each a € I
or P, (x)daPs(c)(B;) for each o € I. Hence we have zd(A U B).

3. Since N = {¢} is a finite cover of ¢ and P,(x) f,P.(¢) for each
a € I we have z§o.
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4. If x € Aand A = AU Ay, U---U A, then there is some A; such
that x € A;. Hence for each a € I we have P, (7)d,FP.(A;), that is,
TOA.

5. Kb is clear by Ky-proximity.

H

DEFINITION 3.3. Let {(X,,d,) | @ € I} be a family of Ky-proximity
spaces (Xa,0q). The pair (X,6), where X = I1X,, § = IId,, is called
the product Ky-proximity space of the family.

THEOREM 3.4. A mapping [ from a Ky-proximity space (Y, 1) to a
product Ky-proximity space X = 11X, is a Ky-proximity mapping iff
the composition P, o f : Y — X, is a Kq-proximity mapping for each
projection P,.

Proof. We need only prove that if each P, o f is a Ky-proximity map-
ping then so is f. Let y € Y and B C Y. And suppose that yé, B
and f(y)§f(B). Then there is some cover N = {A;,...,A,} of f(B)
such that for each A; € N, Pai(f(y))dajPai(Ai) for some a; € I. Since
{f71(A1),..., 1 (A,)} is a cover of B and yd; B, we have yd, [~ (A;)
for some A;. Hence (P, o f(y))da(Pa o f(f*(4;))) for each « € I since
Po © f is a Ko-proximity mapping. That is, P,(f(y))daPu(A;) for each
a € I. This contradicts to the fact P, (f(y)) fa;Pa;(A;). Therefore
f(y)df(B), that is, f is a Ky-proximity mapping. ]

COROLLARY 3.5. The product Ky-proximity § = Ild, is the coars-
est Ky-proximity on X = 11X, for which each projection P, is a K-
proximity mapping.

In the following we shall introduce the concept of a quotient K-
proximity.

THEOREM 3.6. Let (X, 0) be a Ky-proximity space and let f : X — Y
be a mapping, where Y is any set. If we define y&, B iff each f-saturated
closed subset of X containing f~'(B) contains f~'(y), then ¢, is a Ko-
proximity on Y and f is a Ky-proximity mapping. (or 0 is the finest
Ky-proximity on Y such that f is a Ko-proximity mapping.)

Proof. We first show that 9, is a Ky-proximity on Y.
1. Kyl is clear by definition.
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2. Suppose that yd;(AUB) and ydy B then each f-saturated closed set
F containing f~'(AU B) contains f~!(y) and there is f-saturated
closed set G' containing f~!(B) such that G N f~1(y) = ¢.

Consequently each f-saturated closed set H containing f~1(A)
contains f~(y), since if H N f~!(y) = ¢ then the closed saturated
H UG containing f~'(A) U f~(B) does not contain f~!(y) and it
is a contradiction. Hence yd; A. Suppose that yd; A. Then each f-
saturated closed set F' containing f~'(A) contains f~*(y). Hence
each f-saturated closed set H containing f~'(A) U f~1(B) also
contains f~!(y). That is, yd; (AU B).

3. Since the empty set ¢ is a f-saturated closed set containing ¢ =
f71(¢) such that f~'(y) N¢ = ¢ for each y in Y, we have yd, ¢ for
each y in Y.

4. If y € A then f~(y) C f~*(A) and each f-saturated closed set F
containing f~!(A) also contains f~!(y). Therefore we have yd, A.

5. Kb is clear.

]

THEOREM 3.7. In the Theorem 3.6, 4, is the finest Ky-proximity on
Y such that f is a Ky-proximity mapping.

Proof. Let 69 be any Ky-proximity on Y such that f is a Ky-proximity
mapping. And let yd,B. Then yd,B and we have zd, f~!(B) for each
in f~Y(y), that is, f~(y) N f~1(B) = ¢. Since f~Y(B) is a f-saturated
closed set containing f~(B), yd, B. O

DEFINITION 3.8. Let (X, 0) be a Ky-proximity space and let f : X +—
Y be a mapping. The finest Ky-proximity d; on Y such that f is a K-
proximity mapping is called the quotient Ky-proximity for Y relative to
f and the Ky-proximity 6 on X.

THEOREM 3.9. Let f be a Ky-proximity mapping of a space X onto
a space Y and let Y have the quotient Ky-proximity. Then a mapping
g on'Y to a Ky-proximity space Z is a Ky-proximity mapping iff the
composition g o f is a Ky-proximity mapping.

Proof. Let go f be a Ky-proximity mapping and let g(y)§ ,¢(B) then
9(y)d29(B).

Since g o f is a Ky-proximity mapping, for each z in f~'g7!(g(y))
wfxf1g7(g(B)) or for each x in fH(y), xff g (g(B)) D [
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or zd f~1(B) and f~* (g7 (g(B))) is a f-saturated closed set containing
f~Y(B) in X. Hence y§ B.

The converse is clear. O]
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