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PRODUCT SPACE AND QUOTIENT SPACE IN

K0-PROXIMITY SPACES

Song Ho Han

Abstract. We introduce the k0-proximity space as a generaliza-
tion of the Efremovič-proximity space. We define a product k0-
proximity and the quotient k0-proxmity and show some properties
of k0-proximity space.

1. Introduction

In this article, we propose some generalization of the concept of the
Efremovic̆’s proximity, which we call “K0-proximity”. We show that
K0-proximity δ induces a topology τ(δ) in X and this induced topology
is a completely regular topology. Given a K0-proximity space (X, δ), a
subset will be called a proximity δ-neighbourhood of A (symbols A ¿ B)
iff for each x ∈ X, x/δA or x/δ(X −B).

A K0-proximity neighbourhood furnishes an alternative approach to
the study of K0-proximity spaces. We define a product K0-proximity
δ = π{δα : α ∈ I} on X and we shall introduce the concept of quotient
k0-proximity.

2. Preliminaries

The proximity relation δ was introduced in 1950 by Efremovic̆ and he
showed that the proximity relation δ induces a topology τ(δ) in X and
that the induced topology is completely regular in [1].

He also showed that every completely regular space (X, τ) admits a
compatible proximity δ on X such that τ(δ) = τ . He axiomatically
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characterized the proximity relation, A is near B, which is denoted by
AδB, for subsets A and B of any set X. Efremovic̆ axioms of proximity
relation δ are as follows;

E1. AδB implies BδA.
E2. (A ∪B)δC if and only if AδC or BδC.
E3. AδB implies A 6= φ, B 6= φ.
E4. A/δB implies there exists a subset E such that
A/δE and (X − E)/δB.
E5. A ∩B 6= φ implies AδB.
A binary relation δ satisfying axioms E1-E5 on the power set of X is

called a (Efremocic̆) proximity on X. If δ also satisfies the following;
E6. xδy implies x = y then δ is called the separated proximity rela-

tion.

Definition 2.1. Let δ be a binary relation between a set X and its
power set P (X) such that

K01. xδ{y} implies yδ{x}.
K02. xδ(A ∪B) if and only if xδA or xδB.
K03. x/δφ for all x ∈ X.
K04. x ∈ A implies xδA.
K05. For each subset E ⊂ X, if there is a point x ∈ X such that

either xδA, xδE or xδB, xδ(X − E), then we have yδA and yδB for
some y ∈ X. The binary relation δ is called the K0-proximity on X iff δ
satisfies the axioms K01−K05. The pair (X, δ) is called a K0-proximity
space.

K06. If xδ{y} implies x = y, then δ is called the separated K0-
proximity relation.

Lemma 2.2. In a K0-proximity space (X, δ) let δ1 be a binary relation
on P (X) defined as follows;

If we define Aδ1B if and only if there is a point x ∈ X such that
xδA,xδB, then δ1 is an Efremovic̆ proximity.

In what follows, we introduce some properties of the K0-proximity.

Lemma 2.3. If xδA and A ⊂ B, then xδB.

Lemma 2.4. If there exists a point x ∈ X such that xδA, xδ{y} then
yδA.

Lemma 2.5. If a subset A of a K0-proximity space (X, δ) is defined
to be closed iff xδA implies x ∈ A, then the collection of complements
of all closed sets so defined yields a topology τ = τ(δ) on X.
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Lemma 2.6. Let (X, δ) be a K0-proximity space and τ = τ(δ). Then
the τ -closure Ā of A ⊂ X is given by Ā = {x | xδA, x ∈ X}.

Definition 2.7. If on a set X there is a topology τ and a K0-
proximity δ such that τ = τ(δ), then τ and δ are said to be compatible.

Lemma 2.8. If G is a subset of a K0-proximity space (X, δ), then
G ∈ τ(δ) iff x/δ(X −G) for every x ∈ G.

Lemma 2.9. If A and B are subsets of a K0-proximity space (X, δ)
then for each x ∈ X, x/δA or x 6 δB implies (i) B ⊂ (X − A) and (ii)
B ⊂ Int(X − A), where the closure and interior are taken with respect
to τ(δ).

Lemma 2.10. In a K0-proximity space (X, δ), if Aδ is defined to be
a set {x | xδA, x ∈ X} for each subset A of X, then δ is a Kuratowski
closure operator.

Definition 2.11. If δ1 and δ2 are two K0-proximities on a set X, we
define δ1 < δ2 iff xδ2A implies xδ1A.

The above is expressed by saying that δ1 is finer than δ2, or δ1 is
coarser than δ2.

The following Lemma shows that a finer K0-proximity structure in-
duces a finer topology.

Lemma 2.12. Let δ1, δ2 be two K0-proximities defined on a set X.
Then we have;

1. δ1 < δ2 implies τ(δ1) ⊂ τ(δ2)
2. Let τ1 and τ2 be two completely regular topologies on X, and let

δ1 and δ2 be the K0-proximities on X with respect to τ1 and τ2

respectively. Then τ1 ⊂ τ2 implies δ1 < δ2.

Definition 2.13. A subset B of a K0-proximity space (X, δ) is a
δ-neighbourhood of A ( in symbols A ¿ B ) iff for each x ∈ X, x/δA or
x/δ(X −B).

Lemma 2.14. Let (X, δ) be a K0-proximity space let Ā and Int A
denote, respectively, the closure and interior of A in τ(δ). Then

1. A ¿ B implies Ā ¿ B, and
2. A ¿ B implies A ¿ Int B.

Therefore A ⊂ Int B, showing that a δ-neighbourhood is a topologi-
cal neighbourhood.
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Lemma 2.15. For each point x ∈ X, y/δA or x/δB implies there exist
subsets C and D such that A ¿ C, B ¿ D and for each y ∈ X, y/δC or
y/δD.

Lemma 2.16. Let δ be a compatible K0-proximity on a completely
regular space (X, τ). If A is compact, B is closed and A ∩ B = φ, then
for each x ∈ X, x/δA or x/δB.

Lemma 2.17. Given a K0-proximity space (X, δ), the relation ¿ sat-
isfies the following properties;

1. X ¿ X.
2. A ¿ B implies A ⊂ B.
3. A ⊂ B ¿ C ⊂ D implies A ¿ D
4. A ¿ Bi for i = 1, 2, . . . , n iff A ¿ ∩n

i=1B.
5. A ¿ B implies (X −B) ¿ (X − A).
6. A ¿ B implies there is C such that A ¿ C ¿ D.

Lemma 2.18. If¿ is a binary relation on the power set of X satisfying
Lemma 2.17 and δ is defined by that for each x ∈ X, x/δA or x/δB iff
A ¿ (X −B), then δ is an K0-proximity on X. B is a δ-neighbourhood
of A iff A ¿ B.

Definition 2.19. Let (X, δ1) and (Y, δ2) be two K0-proximity spaces.
A function f : X 7→ Y is said to be a K0-proximity mapping iff for some
x ∈ X, xδ1A, xδ1B implies f(x)δ2f(A), f(x)δ2f(B).

Lemma 2.20. Let (X, δ1) and (Y, δ2) be two K0-proximity spaces and
let f : X 7→ Y be a function. The following properties of f are equiva-
lent:

1. f is a K0-proximity mapping.
2. y/δ2B implies x/δ1f

−1(B) for each x ∈ f−1(y).
3. y ¿2 B implies x ¿1 f−1(B) for each x ∈ f−1(y).

Lemma 2.21. A K0-proximity mapping f : (X, δ1) 7→ (Y, δ2) is con-
tinuous with respect to τ(δ1) and τ(δ2).

Lemma 2.22. Given a function f : X 7→ (Y, δ1) the binary relation δ
defined by xδA iff f(x)δ1f(A), is the coarsest K0-proximity on X such
that f is a K0-proximity mapping.

Definition 2.23. Two K0-proximity spaces (X, δ1) and (Y, δ2) are
said to be K0-proximity isomorphic iff there exists a one-to-one mapping
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f from X onto Y such that both f and f−1 are K0-proximity mappings.
Such a mapping f is called a K0-proximity isomorphism.

It follows from the Lemma 2.21 that two K0-proximity spaces are
K0-proximity isomorphic iff they are homeomorphic.

Definition 2.24. Let (X, δ) be a K0-proximity space, and Y ⊂ X.
The induced K0-proximity δY on Y is the coarsest K0-proximity such
that the inclusion mapping i : Y 7→ X is a K0-proximity mapping.

The K0-proximity space (Y, δY ) is called the subspace of (X, δ) and
δY is called the induced K0-proximity.

3. Main Results

We next consider the product of a family {(Xα, δα) : α ∈ I} of K0-
proximity spaces. Let X = Π{Xα : α ∈ I} denote the Cartesian product
of these spaces. We define a product K0-proximity δ = Π{δα : α ∈ I}
on X as follows:

Definition 3.1. Let x ∈ X and A be a subset of X. Define xδA
iff for each finite cover N = {A1, A2, . . . , An} of A there is Ai such that
Pα(x)δαPα(Ai) for each α ∈ I, where Pα denotes the projection of X
onto Xα.

Theorem 3.2. The binary relation δ defined in the Definition 3.1 is
a K0-proximity on the product set X.

Proof. 1. Since each δα is symmetric, so is δ and K01 is satisfied.
2. Let A and B be subsets of X. If xδA and N = {E1, E2, . . . En}

is a finite cover of A ∪ B then N is also a cover of A and there is
some Ei in N such that Pα(x)δαPα(Ei) for each α ∈ I. That is,
xδ(A ∪B).

Suppose that x/δA and x/δB. Then there is some finite covers
N = {A1, A2, . . . , Am} of A and L = {B1, B2, . . . Bn} of B such
that for each Ai ∈ N there is αi ∈ I with Pαi

(x)/δαi
Pαi

(Ai) and
for each Bj ∈ L there is αj ∈ I with Pαj

(x)/δαj
Pαj

(Bj). N ∪ L =
{A1, A2, . . . , Am, B1, B2, . . . , Bn} is a cover of A∪B and there is no
member Ai or Bj in N ∪L such that Pα(x)δαPα(Ai) for each α ∈ I
or Pα(x)δαPα(α)(Bj) for each α ∈ I. Hence we have x/δ(A ∪B).

3. Since N = {φ} is a finite cover of φ and Pα(x) 6 δαPα(φ) for each
α ∈ I we have x/δφ.
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4. If x ∈ A and A = A1 ∪ A2 ∪ · · · ∪ An then there is some Ai such
that x ∈ Ai. Hence for each α ∈ I we have Pα(x)δαPα(Ai), that is,
xδA.

5. K05 is clear by K0-proximity.

Definition 3.3. Let {(Xα, δα) | α ∈ I} be a family of K0-proximity
spaces (Xα, δα). The pair (X, δ), where X = ΠXα, δ = Πδα, is called
the product K0-proximity space of the family.

Theorem 3.4. A mapping f from a K0-proximity space (Y, δ1) to a
product K0-proximity space X = ΠXα is a K0-proximity mapping iff
the composition Pα ◦ f : Y 7→ Xα is a K0-proximity mapping for each
projection Pα.

Proof. We need only prove that if each Pα ◦ f is a K0-proximity map-
ping then so is f . Let y ∈ Y and B ⊂ Y . And suppose that yδ1B
and f(y)/δf(B). Then there is some cover N = {A1, . . . , An} of f(B)
such that for each Ai ∈ N , Pαi

(f(y))/δαj
Pαi

(Ai) for some αi ∈ I. Since

{f−1(A1), . . . , f
−1(An)} is a cover of B and yδ1B, we have yδ1f

−1(Aj)
for some Aj. Hence (Pα ◦ f(y))δα(Pα ◦ f(f−1(Aj))) for each α ∈ I since
pα ◦ f is a K0-proximity mapping. That is, Pα(f(y))δαPα(Aj) for each
α ∈ I. This contradicts to the fact Pαj

(f(y)) 6 δαj
Pαj

(Aj). Therefore
f(y)δf(B), that is, f is a K0-proximity mapping.

Corollary 3.5. The product K0-proximity δ = Πδα is the coars-
est K0-proximity on X = ΠXα for which each projection Pα is a K0-
proximity mapping.

In the following we shall introduce the concept of a quotient K0-
proximity.

Theorem 3.6. Let (X, δ) be a K0-proximity space and let f : X 7→ Y
be a mapping, where Y is any set. If we define yδ1B iff each f -saturated
closed subset of X containing f−1(B) contains f−1(y), then δ1 is a K0-
proximity on Y and f is a K0-proximity mapping. (or δ1 is the finest
K0-proximity on Y such that f is a K0-proximity mapping.)

Proof. We first show that δ1 is a K0-proximity on Y .

1. K01 is clear by definition.
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2. Suppose that yδ1(A∪B) and y/δ1B then each f -saturated closed set
F containing f−1(A∪B) contains f−1(y) and there is f -saturated
closed set G containing f−1(B) such that G ∩ f−1(y) = φ.

Consequently each f -saturated closed set H containing f−1(A)
contains f−1(y), since if H ∩ f−1(y) = φ then the closed saturated
H ∪G containing f−1(A)∪ f−1(B) does not contain f−1(y) and it
is a contradiction. Hence yδ1A. Suppose that yδ1A. Then each f -
saturated closed set F containing f−1(A) contains f−1(y). Hence
each f -saturated closed set H containing f−1(A) ∪ f−1(B) also
contains f−1(y). That is, yδ1(A ∪B).

3. Since the empty set φ is a f -saturated closed set containing φ =
f−1(φ) such that f−1(y)∩ φ = φ for each y in Y , we have y/δ1φ for
each y in Y .

4. If y ∈ A then f−1(y) ⊂ f−1(A) and each f -saturated closed set F
containing f−1(A) also contains f−1(y). Therefore we have yδ1A.

5. K05 is clear.

Theorem 3.7. In the Theorem 3.6, δ1 is the finest K0-proximity on
Y such that f is a K0-proximity mapping.

Proof. Let δ0 be any K0-proximity on Y such that f is a K0-proximity
mapping. And let y/δ0B. Then y/δ0B̄ and we have x/δ0f

−1(B̄) for each x
in f−1(y), that is, f−1(y) ∩ f−1(B̄) = φ. Since f−1(B̄) is a f -saturated
closed set containing f−1(B), y/δ1B.

Definition 3.8. Let (X, δ) be a K0-proximity space and let f : X 7→
Y be a mapping. The finest K0-proximity δ1 on Y such that f is a K0-
proximity mapping is called the quotient K0-proximity for Y relative to
f and the K0-proximity δ on X.

Theorem 3.9. Let f be a K0-proximity mapping of a space X onto
a space Y and let Y have the quotient K0-proximity. Then a mapping
g on Y to a K0-proximity space Z is a K0-proximity mapping iff the
composition g ◦ f is a K0-proximity mapping.

Proof. Let g ◦ f be a K0-proximity mapping and let g(y)/δZg(B) then

g(y)/δZg(B).
Since g ◦ f is a K0-proximity mapping, for each x in f−1g−1(g(y)),

x/δXf−1g−1(g(B)) or for each x in f−1(y), x/δXf−1g−1(g(B)) ⊃ f−1(B)



66 Song Ho Han

or x/δXf−1(B) and f−1(g−1(g(B))) is a f -saturated closed set containing
f−1(B) in X. Hence y/δXB.

The converse is clear.

References
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