Kangweon-Kyungki Math. Jour. 10 (2002), No. 1, pp. 59–66

PRODUCT SPACE AND QUOTIENT SPACE IN K_0 -PROXIMITY SPACES

Song Ho Han

ABSTRACT. We introduce the k_0 -proximity space as a generalization of the Efremovič-proximity space. We define a product k_0 proximity and the quotient k_0 -proximity and show some properties of k_0 -proximity space.

1. Introduction

In this article, we propose some generalization of the concept of the Efremovič's proximity, which we call " K_0 -proximity". We show that K_0 -proximity δ induces a topology $\tau(\delta)$ in X and this induced topology is a completely regular topology. Given a K_0 -proximity space (X, δ) , a subset will be called a proximity δ -neighbourhood of A (symbols $A \ll B$) iff for each $x \in X$, $x \notin A$ or $x \notin (X - B)$.

A K_0 -proximity neighbourhood furnishes an alternative approach to the study of K_0 -proximity spaces. We define a product K_0 -proximity $\delta = \pi \{\delta_\alpha : \alpha \in I\}$ on X and we shall introduce the concept of quotient k_0 -proximity.

2. Preliminaries

The proximity relation δ was introduced in 1950 by Efremovič and he showed that the proximity relation δ induces a topology $\tau(\delta)$ in X and that the induced topology is completely regular in [1].

He also showed that every completely regular space (X, τ) admits a compatible proximity δ on X such that $\tau(\delta) = \tau$. He axiomatically

Received February 6, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 54A20, 54B10, 54B15.

Key words and phrases: metric space, proximity space, product space, quotient space.

characterized the proximity relation, A is near B, which is denoted by $A\delta B$, for subsets A and B of any set X. Efremovič axioms of proximity relation δ are as follows;

E1. $A\delta B$ implies $B\delta A$.

E2. $(A \cup B)\delta C$ if and only if $A\delta C$ or $B\delta C$.

E3. $A\delta B$ implies $A \neq \phi$, $B \neq \phi$.

E4. $A \not \otimes B$ implies there exists a subset E such that

 $A \delta E$ and $(X - E) \delta B$.

E5. $A \cap B \neq \phi$ implies $A\delta B$.

A binary relation δ satisfying axioms E1-E5 on the power set of X is called a (Efremocič) proximity on X. If δ also satisfies the following;

E6. $x\delta y$ implies x = y then δ is called the separated proximity relation.

DEFINITION 2.1. Let δ be a binary relation between a set X and its power set P(X) such that

 $K_01. x\delta\{y\}$ implies $y\delta\{x\}$.

 K_02 . $x\delta(A \cup B)$ if and only if $x\delta A$ or $x\delta B$.

 $K_03. x \not \phi$ for all $x \in X$.

 $K_04. x \in A \text{ implies } x\delta A.$

 K_05 . For each subset $E \subset X$, if there is a point $x \in X$ such that either $x\delta A$, $x\delta E$ or $x\delta B$, $x\delta(X - E)$, then we have $y\delta A$ and $y\delta B$ for some $y \in X$. The binary relation δ is called the K_0 -proximity on X iff δ satisfies the axioms $K_01 - K_05$. The pair (X, δ) is called a K_0 -proximity space.

 K_06 . If $x\delta\{y\}$ implies x = y, then δ is called the separated K_0 -proximity relation.

LEMMA 2.2. In a K_0 -proximity space (X, δ) let δ_1 be a binary relation on P(X) defined as follows;

If we define $A\delta_1B$ if and only if there is a point $x \in X$ such that $x\delta A, x\delta B$, then δ_1 is an Efremovič proximity.

In what follows, we introduce some properties of the K_0 -proximity.

LEMMA 2.3. If $x\delta A$ and $A \subset B$, then $x\delta B$.

LEMMA 2.4. If there exists a point $x \in X$ such that $x\delta A$, $x\delta\{y\}$ then $y\delta A$.

LEMMA 2.5. If a subset A of a K_0 -proximity space (X, δ) is defined to be closed iff $x\delta A$ implies $x \in A$, then the collection of complements of all closed sets so defined yields a topology $\tau = \tau(\delta)$ on X.

60

LEMMA 2.6. Let (X, δ) be a K_0 -proximity space and $\tau = \tau(\delta)$. Then the τ -closure \overline{A} of $A \subset X$ is given by $\overline{A} = \{x \mid x \delta A, x \in X\}.$

DEFINITION 2.7. If on a set X there is a topology τ and a K_0 -proximity δ such that $\tau = \tau(\delta)$, then τ and δ are said to be compatible.

LEMMA 2.8. If G is a subset of a K_0 -proximity space (X, δ) , then $G \in \tau(\delta)$ iff $x \not \delta(X - G)$ for every $x \in G$.

LEMMA 2.9. If A and B are subsets of a K_0 -proximity space (X, δ) then for each $x \in X$, $x \not \delta A$ or $x \not \delta B$ implies (i) $B \subset (X - A)$ and (ii) $B \subset Int(X - A)$, where the closure and interior are taken with respect to $\tau(\delta)$.

LEMMA 2.10. In a K_0 -proximity space (X, δ) , if A^{δ} is defined to be a set $\{x \mid x \delta A, x \in X\}$ for each subset A of X, then δ is a Kuratowski closure operator.

DEFINITION 2.11. If δ_1 and δ_2 are two K_0 -proximities on a set X, we define $\delta_1 < \delta_2$ iff $x \delta_2 A$ implies $x \delta_1 A$.

The above is expressed by saying that δ_1 is finer than δ_2 , or δ_1 is coarser than δ_2 .

The following Lemma shows that a finer K_0 -proximity structure induces a finer topology.

LEMMA 2.12. Let δ_1 , δ_2 be two K_0 -proximities defined on a set X. Then we have;

1. $\delta_1 < \delta_2$ implies $\tau(\delta_1) \subset \tau(\delta_2)$

2. Let τ_1 and τ_2 be two completely regular topologies on X, and let δ_1 and δ_2 be the K₀-proximities on X with respect to τ_1 and τ_2 respectively. Then $\tau_1 \subset \tau_2$ implies $\delta_1 < \delta_2$.

DEFINITION 2.13. A subset B of a K_0 -proximity space (X, δ) is a δ -neighbourhood of A (in symbols $A \ll B$) iff for each $x \in X, x \notin A$ or $x \notin (X - B)$.

LEMMA 2.14. Let (X, δ) be a K_0 -proximity space let A and Int A denote, respectively, the closure and interior of A in $\tau(\delta)$. Then

1. $A \ll B$ implies $\overline{A} \ll B$, and

2. $A \ll B$ implies $A \ll$ Int B.

Therefore $A \subset$ Int B, showing that a δ -neighbourhood is a topological neighbourhood.

LEMMA 2.15. For each point $x \in X$, $y \not A$ or $x \not B$ implies there exist subsets C and D such that $A \ll C$, $B \ll D$ and for each $y \in X$, $y \notin C$ or $y \delta D.$

LEMMA 2.16. Let δ be a compatible K_0 -proximity on a completely regular space (X, τ) . If A is compact, B is closed and $A \cap B = \phi$, then for each $x \in X$, $x \notin A$ or $x \notin B$.

LEMMA 2.17. Given a K_0 -proximity space (X, δ) , the relation \ll satisfies the following properties;

- 1. $X \ll X$.
- 2. $A \ll B$ implies $A \subset B$.
- 3. $A \subset B \ll C \subset D$ implies $A \ll D$
- 4. $A \ll B_i$ for i = 1, 2, ..., n iff $A \ll \bigcap_{i=1}^n B$.
- 5. $A \ll B$ implies $(X B) \ll (X A)$.
- 6. $A \ll B$ implies there is C such that $A \ll C \ll D$.

LEMMA 2.18. If \ll is a binary relation on the power set of X satisfying Lemma 2.17 and δ is defined by that for each $x \in X$, $x \not \delta A$ or $x \not \delta B$ iff $A \ll (X - B)$, then δ is an K_0 -proximity on X. B is a δ -neighbourhood of A iff $A \ll B$.

DEFINITION 2.19. Let (X, δ_1) and (Y, δ_2) be two K_0 -proximity spaces. A function $f: X \mapsto Y$ is said to be a K_0 -proximity mapping iff for some $x \in X, x\delta_1 A, x\delta_1 B$ implies $f(x)\delta_2 f(A), f(x)\delta_2 f(B)$.

LEMMA 2.20. Let (X, δ_1) and (Y, δ_2) be two K_0 -proximity spaces and let $f: X \mapsto Y$ be a function. The following properties of f are equivalent:

- 1. f is a K_0 -proximity mapping.
- 2. $y \not \otimes_2 B$ implies $x \not \otimes_1 f^{-1}(B)$ for each $x \in f^{-1}(y)$. 3. $y \ll_2 B$ implies $x \ll_1 f^{-1}(B)$ for each $x \in f^{-1}(y)$.

LEMMA 2.21. A K_0 -proximity mapping $f: (X, \delta_1) \mapsto (Y, \delta_2)$ is continuous with respect to $\tau(\delta_1)$ and $\tau(\delta_2)$.

LEMMA 2.22. Given a function $f: X \mapsto (Y, \delta_1)$ the binary relation δ defined by $x\delta A$ iff $f(x)\delta_1 f(A)$, is the coarsest K_0 -proximity on X such that f is a K_0 -proximity mapping.

DEFINITION 2.23. Two K_0 -proximity spaces (X, δ_1) and (Y, δ_2) are said to be K_0 -proximity isomorphic iff there exists a one-to-one mapping

62

f from X onto Y such that both f and f^{-1} are K_0 -proximity mappings. Such a mapping f is called a K_0 -proximity isomorphism.

It follows from the Lemma 2.21 that two K_0 -proximity spaces are K_0 -proximity isomorphic iff they are homeomorphic.

DEFINITION 2.24. Let (X, δ) be a K_0 -proximity space, and $Y \subset X$. The induced K_0 -proximity δ_Y on Y is the coarsest K_0 -proximity such that the inclusion mapping $i: Y \mapsto X$ is a K_0 -proximity mapping.

The K_0 -proximity space (Y, δ_Y) is called the subspace of (X, δ) and δ_Y is called the induced K_0 -proximity.

3. Main Results

We next consider the product of a family $\{(X_{\alpha}, \delta_{\alpha}) : \alpha \in I\}$ of K_0 -proximity spaces. Let $X = \Pi\{X_{\alpha} : \alpha \in I\}$ denote the Cartesian product of these spaces. We define a product K_0 -proximity $\delta = \Pi\{\delta_{\alpha} : \alpha \in I\}$ on X as follows:

DEFINITION 3.1. Let $x \in X$ and A be a subset of X. Define $x\delta A$ iff for each finite cover $N = \{A_1, A_2, \ldots, A_n\}$ of A there is A_i such that $P_{\alpha}(x)\delta_{\alpha}P_{\alpha}(A_i)$ for each $\alpha \in I$, where P_{α} denotes the projection of Xonto X_{α} .

THEOREM 3.2. The binary relation δ defined in the Definition 3.1 is a K_0 -proximity on the product set X.

- *Proof.* 1. Since each δ_{α} is symmetric, so is δ and K_0 is satisfied.
- 2. Let A and B be subsets of X. If $x\delta A$ and $N = \{E_1, E_2, \ldots, E_n\}$ is a finite cover of $A \cup B$ then N is also a cover of A and there is some E_i in N such that $P_{\alpha}(x)\delta_{\alpha}P_{\alpha}(E_i)$ for each $\alpha \in I$. That is, $x\delta(A \cup B)$.

Suppose that $x \not \otimes A$ and $x \not \otimes B$. Then there is some finite covers $N = \{A_1, A_2, \ldots, A_m\}$ of A and $L = \{B_1, B_2, \ldots, B_n\}$ of B such that for each $A_i \in N$ there is $\alpha_i \in I$ with $P_{\alpha_i}(x) \not \otimes_{\alpha_i} P_{\alpha_i}(A_i)$ and for each $B_j \in L$ there is $\alpha_j \in I$ with $P_{\alpha_j}(x) \not \otimes_{\alpha_j} P_{\alpha_j}(B_j)$. $N \cup L =$ $\{A_1, A_2, \ldots, A_m, B_1, B_2, \ldots, B_n\}$ is a cover of $A \cup B$ and there is no member A_i or B_j in $N \cup L$ such that $P_{\alpha}(x) \not \otimes_{\alpha} P_{\alpha}(A_i)$ for each $\alpha \in I$ or $P_{\alpha}(x) \not \otimes_{\alpha} P_{\alpha}(\alpha)(B_j)$ for each $\alpha \in I$. Hence we have $x \not \otimes (A \cup B)$.

3. Since $N = \{\phi\}$ is a finite cover of ϕ and $P_{\alpha}(x) \land \delta_{\alpha} P_{\alpha}(\phi)$ for each $\alpha \in I$ we have $x \not \delta \phi$.

- 4. If $x \in A$ and $A = A_1 \cup A_2 \cup \cdots \cup A_n$ then there is some A_i such that $x \in A_i$. Hence for each $\alpha \in I$ we have $P_{\alpha}(x)\delta_{\alpha}P_{\alpha}(A_i)$, that is, $x\delta A$.
- 5. K_05 is clear by K_0 -proximity.

DEFINITION 3.3. Let $\{(X_{\alpha}, \delta_{\alpha}) \mid \alpha \in I\}$ be a family of K_0 -proximity spaces $(X_{\alpha}, \delta_{\alpha})$. The pair (X, δ) , where $X = \prod X_{\alpha}, \delta = \prod \delta_{\alpha}$, is called the product K_0 -proximity space of the family.

THEOREM 3.4. A mapping f from a K_0 -proximity space (Y, δ_1) to a product K_0 -proximity space $X = \prod X_{\alpha}$ is a K_0 -proximity mapping iff the composition $P_{\alpha} \circ f : Y \mapsto X_{\alpha}$ is a K_0 -proximity mapping for each projection P_{α} .

Proof. We need only prove that if each $P_{\alpha} \circ f$ is a K_0 -proximity mapping then so is f. Let $y \in Y$ and $B \subset Y$. And suppose that $y\delta_1B$ and $f(y) \not \delta f(B)$. Then there is some cover $N = \{A_1, \ldots, A_n\}$ of f(B)such that for each $A_i \in N$, $P_{\alpha_i}(f(y)) \not \delta_{\alpha_j} P_{\alpha_i}(A_i)$ for some $\alpha_i \in I$. Since $\{f^{-1}(A_1), \ldots, f^{-1}(A_n)\}$ is a cover of B and $y\delta_1B$, we have $y\delta_1f^{-1}(A_j)$ for some A_j . Hence $(P_{\alpha} \circ f(y))\delta_{\alpha}(P_{\alpha} \circ f(f^{-1}(A_j)))$ for each $\alpha \in I$ since $p_{\alpha} \circ f$ is a K_0 -proximity mapping. That is, $P_{\alpha}(f(y))\delta_{\alpha_j}P_{\alpha_j}(A_j)$. Therefore $f(y)\delta f(B)$, that is, f is a K_0 -proximity mapping. \Box

COROLLARY 3.5. The product K_0 -proximity $\delta = \Pi \delta_{\alpha}$ is the coarsest K_0 -proximity on $X = \Pi X_{\alpha}$ for which each projection P_{α} is a K_0 -proximity mapping.

In the following we shall introduce the concept of a quotient K_0 -proximity.

THEOREM 3.6. Let (X, δ) be a K_0 -proximity space and let $f : X \mapsto Y$ be a mapping, where Y is any set. If we define $y\delta_1B$ iff each f-saturated closed subset of X containing $f^{-1}(B)$ contains $f^{-1}(y)$, then δ_1 is a K_0 proximity on Y and f is a K_0 -proximity mapping. (or δ_1 is the finest K_0 -proximity on Y such that f is a K_0 -proximity mapping.)

Proof. We first show that δ_1 is a K_0 -proximity on Y.

1. K_0 1 is clear by definition.

64

2. Suppose that $y\delta_1(A\cup B)$ and $y\delta_1B$ then each f-saturated closed set F containing $f^{-1}(A\cup B)$ contains $f^{-1}(y)$ and there is f-saturated closed set G containing $f^{-1}(B)$ such that $G \cap f^{-1}(y) = \phi$.

Consequently each f-saturated closed set H containing $f^{-1}(A)$ contains $f^{-1}(y)$, since if $H \cap f^{-1}(y) = \phi$ then the closed saturated $H \cup G$ containing $f^{-1}(A) \cup f^{-1}(B)$ does not contain $f^{-1}(y)$ and it is a contradiction. Hence $y\delta_1A$. Suppose that $y\delta_1A$. Then each fsaturated closed set F containing $f^{-1}(A)$ contains $f^{-1}(y)$. Hence each f-saturated closed set H containing $f^{-1}(A) \cup f^{-1}(B)$ also contains $f^{-1}(y)$. That is, $y\delta_1(A \cup B)$.

- 3. Since the empty set ϕ is a *f*-saturated closed set containing $\phi = f^{-1}(\phi)$ such that $f^{-1}(y) \cap \phi = \phi$ for each y in Y, we have $y \not{\delta}_1 \phi$ for each y in Y.
- 4. If $y \in A$ then $f^{-1}(y) \subset f^{-1}(A)$ and each f-saturated closed set F containing $f^{-1}(A)$ also contains $f^{-1}(y)$. Therefore we have $y\delta_1A$.
- 5. K_05 is clear.

THEOREM 3.7. In the Theorem 3.6, δ_1 is the finest K_0 -proximity on Y such that f is a K_0 -proximity mapping.

Proof. Let δ_0 be any K_0 -proximity on Y such that f is a K_0 -proximity mapping. And let $y \phi_0 B$. Then $y \phi_0 \overline{B}$ and we have $x \phi_0 f^{-1}(\overline{B})$ for each xin $f^{-1}(y)$, that is, $f^{-1}(y) \cap f^{-1}(\overline{B}) = \phi$. Since $f^{-1}(\overline{B})$ is a f-saturated closed set containing $f^{-1}(B), y \phi_1 B$.

DEFINITION 3.8. Let (X, δ) be a K_0 -proximity space and let $f : X \mapsto Y$ be a mapping. The finest K_0 -proximity δ_1 on Y such that f is a K_0 -proximity mapping is called the quotient K_0 -proximity for Y relative to f and the K_0 -proximity δ on X.

THEOREM 3.9. Let f be a K_0 -proximity mapping of a space X onto a space Y and let Y have the quotient K_0 -proximity. Then a mapping g on Y to a K_0 -proximity space Z is a K_0 -proximity mapping iff the composition $g \circ f$ is a K_0 -proximity mapping.

Proof. Let $g \circ f$ be a K_0 -proximity mapping and let $g(y) \not \delta_Z g(B)$ then $g(y) \not \delta_Z \overline{g(B)}$.

Since $g \circ f$ is a K_0 -proximity mapping, for each x in $f^{-1}g^{-1}(g(y))$, $x \not \otimes_X f^{-1}g^{-1}(\overline{g(B)})$ or for each x in $f^{-1}(y)$, $x \not \otimes_X f^{-1}g^{-1}(\overline{g(B)}) \supset f^{-1}(B)$

or $x \not {\delta}_X f^{-1}(B)$ and $f^{-1}(g^{-1}(\overline{g(B)}))$ is a *f*-saturated closed set containing $f^{-1}(B)$ in X. Hence $y \not {\delta}_X B$.

The converse is clear.

References

- V. A. Efremovič, *Infinitesimal spaces*, Dokl. Akad. Nauk SSSR, 76 (1951), 341– 343.
- [2] V. A. Efremovič, The geometry of proximity I, Mat. Sb. **31**(73) (1952), 189–200.
- [3] Y. M. Smirov, On proximity spaces, Mat. Sb. **31**(73) (1952), 543–574.
- [4] Y. M. Smirov, On proximity spaces, Mat. Sb. 31(73), 543–574(in Russian); English translation in Am. math. Soc Transl. Ser. 2, 38 (1972), 5–35; MR 14, 1107.
- [5] S. Leader, On Products of proximity spaces, Math. Ann, 154 (1964), 185–194.
- [6] C. Y. Kim, On the R-Proximities, Yonsei Nochong, Vol 13 (1976), 1–5.
- [7] Tadir Huasin, Topology and Maps, Mcmaseter University Hamilton, 1977.
- [8] S. H. Han, The cartesian products on extended Jiang subgroup, J, of Kangweon-Kyungki Math. 2 (1994), 73–77.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea