A DECODING METHOD FOR THE BINARY GOLAY CODE

Jae Yeon Yoon and Young Ho Park

Abstract

We present a simple but new way of decoding the binary Golay code.

1. Introduction

The binay Golay code G_{23} is an important example of a perfect code. It has length 23, dimension 12, and minimum distance 7. Many properties of G_{23} can be deduced from those of the extended Golay code G_{24} having generator matrix $G=\left[I_{12} \mid A\right]$, where I_{12} is the identity matrix of rank 12 and

$$
A=\left[\begin{array}{llllllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The binary Golay code G_{23} is obtained from G_{24} simply by omitting the last coordinate position from all codewords. In fact, we can omit any one of coordinate positions by the following theorem ([5], [7]).

[^0]Theorem 1.1. A binary [23, 12, 7]-code is unique (up to equivalence).
G_{23} can be constructed in a more natural way as a cyclic code as follows. Let $R=\mathbb{F}_{2}[x] /\left(x^{23}-1\right)$. The factorization of $x^{23}-1$ into irreducibles in $\mathbb{F}_{2}[x]$ is given by

$$
x^{23}-1=(x-1) g_{1}(x) g_{2}(x)
$$

with

$$
\begin{aligned}
& g_{1}(x)=x^{11}+x^{10}+x^{6}+x^{5}+x^{4}+x^{2}+1 \\
& g_{2}(x)=x^{11}+x^{9}+x^{7}+x^{6}+x^{5}+x+1
\end{aligned}
$$

The cyclic codes $C_{1}=\left\langle g_{1}(x)\right\rangle \subset R$ and $C_{2}=\left\langle g_{2}(x)\right\rangle \subset R$ can be shown to be all equivalent to G_{23}. The idempotent generator for C_{1} may be taken to be

$$
n(x)=x^{5}+x^{7}+x^{10}+x^{11}+x^{14}+x^{15}+x^{17}+x^{19}+x^{20}+x^{21}+x^{22}
$$

and the idempotent generator for C_{2} to be

$$
q(x)=x+x^{2}+x^{3}+x^{4}+x^{6}+x^{8}+x^{9}+x^{12}+x^{13}+x^{16}+x^{18} .
$$

Since the order of 2 modulo 23 is 12 , the quadratic residues Q and nonresidues N modulo 23 are

$$
\begin{aligned}
Q & =\langle 2\rangle=\{1,2,4,8,16,9,18,13,3,6,12\} \\
N & =5\langle 2\rangle=\{5,10,20,17,11,22,21,19,15,7,14\} .
\end{aligned}
$$

Note that the exponents which appear in $q(x)$ are exactly the quadratic residues and those in $n(x)$ are quadratic nonresidues. Thus G_{23} is also a quadratic residue code. We refer [4], [3], [7], [8] for details about cyclic codes or quadratic codes.

2. The Group of a Code

The group of a code C is useful in determining the structure of the code, computing weight distributions, classifying codes, and devising decoding algorithms.

If $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ is a vector and ϕ is a permutation on n objects, then ϕ sends \mathbf{v} into $\mathbf{v} \phi=\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ with $v_{i}=w_{i \phi}$. Every permutation of the n coordinate positions sends C onto an equivalent $[n, k]$-code or onto itself. It is easy to check that the set of all permutations that send
C onto itself is a group. This group is called the group of C. It is denoted by $G(C)$.

Clearly any element in $G(C)$ applied to the coordinate positions of any generator matrix of C yields another generator matrix of C. The group of C is a subgroup of S_{n}.

We can now say that a length n code C is cyclic if the group of C contains the cyclic group of order n generated by $\sigma=(0,1, \ldots, n-1)$. However, $G(C)$ might be, and usually is, larger than this as we see from the following theorem ([7]).

Theorem 2.1. Let C be an odd length n binary cyclic code. Let $\sigma \in S_{n}$ be the cyclic shift, that is, $(i) \sigma=(i+1)(\bmod n)$ and $\tau \in S_{n}$ be the permutation defined by $(i) \tau=2 i(\bmod n)$. Both σ and τ are considered to act on $0,1, \ldots, n-1$. Let m be the order $2 \bmod n$. Then $\tau \sigma \tau^{-1}=\sigma^{2^{m-1}}$ and $\tau^{-1} \sigma^{i} \tau=\sigma^{2 i}$ for $0 \leq i \leq n-1$. Furthermore, τ is in $G(C)$, and hence the group P generated by σ and τ is a subgroup of $G(C)$. The order of P is $m n$.

3. A decoding method of the Golay code

There are many known decoding methods for G_{23} ([1], [2], [6]). For example, being a cyclic code or, even better, a quadratic residue code, G_{23} can be decoded by the permutation decoding, error-traping decoding or the covering polynomials method. It can be decoded also by using Hexacode. Here we present a simple decoding method using the generator matrix.

Definition 3.1. If G is a generator matrix of an $[n, k]$-code C, then any set of k columns of G that are independent is called an information set of C.

Note that any permutation π in $G(C)$ sends an information set into an information set. We may take the information set for G_{23} to be $\{11,12, \ldots, 22\}$ for an appropriate generator matrix.

Theorem 3.2. Let $\sigma: i \rightarrow i+1(\bmod 23)$, and $\tau: i \rightarrow 2 i(\bmod 23)$. Then $P=\langle\sigma, \tau\rangle$ is a subgroup of $G\left(G_{23}\right)$ such that for any error vector e of weight ≤ 3, some $\pi_{i} \in P$ moves all the 1 's in e out of the information places.

Proof. Let $\mathbf{e}=e_{0} e_{1} \cdots e_{22}$ be an error vector of weight ≤ 3. We need to show that some $\pi \in P$ moves all the 1's in \mathbf{e} out of the information places.

Applying cyclic shift σ, we may assume that $E=\left\{i \mid e_{i}=1\right\}=$ $\{0, l, k\}$, without loss of generality. As before, the quadratic residues Q and nonresidues N modulo 23 are

$$
\begin{aligned}
Q & =\{1,2,4,8,16,9,18,13,3,6,12\}=\langle 2\rangle \\
N & =\{5,10,20,17,11,22,21,19,15,7,14\}=5\langle 2\rangle .
\end{aligned}
$$

Therefore, if $l \in Q$, then there is some i such that $2^{i} l=1$ and if $l \in N$, then there is some i such that $2^{i} l=5$. Thus by applying τ^{i}, we may assume that $E=\{0,1, k\}$ or $E=\{0,5, k\}$. Since $\sigma \in P$, it suffices to show that there is i such that $E \tau^{i}=\{0, a, b\}(a<b)$ satisfying $a>11$ or $b-a>11$ or $22-b>11$.

1. Suppose $E=\{0,1, k\}$. If $k \leq 10$ or $k \geq 13$, then we are done. If $k=10$ or $k=11$, then apply τ to E to get $E \tau=\{0,2,22\}$ or $\{0,2,1\}$.
2. Suppose $E=\{0,5, k\}$. If $k \leq 10$ of $k \geq 17$, then we are done, again. For other cases, one more application of τ is enough as we can see in the table below.

E	$E \tau$
$\{0,5,11\}$	$\{0,10,22\}$
$\{0,5,12\}$	$\{0,1,10\}$
$\{0,5,13\}$	$\{0,3,10\}$
$\{0,5,14\}$	$\{0,5,10\}$
$\{0,5,15\}$	$\{0,7,10\}$
$\{0,5,16\}$	$\{0,9,19\}$

Suppose a codeword $\mathbf{x}=x_{0} x_{1} \cdots x_{22}$ is transmitted, an error vector $\mathbf{e}=e_{0} e_{1} \cdots e_{22}$ occurs with weight ≤ 3, and the vector $\mathbf{y}=\mathbf{x}+\mathbf{e}=$ $y_{0} y_{1} \cdots y_{22}$ is received. Let G be the generator matrix of G_{23} such that $\{11,12, \cdots, 22\}$ is an information set. Hence $\mathbf{x}_{L}=x_{0} x_{1} \cdots x_{10}$ are the check symbols, and $\mathbf{x}_{R}=x_{11} \cdots x_{22}$ are information symbols. Write $G=\left(G_{L} \mid G_{R}\right)$, where G_{L} is a (12×11)-matrix and G_{R} is a (12×12) matrix. Then G_{R} is invertible.

Now there exists some $\pi_{i} \in P$ such that $\mathbf{y}_{i}=\mathbf{y} \pi_{i}$ has no errors in the information places. Since $\left(\mathbf{y}_{i}\right)_{R}$ is the information symbols, there exists
a unique codeword \mathbf{w} such that $\mathbf{w}_{R}=\left(\mathbf{y}_{i}\right)_{R}$. In fact, $\mathbf{w}=\mathbf{x} \pi_{i}$ since $\mathbf{x} \pi_{i} \in G_{23}$ and $d\left(\mathbf{x} \pi_{i}, \mathbf{y} \pi_{i}\right)=d(\mathbf{x}, \mathbf{y}) \leq 3$. Recall that the encoding map $\mathbf{u} \mapsto \mathbf{u} G$ from \mathbb{F}_{2}^{12} to G_{23} is bijective. Thus there exists a unique vector $\mathbf{u} \in \mathbb{F}_{2}^{12}$ such that $\mathbf{u} G=\mathbf{w}$, and then we have

$$
\left(\mathbf{u} G_{L} \mid \mathbf{u} G_{R}\right)=\mathbf{u} G=\mathbf{w}=\left(\mathbf{w}_{L} \mid \mathbf{w}_{R}\right)=\left(\mathbf{w}_{L} \mid\left(\mathbf{y}_{i}\right)_{R}\right) .
$$

Hence $\mathbf{u}=\left(\mathbf{y}_{i}\right)_{R} G_{R}^{-1}$ and $\mathbf{w}_{L}=\mathbf{u} G_{L}=\left(\mathbf{y}_{i}\right)_{R} G_{R}^{-1} G_{L}$. Consequently,

$$
\mathbf{x}=\mathbf{w} \pi_{i}^{-1}=\left(\left(\mathbf{y}_{i}\right)_{R} G_{R}^{-1} G_{L} \mid\left(\mathbf{y}_{i}\right)_{R}\right) \pi_{i} .
$$

The decoding procedure is as follows. When \mathbf{y} is received, each $\mathbf{y}_{i}=$ $\mathbf{y} \pi_{i}$ and

$$
\mathbf{w}_{L}=\mathbf{y}_{i} G_{R}^{-1} G_{L}
$$

in turn is computed, until an i is found for which $d\left(\mathbf{w}_{L},\left(\mathbf{y}_{i}\right)_{L}\right) \leq 3$. Then the errors are all in the first 11 places of $\mathbf{y} \pi_{i}$, and we decode \mathbf{y} as

$$
\mathbf{x}=\left(\mathbf{w}_{L} \mid\left(\mathbf{y}_{i}\right)_{R}\right) \pi_{i}^{-1} .
$$

If $d\left(\mathbf{w}_{L}-\left(\mathbf{y}_{i}\right)_{L}\right)>3$ for all i, we conclude that more than 3 errors have occurred.

Here we provide an explicit example. The generator polynomial for the cyclic code G_{23} is

$$
g_{1}(x)=x^{11}+x^{10}+x^{6}+x^{5}+x^{4}+x^{2}+1 .
$$

This polynomial determines the generator matrix $G=\left[G_{L} \mid G_{R}\right]$ for G_{23} with

$$
G_{L}=\left[\begin{array}{lllllllllll}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
G_{R}=\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

and so

$$
D:=G_{R}^{-1} G_{L}=\left[\begin{array}{ccccccccccc}
1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

Suppose that $\mathbf{x}=(01000010110 \mid 1111000000000)$ was sent and the vector $\mathbf{y}=(01010010110 \mid 1110010000000)$ is received. Since $\mathbf{y}_{R} D=11100011011$ and $d\left(\mathbf{y}_{L}, \mathbf{y}_{R} D\right)=6, \mathbf{y}$ have some errors. We compute $\mathbf{y} \pi_{i}$ for $\pi_{i} \in P=$ $\langle\sigma, \tau\rangle$ and $\mathbf{w}_{L}=\left(\mathbf{y}_{i}\right)_{R} D$ until an i is found for which $d\left(\mathbf{w}_{L},\left(\mathbf{y}_{i}\right)_{L}\right) \leq 3$. The existence of such π_{i} is guaranteed by Theorem 3.2. Note that $E=\{3,14,16\}$ and

$$
E \sigma^{9} \tau=\{12,0,2\} \tau=\{1,0,4\}
$$

At some stage, with $\pi_{i}=\sigma^{9} \tau$, we will compute $\mathbf{y}_{i}=\mathbf{y} \pi_{i}=\mathbf{y} \sigma^{9} \tau=$ (01001001000|101000101110) and $\mathbf{w}_{L}=\mathbf{y}_{i} D=10000001000$ and find
that $d\left(\mathbf{w}_{L},\left(\mathbf{y}_{i}\right)_{L}\right)=3$. Thus we decode \mathbf{y} as

$$
\begin{aligned}
\mathbf{x} & =\left(\mathbf{w}_{L} \mid\left(\mathbf{y}_{i}\right)_{R}\right) \pi_{i}^{-1}=(10000001000 \mid 101000101110) \tau^{-1} \sigma^{-9} \\
& =(10000000001 \mid 000010110111) \sigma^{-9} \\
& =(01000010110 \mid 111100000000) .
\end{aligned}
$$

References

[1] N.J.A.Sloane and J.H.Conway, Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice, PGIT 32, 1986, 41-50.
[2] J.H.Conway and M.A.Odlyzko, Sphere Packings, Springer-Verlag, 1993.
[3] R.Hill, A First Course in Coding Theory, Oxford Alllide Mathematics and Computing Science Series, 1986.
[4] F.J.Macwilliams and N.J.A.Sloane, The Theory of Error-correcting Codes, North-Holland, 1977.
[5] V.Pless, On the uniqueness of the Golay codes, JCT5, 1968, 215-228.
[6] V.Pless, Decoding the Golay codes, PGLT32, 1986, 561-567.
[7] V.Pless, Introduction to the Theory of Error-Correcting Codes, A WileyInterscience Publication, 1989.
[8] J.Y.Yoon, On the binary Golay codes, Master's thesis, Kangwon National University, 2002.

Department of Mathematics
Kangwon National University
Chunchoen 200-701, Korea
E-mail: yhpark@kangwon.ac.kr

[^0]: Received February 14, 2002.
 2000 Mathematics Subject Classification: 94B35, 94B15.
 Key words and phrases: binary Golay code, decoding.

