Kangweon-Kyungki Math. Jour. 10 (2002), No. 1, pp. 89-95

A DECODING METHOD FOR THE BINARY GOLAY CODE

JAE YEON YOON AND YOUNG HO PARK

ABSTRACT. We present a simple but new way of decoding the binary Golay code.

1. Introduction

The binay Golay code G_{23} is an important example of a perfect code. It has length 23, dimension 12, and minimum distance 7. Many properties of G_{23} can be deduced from those of the extended Golay code G_{24} having generator matrix $G = [I_{12} | A]$, where I_{12} is the identity matrix of rank 12 and

	0	1	1	1	1	1	1	1	1	1	1	1]
	1	1	1	0	1	1	1	0	0	0	1	0
	1	1	0	1	1	1	0	0	0	1	0	1
	1	0	1	1	1	0	0	0	1	0	1	1
	1	1	1	1	0	0	0	1	0	1	1	0
4 —	1	1	1	0	0	0	1	0	1	1	0	1
А —	1	1	0	0		1	0	1	1	0	1	1
	1	0	0	0	1	0	1	1	0	1	1	1
	1	0	0	1	0	1	1	0	1	1	1	0
	1	0	1	0	1	1	0	1	1	1	0	0
	1	1	0	1	1		1	1	1	0	0	0
	1	0	1	1	0	1	1	1	0	0	0	1

The binary Golay code G_{23} is obtained from G_{24} simply by omitting the last coordinate position from all codewords. In fact, we can omit any one of coordinate positions by the following theorem ([5], [7]).

Received February 14, 2002.

2000 Mathematics Subject Classification: 94B35, 94B15.

Key words and phrases: binary Golay code, decoding.

Jae Yeon Yoon and Young Ho Park

THEOREM 1.1. A binary [23, 12, 7]-code is unique (up to equivalence).

 G_{23} can be constructed in a more natural way as a cyclic code as follows. Let $R = \mathbb{F}_2[x]/(x^{23}-1)$. The factorization of $x^{23}-1$ into irreducibles in $\mathbb{F}_2[x]$ is given by

$$x^{23} - 1 = (x - 1)g_1(x)g_2(x)$$

with

$$g_1(x) = x^{11} + x^{10} + x^6 + x^5 + x^4 + x^2 + 1,$$

$$g_2(x) = x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1.$$

The cyclic codes $C_1 = \langle g_1(x) \rangle \subset R$ and $C_2 = \langle g_2(x) \rangle \subset R$ can be shown to be all equivalent to G_{23} . The idempotent generator for C_1 may be taken to be

$$n(x) = x^{5} + x^{7} + x^{10} + x^{11} + x^{14} + x^{15} + x^{17} + x^{19} + x^{20} + x^{21} + x^{22}$$

and the idempotent generator for C_2 to be

$$q(x) = x + x^{2} + x^{3} + x^{4} + x^{6} + x^{8} + x^{9} + x^{12} + x^{13} + x^{16} + x^{18}.$$

Since the order of 2 modulo 23 is 12, the quadratic residues Q and nonresidues N modulo 23 are

$$Q = \langle 2 \rangle = \{1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12\},$$

$$N = 5\langle 2 \rangle = \{5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14\}.$$

Note that the exponents which appear in q(x) are exactly the quadratic residues and those in n(x) are quadratic nonresidues. Thus G_{23} is also a quadratic residue code. We refer [4], [3], [7], [8] for details about cyclic codes or quadratic codes.

2. The Group of a Code

The group of a code C is useful in determining the structure of the code, computing weight distributions, classifying codes, and devising decoding algorithms.

If $\mathbf{v} = (v_1, \ldots, v_n)$ is a vector and ϕ is a permutation on n objects, then ϕ sends \mathbf{v} into $\mathbf{v}\phi = \mathbf{w} = (w_1, \ldots, w_n)$ with $v_i = w_{i\phi}$. Every permutation of the n coordinate positions sends C onto an equivalent [n, k]-code or onto itself. It is easy to check that the set of all permutations that send

C onto itself is a group. This group is called the group of C. It is denoted by G(C).

Clearly any element in G(C) applied to the coordinate positions of any generator matrix of C yields another generator matrix of C. The group of C is a subgroup of S_n .

We can now say that a length n code C is cyclic if the group of C contains the cyclic group of order n generated by $\sigma = (0, 1, \ldots, n-1)$. However, G(C) might be, and usually is, larger than this as we see from the following theorem ([7]).

THEOREM 2.1. Let C be an odd length n binary cyclic code. Let $\sigma \in S_n$ be the cyclic shift, that is, $(i)\sigma = (i+1) \pmod{n}$ and $\tau \in S_n$ be the permutation defined by $(i)\tau = 2i \pmod{n}$. Both σ and τ are considered to act on $0, 1, \ldots, n-1$. Let m be the order 2 mod n. Then $\tau \sigma \tau^{-1} = \sigma^{2^{m-1}}$ and $\tau^{-1}\sigma^{i}\tau = \sigma^{2i}$ for $0 \leq i \leq n-1$. Furthermore, τ is in G(C), and hence the group P generated by σ and τ is a subgroup of G(C). The order of P is mn.

3. A decoding method of the Golay code

There are many known decoding methods for G_{23} ([1], [2], [6]). For example, being a cyclic code or, even better, a quadratic residue code, G_{23} can be decoded by the permutation decoding, error-traping decoding or the covering polynomials method. It can be decoded also by using Hexacode. Here we present a simple decoding method using the generator matrix.

DEFINITION 3.1. If G is a generator matrix of an [n, k]-code C, then any set of k columns of G that are independent is called an *information* set of C.

Note that any permutation π in G(C) sends an information set into an information set. We may take the information set for G_{23} to be $\{11, 12, \ldots, 22\}$ for an appropriate generator matrix.

THEOREM 3.2. Let $\sigma : i \to i+1 \pmod{23}$, and $\tau : i \to 2i \pmod{23}$. Then $P = \langle \sigma, \tau \rangle$ is a subgroup of $G(G_{23})$ such that for any error vector e of weight ≤ 3 , some $\pi_i \in P$ moves all the 1's in e out of the information places. *Proof.* Let $\mathbf{e} = e_0 e_1 \cdots e_{22}$ be an error vector of weight ≤ 3 . We need to show that some $\pi \in P$ moves all the 1's in \mathbf{e} out of the information places.

Applying cyclic shift σ , we may assume that $E = \{i \mid e_i = 1\} = \{0, l, k\}$, without loss of generality. As before, the quadratic residues Q and nonresidues N modulo 23 are

$$Q = \{1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12\} = \langle 2 \rangle$$

$$N = \{5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14\} = 5\langle 2 \rangle.$$

Therefore, if $l \in Q$, then there is some *i* such that $2^i l = 1$ and if $l \in N$, then there is some *i* such that $2^i l = 5$. Thus by applying τ^i , we may assume that $E = \{0, 1, k\}$ or $E = \{0, 5, k\}$. Since $\sigma \in P$, it suffices to show that there is *i* such that $E\tau^i = \{0, a, b\}$ (a < b) satisfying a > 11 or b - a > 11 or 22 - b > 11.

- 1. Suppose $E = \{0, 1, k\}$. If $k \le 10$ or $k \ge 13$, then we are done. If k = 10 or k = 11, then apply τ to E to get $E\tau = \{0, 2, 22\}$ or $\{0, 2, 1\}$.
- 2. Suppose $E = \{0, 5, k\}$. If $k \leq 10$ of $k \geq 17$, then we are done, again. For other cases, one more application of τ is enough as we can see in the table below.

E	$E\tau$
$\{0, 5, 11\}$	$\{0, 10, 22\}$
$\{0, 5, 12\}$	$\{0, 1, 10\}$
$\{0, 5, 13\}$	$\{0, 3, 10\}$
$\{0, 5, 14\}$	$\{0, 5, 10\}$
$\{0, 5, 15\}$	$\{0, 7, 10\}$
$\{0, 5, 16\}$	$\{0, 9, 19\}$

Suppose a codeword $\mathbf{x} = x_0 x_1 \cdots x_{22}$ is transmitted, an error vector $\mathbf{e} = e_0 e_1 \cdots e_{22}$ occurs with weight ≤ 3 , and the vector $\mathbf{y} = \mathbf{x} + \mathbf{e} = y_0 y_1 \cdots y_{22}$ is received. Let G be the generator matrix of G_{23} such that $\{11, 12, \cdots, 22\}$ is an information set. Hence $\mathbf{x}_L = x_0 x_1 \cdots x_{10}$ are the check symbols, and $\mathbf{x}_R = x_{11} \cdots x_{22}$ are information symbols. Write $G = (G_L | G_R)$, where G_L is a (12×11) -matrix and G_R is a (12×12) -matrix. Then G_R is invertible.

Now there exists some $\pi_i \in P$ such that $\mathbf{y}_i = \mathbf{y}\pi_i$ has no errors in the information places. Since $(\mathbf{y}_i)_R$ is the information symbols, there exists

92

a unique codeword \mathbf{w} such that $\mathbf{w}_R = (\mathbf{y}_i)_R$. In fact, $\mathbf{w} = \mathbf{x}\pi_i$ since $\mathbf{x}\pi_i \in G_{23}$ and $d(\mathbf{x}\pi_i, \mathbf{y}\pi_i) = d(\mathbf{x}, \mathbf{y}) \leq 3$. Recall that the encoding map $\mathbf{u} \mapsto \mathbf{u}G$ from \mathbb{F}_2^{12} to G_{23} is bijective. Thus there exists a unique vector $\mathbf{u} \in \mathbb{F}_2^{12}$ such that $\mathbf{u}G = \mathbf{w}$, and then we have

$$(\mathbf{u}G_L|\mathbf{u}G_R) = \mathbf{u}G = \mathbf{w} = (\mathbf{w}_L|\mathbf{w}_R) = (\mathbf{w}_L|(\mathbf{y}_i)_R)$$

Hence $\mathbf{u} = (\mathbf{y}_i)_R G_R^{-1}$ and $\mathbf{w}_L = \mathbf{u} G_L = (\mathbf{y}_i)_R G_R^{-1} G_L$. Consequently,

$$\mathbf{x} = \mathbf{w}\pi_i^{-1} = ((\mathbf{y}_i)_R G_R^{-1} G_L | (\mathbf{y}_i)_R)\pi_i.$$

The decoding procedure is as follows. When \mathbf{y} is received, each $\mathbf{y}_i = \mathbf{y}\pi_i$ and

$$\mathbf{w}_L = \mathbf{y}_i G_R^{-1} G_L$$

in turn is computed, until an *i* is found for which $d(\mathbf{w}_L, (\mathbf{y}_i)_L) \leq 3$. Then the errors are all in the first 11 places of $\mathbf{y}\pi_i$, and we decode \mathbf{y} as

$$\mathbf{x} = (\mathbf{w}_L | (\mathbf{y}_i)_R) \pi_i^{-1}$$

If $d(\mathbf{w}_L - (\mathbf{y}_i)_L) > 3$ for all *i*, we conclude that more than 3 errors have occurred.

Here we provide an explicit example. The generator polynomial for the cyclic code G_{23} is

$$g_1(x) = x^{11} + x^{10} + x^6 + x^5 + x^4 + x^2 + 1.$$

This polynomial determines the generator matrix $G = [G_L|G_R]$ for G_{23} with

Jae Yeon Yoon and Young Ho Park

and so

Suppose that $\mathbf{x} = (01000010110|111100000000)$ was sent and the vector $\mathbf{y} = (01010010110|111001000000)$ is received. Since $\mathbf{y}_R D = 11100011011$ and $d(\mathbf{y}_L, \mathbf{y}_R D) = 6$, \mathbf{y} have some errors. We compute $\mathbf{y}\pi_i$ for $\pi_i \in P = \langle \sigma, \tau \rangle$ and $\mathbf{w}_L = (\mathbf{y}_i)_R D$ until an i is found for which $d(\mathbf{w}_L, (\mathbf{y}_i)_L) \leq 3$. The existence of such π_i is guaranteed by Theorem 3.2. Note that $E = \{3, 14, 16\}$ and

$$E\sigma^9\tau = \{12, 0, 2\}\tau = \{1, 0, 4\}.$$

At some stage, with $\pi_i = \sigma^9 \tau$, we will compute $\mathbf{y}_i = \mathbf{y} \pi_i = \mathbf{y} \sigma^9 \tau = (01001001000|101000101110)$ and $\mathbf{w}_L = \mathbf{y}_i D = 10000001000$ and find

that $d(\mathbf{w}_L, (\mathbf{y}_i)_L) = 3$. Thus we decode \mathbf{y} as ()) = 1......

$$\mathbf{x} = (\mathbf{w}_L | (\mathbf{y}_i)_R) \pi_i^{-1} = (1000001000 | 101000101110) \tau^{-1} \sigma^{-9}$$

 $= (1000000001|000010110111)\sigma^{-9}$

= (01000010110|111100000000).

References

- [1] N.J.A.Sloane and J.H.Conway, Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice, PGIT 32, 1986, 41-50.
- [2] J.H.Conway and M.A.Odlyzko, Sphere Packings, Springer-Verlag, 1993.
- [3] R.Hill, A First Course in Coding Theory, Oxford Alllide Mathematics and Computing Science Series, 1986.
- [4] F.J.Macwilliams and N.J.A.Sloane, The Theory of Error-correcting Codes, North-Holland, 1977.
- [5] V.Pless, On the uniqueness of the Golay codes, JCT5, 1968, 215–228.
- [6] V.Pless, Decoding the Golay codes, PGLT32, 1986, 561–567.
- [7] V.Pless, Introduction to the Theory of Error-Correcting Codes, A Wiley-Interscience Publication, 1989.
- [8] J.Y.Yoon, On the binary Golay codes, Master's thesis, Kangwon National University, 2002.

Department of Mathematics Kangwon National University Chunchoen 200-701, Korea *E-mail*: yhpark@kangwon.ac.kr