
Kangweon-Kyungki Math. Jour. 10 (2002), No. 1, pp. 89–95

A DECODING METHOD FOR THE BINARY GOLAY

CODE

Jae Yeon Yoon and Young Ho Park

Abstract. We present a simple but new way of decoding the binary
Golay code.

1. Introduction

The binay Golay code G23 is an important example of a perfect code.
It has length 23, dimension 12, and minimum distance 7. Many proper-
ties of G23 can be deduced from those of the extended Golay code G24

having generator matrix G = [I12 | A], where I12 is the identity matrix
of rank 12 and

A =




0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1




The binary Golay code G23 is obtained from G24 simply by omitting the
last coordinate position from all codewords. In fact, we can omit any
one of coordinate positions by the following theorem ([5], [7]).
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Theorem 1.1. A binary [23, 12, 7]-code is unique (up to equivalence).

G23 can be constructed in a more natural way as a cyclic code as
follows. Let R = F2[x]/(x23 − 1). The factorization of x23 − 1 into
irreducibles in F2[x] is given by

x23 − 1 = (x− 1)g1(x)g2(x)

with

g1(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1,

g2(x) = x11 + x9 + x7 + x6 + x5 + x + 1.

The cyclic codes C1 = 〈g1(x)〉 ⊂ R and C2 = 〈g2(x)〉 ⊂ R can be shown
to be all equivalent to G23. The idempotent generator for C1 may be
taken to be

n(x) = x5 + x7 + x10 + x11 + x14 + x15 + x17 + x19 + x20 + x21 + x22

and the idempotent generator for C2 to be

q(x) = x + x2 + x3 + x4 + x6 + x8 + x9 + x12 + x13 + x16 + x18.

Since the order of 2 modulo 23 is 12, the quadratic residues Q and
nonresidues N modulo 23 are

Q = 〈2〉 = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12},
N = 5〈2〉 = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}.

Note that the exponents which appear in q(x) are exactly the quadratic
residues and those in n(x) are quadratic nonresidues. Thus G23 is also a
quadratic residue code. We refer [4], [3], [7], [8] for details about cyclic
codes or quadratic codes.

2. The Group of a Code

The group of a code C is useful in determining the structure of the
code, computing weight distributions, classifying codes, and devising
decoding algorithms.

If v = (v1, . . . , vn) is a vector and φ is a permutation on n objects, then
φ sends v into vφ = w = (w1, . . . , wn) with vi = wiφ. Every permutation
of the n coordinate positions sends C onto an equivalent [n, k]-code or
onto itself. It is easy to check that the set of all permutations that send
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C onto itself is a group. This group is called the group of C. It is denoted
by G(C).

Clearly any element in G(C) applied to the coordinate positions of
any generator matrix of C yields another generator matrix of C. The
group of C is a subgroup of Sn.

We can now say that a length n code C is cyclic if the group of C
contains the cyclic group of order n generated by σ = (0, 1, . . . , n − 1).
However, G(C) might be, and usually is, larger than this as we see from
the following theorem ([7]).

Theorem 2.1. Let C be an odd length n binary cyclic code. Let
σ ∈ Sn be the cyclic shift, that is, (i)σ = (i + 1) (mod n) and τ ∈ Sn

be the permutation defined by (i)τ = 2i (mod n). Both σ and τ are
considered to act on 0, 1, . . . , n− 1. Let m be the order 2 mod n. Then
τστ−1 = σ2m−1

and τ−1σiτ = σ2i for 0 ≤ i ≤ n − 1. Furthermore, τ is
in G(C), and hence the group P generated by σ and τ is a subgroup of
G(C). The order of P is mn.

3. A decoding method of the Golay code

There are many known decoding methods for G23 ([1], [2], [6]). For
example, being a cyclic code or, even better, a quadratic residue code,
G23 can be decoded by the permutation decoding, error-traping decod-
ing or the covering polynomials method. It can be decoded also by
using Hexacode. Here we present a simple decoding method using the
generator matrix.

Definition 3.1. If G is a generator matrix of an [n, k]-code C, then
any set of k columns of G that are independent is called an information
set of C.

Note that any permutation π in G(C) sends an information set into
an information set. We may take the information set for G23 to be
{11, 12, . . . , 22} for an appropriate generator matrix.

Theorem 3.2. Let σ : i → i + 1 (mod 23), and τ : i → 2i (mod 23).
Then P = 〈σ, τ〉 is a subgroup of G(G23) such that for any error vector e
of weight ≤ 3, some πi ∈ P moves all the 1’s in e out of the information
places.
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Proof. Let e = e0e1 · · · e22 be an error vector of weight ≤ 3. We need
to show that some π ∈ P moves all the 1’s in e out of the information
places.

Applying cyclic shift σ, we may assume that E = {i | ei = 1} =
{0, l, k}, without loss of generality. As before, the quadratic residues Q
and nonresidues N modulo 23 are

Q = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12} = 〈2〉
N = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14} = 5〈2〉.

Therefore, if l ∈ Q, then there is some i such that 2il = 1 and if l ∈ N ,
then there is some i such that 2il = 5. Thus by applying τ i, we may
assume that E = {0, 1, k} or E = {0, 5, k}. Since σ ∈ P , it suffices to
show that there is i such that Eτ i = {0, a, b} (a < b) satisfying a > 11
or b− a > 11 or 22− b > 11.

1. Suppose E = {0, 1, k}. If k ≤ 10 or k ≥ 13, then we are done.
If k = 10 or k = 11, then apply τ to E to get Eτ = {0, 2, 22} or
{0, 2, 1}.

2. Suppose E = {0, 5, k}. If k ≤ 10 of k ≥ 17, then we are done,
again. For other cases, one more application of τ is enough as we
can see in the table below.

E Eτ
{0, 5, 11} {0, 10, 22}
{0, 5, 12} {0, 1, 10}
{0, 5, 13} {0, 3, 10}
{0, 5, 14} {0, 5, 10}
{0, 5, 15} {0, 7, 10}
{0, 5, 16} {0, 9, 19}

Suppose a codeword x = x0x1 · · ·x22 is transmitted, an error vector
e = e0e1 · · · e22 occurs with weight ≤ 3, and the vector y = x + e =
y0y1 · · · y22 is received. Let G be the generator matrix of G23 such that
{11, 12, · · · , 22} is an information set. Hence xL = x0x1 · · · x10 are the
check symbols, and xR = x11 · · · x22 are information symbols. Write
G = (GL|GR), where GL is a (12 × 11)-matrix and GR is a (12 × 12)-
matrix. Then GR is invertible.

Now there exists some πi ∈ P such that yi = yπi has no errors in the
information places. Since (yi)R is the information symbols, there exists
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a unique codeword w such that wR = (yi)R. In fact, w = xπi since
xπi ∈ G23 and d(xπi,yπi) = d(x,y) ≤ 3. Recall that the encoding map
u 7→ uG from F12

2 to G23 is bijective. Thus there exists a unique vector
u ∈ F12

2 such that uG = w, and then we have

(uGL|uGR) = uG = w = (wL|wR) = (wL|(yi)R).

Hence u = (yi)RG−1
R and wL = uGL = (yi)RG−1

R GL. Consequently,

x = wπ−1
i = ((yi)RG−1

R GL|(yi)R)πi.

The decoding procedure is as follows. When y is received, each yi =
yπi and

wL = yiG
−1
R GL

in turn is computed, until an i is found for which d(wL, (yi)L) ≤ 3. Then
the errors are all in the first 11 places of yπi, and we decode y as

x = (wL|(yi)R)π−1
i .

If d(wL − (yi)L) > 3 for all i, we conclude that more than 3 errors have
occurred.

Here we provide an explicit example. The generator polynomial for
the cyclic code G23 is

g1(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1.

This polynomial determines the generator matrix G = [GL|GR] for G23

with

GL =




1 0 1 0 1 1 1 0 0 0 1
0 1 0 1 0 1 1 1 0 0 0
0 0 1 0 1 0 1 1 1 0 0
0 0 0 1 0 1 0 1 1 1 0
0 0 0 0 1 0 1 0 1 1 1
0 0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0




,
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GR =




1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0 0
1 1 1 0 0 0 1 1 0 0 0 0
0 1 1 1 0 0 0 1 1 0 0 0
1 0 1 1 1 0 0 0 1 1 0 0
0 1 0 1 1 1 0 0 0 1 1 0
1 0 1 0 1 1 1 0 0 0 1 1




and so

D := G−1
R GL =




1 0 1 0 1 1 1 0 0 0 1
1 1 1 1 1 0 0 1 0 0 1
1 1 0 1 0 0 1 0 1 0 1
1 1 0 0 0 1 1 1 0 1 1
1 1 0 0 1 1 0 1 1 0 0
0 1 1 0 0 1 1 0 1 1 0
0 0 1 1 0 0 1 1 0 1 1
1 0 1 1 0 1 1 1 1 0 0
0 1 0 1 1 0 1 1 1 1 0
0 0 1 0 1 1 0 1 1 1 1
1 0 1 1 1 0 0 0 1 1 0
0 1 0 1 1 1 0 0 0 1 1




.

Suppose that x = (01000010110|1111000000000) was sent and the vector
y = (01010010110|1110010000000) is received. Since yRD = 11100011011
and d(yL,yRD) = 6, y have some errors. We compute yπi for πi ∈ P =
〈σ, τ〉 and wL = (yi)RD until an i is found for which d(wL, (yi)L) ≤ 3.
The existence of such πi is guaranteed by Theorem 3.2. Note that
E = {3, 14, 16} and

Eσ9τ = {12, 0, 2}τ = {1, 0, 4}.

At some stage, with πi = σ9τ , we will compute yi = yπi = yσ9τ =
(01001001000|101000101110) and wL = yiD = 10000001000 and find
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that d(wL, (yi)L) = 3. Thus we decode y as

x = (wL|(yi)R)π−1
i = (10000001000|101000101110)τ−1σ−9

= (10000000001|000010110111)σ−9

= (01000010110|111100000000).
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