Kangweon-Kyungki Math. Jour. 10 (2002), No. 2, pp. 123-130

THE DENJOY-STIELTJES EXTENSION OF THE BOCHNER, DUNFORD AND PETTIS INTEGRALS

CHUN-KEE PARK

ABSTRACT. In this paper we introduce the concepts of Denjoy-Stieltjes-Dunford, Denjoy-Stieltjes-Pettis and Denjoy-Stieltjes-Bochner integrals of Banach-valued functions and then prove some properties of them.

1. Introduction

The Denjoy integral of a real-valued function which is an extension of the Lebesgue integral was studied by some authors ([1],[2],[3],[7]). In [5] we introduced the Denjoy-Stieltjes integral which is the generalization of the Denjoy integral and obtained some properties of the Denjoy-Stieltjes integral. R.A.Gordon[2], J.L.Gamez and J.Mendoza[1] studied the Denjoy extension of the Bochner, Pettis and Dunford integrals which is defined by the Denjoy integral. In this paper we deal with the Denjoy-Stieltjes extension of the Bochner, Pettis and Dunford integrals which is the generalization of the Denjoy extension of the Bochner, Pettis and Dunford integrals. We first define Denjoy-Stieltjes-Dunford, Denjoy-Stieltjes-Pettis and Denjoy-Stieltjes-Bochner integrals of Banach-valued functions using the Denjoy-Stieltjes integral and then prove some properties of them.

2. Preliminaries

We give some definitions and results to be used in this paper. Throughout this paper, X denotes a real Banach space and X^* its

Received July 25, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 28B05, 26A39, 46G10.

Key words and phrases: Denjoy-Stieltjes integral, Denjoy-Stieltjes-Dunford integral, Denjoy-Stieltjes-Pettis integral, Denjoy-Stieltjes-Bochner integral.

This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

dual.

DEFINITION 2.1[3]. Let $F : [a, b] \to X$ and let $E \subset [a, b]$. (a) The function F is BV on E if $V(F, E) = \sup \left\{ \sum_{i=1}^{n} \|F(d_i) - F(c_i)\| \right\}$ is finite where the supremum is taken over all finite collections $\{[c_i, d_i] :$

Is finite where the supremum is taken over an inite conections $\{[c_i, a_i] : 1 \le i \le n\}$ of nonoverlapping intervals that have endpoints in E.

(b) The function F is AC on E if for each $\epsilon > 0$ there exists $\delta > 0$ such that $\sum_{i=1}^{n} ||F(d_i) - F(c_i)|| < \epsilon$ whenever $\{[c_i, d_i] : 1 \le i \le n\}$ is a finite collection of nonoverlapping intervals that have endpoints in E and satisfy $\sum_{i=1}^{n} (d_i - c_i) < \delta$.

(c) The function F is BVG on E if E can be expressed as a countable union of sets on each of which F is BV.

(d) The function F is ACG on E if F is continuous on E and if E can be expressed as a countable union of sets on each of which F is AC.

DEFINITION 2.2[2]. Let $F : [a, b] \to X$ and let $t \in (a, b)$. A vector z in X is the approximate derivative of F at t if there exists a measurable set $E \subset [a, b]$ that has t as a point of density such that $\lim_{\substack{s \to t \\ s \in E}} \frac{F(s) - F(t)}{s - t} = z$. We will write $F'_{ap}(t) = z$.

A function $f : [a, b] \to \mathbb{R}$ is Denjoy integrable on [a, b] if there exists an ACG function $F : [a, b] \to \mathbb{R}$ such that $F'_{ap} = f$ almost everywhere on [a, b]. The function f is Denjoy integrable on the set $E \subset [a, b]$ if $f\chi_E$ is Denjoy integrable on [a, b].

DEFINITION 2.3[2]. (a) A function $f : [a, b] \to X$ is Denjoy-Dunford integrable on [a, b] if for each $x^* \in X^*$ the function x^*f is Denjoy integrable on [a, b] and if for every interval I in [a, b] there exists a vector x_I^{**} in X^{**} such that $x_I^{**}(x^*) = \int_I x^*f$ for all $x^* \in X^*$.

(b) A function $f : [a, b] \to X$ is Denjoy-Pettis integrable on [a, b] if f is Denjoy-Dunford integrable on [a, b] and if $x_I^{**} \in X$ for every interval I in [a, b].

(c)A function $f : [a, b] \to X$ is Denjoy-Bochner integrable on [a, b] if there exists an ACG function $F : [a, b] \to X$ such that F is approximately differentiable almost everywhere on [a, b] and $F'_{ab} = f$ almost everywhere on [a, b].

DEFINITION 2.4[5]. Let $F : [a, b] \to X$ and let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function and let $E \subset [a, b]$.

(a) The function F is BV with respect to α on E if $V(F, \alpha, E) = \sup \left\{ \sum_{i=1}^{n} \|F(d_i) - F(c_i)\| \frac{\alpha(d_i) - \alpha(c_i)}{d_i - c_i} \right\}$ is finite where the supremum is taken over all finite collections $\{[c_i, d_i] : 1 \le i \le n\}$ of nonoverlapping intervals that have endpoints in E.

(b) The function F is AC with respect to α on E if for each $\epsilon > 0$ there exists $\delta > 0$ such that $\sum_{i=1}^{n} \|F(d_i) - F(c_i)\| < \epsilon$ whenever $\{[c_i, d_i] : 1 \le i \le n\}$ is a finite collection of nonoverlapping intervals that have endpoints in E and satisfy $\sum_{i=1}^{n} [\alpha(d_i) - \alpha(c_i)] < \delta$.

(c) The function F is BVG with respect to α on E if E can be expressed as a countable union of sets on each of which F is BV with respect to α .

(d) The function F is ACG with respect to α on E if F is continuous on E and if E can be expressed as a countable union of sets on each of which F is AC with respect to α .

THEOREM 2.5[5]. Let $F : [a, b] \to X$ and let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$ and let $E \subset [a, b]$. Then F is BV on E if and only if F is BV with respect to α on E.

THEOREM 2.6[5]. Let $F : [a, b] \to X$ and let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$ and let $E \subset [a, b]$. Then F is AC on E if and only if F is AC with respect to α on E.

3. Denjoy-Stieltjes integral

In [5] we introduced the Denjoy-Stieltjes integral and obtained some results for the integral. In this section we give another result.

DEFINITION 3.1[5]. Let $F : [a, b] \to X$ and let $t \in (a, b)$ and let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$. A vector $z \in X$ is the approximate derivative of F with respect to α at t if there exists a measurable set $E \subset [a, b]$ that has t as a point of density such that $\lim_{\substack{s \to t \\ s \in E}} \frac{F(s) - F(t)}{\alpha(s) - \alpha(t)} = z$. We will write $F'_{\alpha,ap}(t) = z$.

We note that $F'_{ap}(t) = F'_{\alpha,ap}(t) \cdot \alpha'(t)$ for each $t \in (a, b)$.

DEFINITION 3.2[5]. Let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$. A function $f : [a, b] \to \mathbb{R}$ is Denjoy-Stieltjes integrable with respect to α on [a, b] if there exists an ACG function $F : [a, b] \to \mathbb{R}$ with respect to α such that $F'_{\alpha,ap} = f$ almost everywhere on [a, b]. The function f is Denjoy-Stieltjes integrable with respect to α on a set $E \subset [a, b]$ if $f\chi_E$ is Denjoy-Stieltjes integrable with respect to α on [a, b].

THEOREM 3.3[5]. Let $f : [a,b] \to \mathbb{R}$ and let $\alpha : [a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$ and let $E \subset [a,b]$. Then f is Denjoy-Stieltjes integrable with respect to α on E if and only if $\alpha' f$ is Denjoy integrable on E.

THEOREM 3.4. Let $\alpha : [a,b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a,b])$. If $f : [a,b] \to \mathbb{R}$ is Denjoy-Stieltjes integrable with respect to α on each interval $[c,d] \subseteq (a,b)$ and $\int_c^d f \ d\alpha$ converges to a finite limit as $c \to a^+$ and $d \to b^-$, then f is Denjoy-Stieltjes integrable with respect to α on [a,b] and $\int_a^b f \ d\alpha = \lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d f \ d\alpha$.

Proof. Since $f : [a, b] \to \mathbb{R}$ is Denjoy-Stieltjes integrable with respect to α on each interval $[c, d] \subseteq (a, b)$, by Theorem 3.3 $\alpha' f : [a, b] \to \mathbb{R}$ is Denjoy integrable on each interval $[c, d] \subseteq (a, b)$ and $\int_c^d f \, d\alpha = \int_c^d \alpha' f$ for each interval $[c, d] \subseteq (a, b)$. Hence $\lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d \alpha' f = \lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d f \, d\alpha$ exists by hypothesis. By [3, Theorem 15.12], $\alpha' f$ is Denjoy integrable on

$$[a, b]$$
 and $\int_{a}^{b} \alpha' f = \lim_{\substack{c \to a^+ \\ d \to b^-}} \int_{c}^{d} \alpha' f$. By Theorem 3.3, f is Denjoy-Stieltjes

integrable with respect to α on [a, b] and $\int_{a}^{b} f \ d\alpha = \lim_{\substack{c \to a^+ \\ d \to b^-}} \int_{c}^{d} f \ d\alpha$. \Box

4. Denjoy-Stieltjes extension of the Bochner, Pettis and Dunford integrals

We introduce Denjoy-Stieltjes-Bochner, Denjoy-Stieltjes-Pettis and Denjoy-Stieltjes-Dunford integrals and investigate some properties of those integrals.

DEFINITION 4.1. Let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$.

(a) $f : [a, b] \to X$ is Denjoy-Stieltjes-Dunford integrable with respect to α on [a, b] if for each $x^* \in X^*$ x^*f is Denjoy-Stieltjes integrable with respect to α on [a, b] and if for every interval I in [a, b] there exists a vector $x_I^{**} \in X^{**}$ such that $x_I^{**}(x^*) = \int_I x^*f \ d\alpha$ for all $x^* \in X^*$.

(b) $f : [a, b] \to X$ is Denjoy-Stieltjes-Pettis integrable with respect to α on [a, b] if f is Denjoy-Stieltjes -Dunford integrable with respect to α on [a, b] and if $x_I^{**} \in X$ for every interval I in [a, b].

(c) $f : [a, b] \to X$ is Denjoy-Stieltjes-Bochner integrable with respect to α on [a, b] if there exists an ACG function $F : [a, b] \to X$ with respect to α such that F is approximately differentiable with respect to α almost everywhere on [a, b] and $F'_{\alpha, ap} = f$ almost everywhere on [a, b].

 $f:[a,b] \to X$ is integrable in one of the above senses on the set $E \subseteq [a,b]$ if $f\chi_E$ is integrable in that sense on [a,b].

THEOREM 4.2. Let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$ and let $E \subset [a, b]$. Then $f : [a, b] \to X$ is Denjoy-Stieltjes-Bochner integrable with respect to α on E if and only if $\alpha' f : [a, b] \to X$ is Denjoy-Bochner integrable on E.

Proof. If $f : [a, b] \to X$ is Denjoy-Stieltjes-Bochner integrable with respect to α on E, then there exists an ACG function $F : [a, b] \to X$ with respect to α such that F is approximately differentiable with

respect to α almost everywhere on [a, b] and $F'_{\alpha,ap} = f\chi_E$ almost everywhere on [a, b]. By Theorem 2.6, F is ACG. F is also approximately differentiable almost everywhere on [a, b] and $F'_{ap} = F'_{\alpha,ap}\alpha' = \alpha' f\chi_E$ almost everywhere on [a, b]. Hence $\alpha' f$ is Denjoy-Bochner integrable on E.

Conversely, if $\alpha' f : [a, b] \to X$ is Denjoy-Bochner integrable on E, then there exists an ACG function $F : [a, b] \to X$ such that F is approximately differentiable almost everywhere on [a, b] and $F'_{ap} = \alpha' f \chi_E$ almost everywhere on [a, b]. By Theorem 2.6, F is ACG with respect to α on [a, b]. F is also approximately differentiable with respect to α almost everywhere on [a, b] and $F'_{\alpha, ap} = \frac{1}{\alpha'}F_{ap} = \frac{1}{\alpha'}\alpha' f \chi_E = f \chi_E$ almost everywhere on [a, b]. Hence f is Denjoy-Stieltjes-Bochner integrable with respect to α on E.

The following corollary is obtained from Theorem 4.2 and [2, Theorem 28].

COROLLARY 4.3. Let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$. If $f : [a, b] \to X$ is Denjoy-Stieltjes-Bochner integrable with respect to α on [a, b], then each perfect set in [a, b]contains a portion on which $\alpha' f$ is Bochner integrable.

THEOREM 4.4. Let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$ and let $E \subseteq [a, b]$. Then $f : [a, b] \to X$ is Denjoy-Stieltjes-Dunford integrable with respect to α on E if and only if $\alpha' f : [a, b] \to X$ is Denjoy-Dunford integrable on E.

Proof. If $f : [a, b] \to X$ is Denjoy-Stieltjes-Dunford integrable with respect to α on E, then for each $x^* \in X^*$ x^*f is Denjoy-Stieltjes integrable with respect to α on E and for every interval I in [a, b] there exists a vector $x_I^{**} \in X^{**}$ such that $x_I^{**}(x^*) = \int_I x^* f \chi_E \ d\alpha$ for all $x^* \in X^*$. By Theorem 3.3, for each $x^* \in X^* \ \alpha'(x^*f) = x^*(\alpha'f)$ is Denjoy integrable on E and $x_I^{**}(x^*) = \int_I x^* f \chi_E \ d\alpha = \int_I x^*(\alpha'f \chi_E)$ for all $x^* \in X^*$. Hence $\alpha'f : [a, b] \to X$ is Denjoy-Dunford integrable on E.

Conversely, if $\alpha' f : [a, b] \to X$ is Denjoy-Dunford integrable on E, then for each $x^* \in X^*$ $x^*(\alpha' f) = \alpha'(x^* f)$ is Denjoy integrable on Eand for every interval I in [a, b] there exists a vector $x_I^{**} \in X^{**}$ such

that $x_I^{**}(x^*) = \int_I x^*(\alpha' f \chi_E)$ for all $x^* \in X^*$. By Theorem 3.3, for each $x^* \in X^* x^* f$ is Denjoy-Stieltjes integrable with respect to α on E and $x_I^{**}(x^*) = \int_I x^*(\alpha' f \chi_E) = \int_I \alpha'(x^* f \chi_E) = \int_I x^* f \chi_E \ d\alpha$ for all $x^* \in X^*$. Hence $f : [a, b] \to X$ is Denjoy-Stieltjes-Dunford integrable with respect to α on E.

COROLLARY 4.5. Let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$ and let $E \subseteq [a, b]$. Then $f : [a, b] \to X$ is Denjoy-Stieltjes-Pettis integrable with respect to α on E if and only if $\alpha' f : [a, b] \to X$ is Denjoy-Pettis integrable on E.

Proof. The proof is similar to Theorem 4.4.

The following Corollary is obtained from Theorem 3.3, Theorem 4.4 and [1, Theorem 3].

COROLLARY 4.6. Let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$ and let $E \subseteq [a, b]$. Then $f : [a, b] \to X$ is Denjoy-Stieltjes-Dunford integrable with respect to α on E if and only if x^*f is Denjoy-Stieltjes integrable with respect to α on E for all $x^* \in X^*$.

THEOREM 4.7. Let $\alpha : [a, b] \to \mathbb{R}$ be a strictly increasing function such that $\alpha \in C^1([a, b])$. If $f : [a, b] \to \mathbb{R}$ is Denjoy-Stieltjes-Dunford integrable with respect to α on [a, t] for all $t \in [a, b]$ and for each $x^* \in X^* \lim_{t \to b} \int_a^t x^* f \, d\alpha$ exists, then f is Denjoy-Stieltjes-Dunford integrable with respect to α on [a, b] and $\langle x^*, (DSD) \int_a^b f \, d\alpha \rangle = \lim_{t \to b} \langle x^*, (DSD) \int_a^t f \, d\alpha \rangle$ for each $x^* \in X^*$. *Proof.* If $f : [a, b] \to X$ is Denjoy-Stieltjes-Dunford integrable

with respect to α on [a,t] for all $t \in [a,b)$ and for each $x^* \in X^*$ $\lim_{t\to b} \int_a^t x^* f \ d\alpha$ exists, then by Theorem 3.4 $x^* f$ is Denjoy-Stieltjes integrable with respect to α on [a,b] and $\int_a^b x^* f \ d\alpha = \lim_{t\to b} \int_a^t x^* f \ d\alpha$ for all $x^* \in X^*$. Take $c \in [a,b)$ and any sequence (t_n) in [a,b) convergent to

b. Define $L_c(x^*) = \lim_{n \to \infty} \int_c^{t_n} x^* f \, d\alpha = \lim_{n \to \infty} \langle x^*, (DSD) \int_c^{t_n} f \, d\alpha \rangle$ for each $x^* \in X^*$. By the uniform bounded principle, the linear functional L_c is continuous on X^* , that is, $L_c \in X^{**}$. Hence it is immediate that f is Denjoy-Stieltjes-Dunford integrable with respect to α on [a, b]. Taking c = a, we get

$$< x^*, (DSD) \int_a^b f \ d\alpha > = \int_a^b x^* f \ d\alpha$$
$$= \lim_{t \to b} \int_a^t x^* f \ d\alpha$$
$$= \lim_{t \to b} < x^*, (DSD) \int_a^t f \ d\alpha >$$

for each $x^* \in X^*$.

References

- J.L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115-133.
- R.A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91.
- R.A. Gordon, The integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., Providence, R.I., 1994.
- S. Hu and V. Lakshmikantham, Some Remarks on Generalized Riemann Integral, J. Math. Anal. Appl. 137 (1989), 515-527.
- C.K. Park, On Denjoy-Stieltjes integral, Kangweon-Kyungki Math. Jour. 9(2) (2001), 105-114.
- 6. S. Saks, Theory of the integral, Dover, New York, 1964.
- D.W. Solomon, Denjoy integration in abstract spaces, Mem. Amer. Math. Soc. 85, 1969.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea

130