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VANISHING OF CONTACT
CONFORMAL CURVATURE TENSOR ON
3-DIMENSIONAL SASAKIAN MANIFOLDS

Keumseong Bang and JungYeon Kye

Abstract. We show that the contact conformal curvature ten-
sor on 3-dimensional Sasakian manifold always vanishes. We also
prove that if the contact conformal curvature tensor vanishes on a
3-dimensional locally ϕ-symmetric contact metric manifold M , then
M is a Sasakian space form.

1. Introduction

The study of conformally invariant curvature tensors plays an im-
portant role in understanding various aspects of geometry. In 1949, S.
Bochner introduced a curvature tensor, called the Bochner curvature
tensor, on a Kähler manifold analogous to the Weyl curvature tensor
on Riemannian manifolds. Recently, H. Kitahara, K. Matsuo and J. S.
Pak ([4]) defined a new tensor field, which is a conformal invariance, on
a hermitain manifold and studied some properties of this new tensor
field.

Further, J. C. Jeong, J. D. Lee, G. H. Oh and J. S. Pak defined a
new type of tensor field on Sasakian manifolds constructed from the
conformal curvature tensor field by using the Boothby-Wang fibration.
This curvature tensor, called the contact conformal curvature tensor,
seems to be fundamental in studying the spectral geometry of compact
Sasakian manifolds ([5]). Regarding the results of research on this field,
Tanno proved that every conformally flat K-contact manifold is a space
form, and Blair and Koufogiorgos improved this result by showing that
every conformally flat contact metric manifold with Qϕ = ϕ Q is a
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space form, where Q is the Ricci operator. Moreover, J. S. Pak and
Y. J. Shin ([7]) gave a geometric characterization of a contact metric
manifold with vanishing contact conformal curvature tensor by showing
that;

For n > 2, every (2n+1)-dimensional contact metric manifold with
vanishing contact conformal curvature tensor is a Sasakian space form.

In this paper, we shall give a partial extension of Pak and Shin’s
result to 3-dimensional locally ϕ-symmetric contact metric manifold
M , and also show that the contact conformal curvature tensor on 3-
dimensional Sasakian manifold always vanishes.

2. Preliminaries

A (2n + 1)-dimensional differentiable manifold M2n+1 is called a
contact manifold if it carries a global 1-form η such that η ∧ (dη)n 6= 0
everywhere on M . Given a contact form η, there exists a unique vector
field ξ, called the characteristic vector field of η, satisfying η(ξ) = 1
and dη(ξ,X) = 0 for all vector fields X.

A differentiable manifold M2n+1 is said to have an almost contact
structure (ϕ, ξ, η) on M if it admits a field ϕ of endomorphisms of
tangent spaces satisfying;

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0 and η(ξ) = 1

where I denotes the identity transformation. We also call an almost
contact structure (ϕ, ξ, η) satisfying g(ϕX, ϕY ) = g(X, Y )−η(X)η(Y )
for any vector field X, Y tangent to M , an almost contact metric
structure.

Suppose that a (2n + 1)-dimensional manifold M has an almost
contact metric structure. Then we define a 2-form Φ on M by

Φ(X,Y ) = g(ϕX, Y )

An almost contact metric structure (ϕ, ξ, η, g) with Φ = dη is called
a contact metric structure.

For the Lie differentiation L and the curvature tensor R , we define
the operators l and h by

(2.1) lX = R(X, ξ) ξ and h =
1
2
Lξϕ
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The (1,1)-type tensors h and l are symmetric and satisfy

hξ = 0, l ξ = 0, Tr h = 0, Tr hϕ = 0 and hϕ = −ϕh

We also have the following formulas for contact metric manifolds:

∇X ξ = −ϕX − ϕhX and hence ∇ξ ξ = 0(2.2)

∇ξ ϕ = 0(2.3)

Tr l = g(Qξ, ξ) = 2n− Tr h2(2.4)

ϕlϕ− l = 2(ϕ2 + h2)(2.5)

∇ξ h = ϕ− ϕ l − ϕh2(2.6)

where Q is the Ricci operator and ∇ the Riemannian connection of g.
For the formulas (2.2)-(2.5), refer to [1] and (2.6) to [3], respectively.

A contact metric manifold for which ξ is Killing is called a K-contact
manifold. A contact metric structure (ϕ, ξ, η, g) is called a normal
contact structure if it satisfies (∇X ϕ)Y = η(Y )X − g(X,Y )ξ. Also,
the normality condition is equivalent to [ ϕ,ϕ ] + 2 dη⊗ ξ = 0. A
manifold with a normal contact metric structure is called a Sasakian
manifold. Thus a Sasakian manifold is K-contact, but the converse is
not true except in dimension 3 ([1]). A 3-dimensional contact mani-
fold is Sasakian if and only if h = 0 ([1]). On a Sasakian manifold,
the Ricci operator Q commutes with ϕ ([1]). Moreover, the following
propositions are well known:

Proposition 1 ([1]). On a contact metric manifold M2n+1, the
followings are equivalent:

(1) The manifold is a K-contact manifold.
(2) The sectional curvature of plane section containing ξ is equal

to 1.
(3) The Ricci curvature in the direction of ξ is 2n.

Proposition 2 ([3]). Let M be a 3-dimensional contact metric
manifold with Qϕ = ϕQ. Then the function Tr l is constant on M .
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Proposition 3 ([6]). On any 3-dimensional Sasakian manifold,

R(X, Y )Z =
k + 3

4
(g(Y, Z)X − g(X, Z)Y )

+
k − 1

4
{g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ

− η(Y )η(Z)X + η(X)η(Z)Y − η(X)g(Y,Z)ξ

+ η(Y )g(X, Z)ξ}
where k = 1

2 (s− 4) and s is a scalar curvature.

The sectional curvature K(X, ϕX) of a plane section spanned by X
and ϕX with X orthogonal to ξ is called a ϕ-sectional curvature. A
Sasakian manifold of constant ϕ-sectional curvature is called a Sasakian
space form.

We then consider, for a (2n+1)-dimensional contact metric manifold
M , the following contact conformal curvature tensor C0 of type (1,3)
on M , which is defined([7]) by

C0 =R(X, Y )Z +
1
2n
{Q0(Y, Z)X −Q0(X, Z)Y

(2.7)

+ g(Y,Z)QX − g(X, Z)QY + η(X)η(Z)QY − η(Y )η(Z)QX

+ η(Y )Q0(X, Z)ξ − η(X)Q0(Y, Z)ξ

+ S0(X, Z)ϕY − S0(Y, Z)ϕX + 2S0(X, Y )ϕZ

+ Φ(X,Z)SY − Φ(Y, Z)SX + 2Φ(X,Y )SZ}

+
1

2n(n + 1)
{2n2 − n− 2 +

(n + 2)s
2n

}
×{Φ(Y,Z)ϕX − Φ(X,Z)ϕY − 2Φ(X,Y )ϕZ}

+
1

2n(n + 1)
{n + 2− (3n + 2)s

2n
}{g(Y,Z)X − g(X, Z)Y }

− 1
2n(n + 1)

{4n2 + 5n + 2− (3n + 2)s
2n

}
×{η(Y )η(Z)X − η(X)η(Z)Y + η(X)g(Y,Z)ξ − η(Y )g(X, Z)ξ}

where Q0 and s denote the Ricci tensor and the scalar curvature re-
spectively, i.e.,

Q0(X, Y ) = g(QX,Y ), s = TrQ, SX = Q(ϕX)
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and
S0(X,Y ) = g(SX, Y )

3. Main Results

We now study contact conformal curvature tensor on Sasakian man-
ifolds. First of all, we recall the known result that gives a geometric
characterization of a contact metric manifold with vanishing contact
conformal curvature tensor.

Theorem 4 ([7]). For n > 2, every (2n + 1)-dimensional contact
metric manifold with vanishing contact conformal curvature tensor is
a Sasakian space form.

We note that Theorem 4 holds only for dimension (2n + 1) > 5. In
fact, we have a partial extension of it to 3-dimensional manifold. We
recall that a contact metric structure (ϕ, ξ, η, g) is said to be locally
ϕ-symmetric if ϕ2(∇W R)(X, Y, Z) = 0 for all vectors W , X, Y , Z
orthogonal to ξ. Then, we have a theorem due to D. Blair.

Theorem 5 ([3]). Let M be a 3-dimensional contact metric mani-
fold with Qϕ = ϕQ. Then M is locally ϕ-symmetric if and only if the
scalar curvature of M is constant.

Using this theorem, we have an extension of Theorem 4 as mentioned
above.

Corollary 6. Let M be a 3-dimensional locally ϕ-symmetric con-
tact metric manifold. If the contact conformal curvature tensor C0

vanishes on M , then M is a Sasakian space form.

Proof. Suppose that the contact conformal curvature tensor C0 van-
ishes identically on M . Then, from (2.7), we can get

QX =
1

4n− 5
{−3ϕQϕX − 3η(QX)ξ − 2η(X)Qξ}

(3.1)

+
2

n(4n− 5)
{n(n− 2)s− 2n(n− 2)}X

+
2

n(4n− 5)
{2n(2n2 + n− 2)− (n− 2)s}η(X)ξ
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Letting X = ξ in (3.1), we obtain

(3.2) Qξ = 2nξ.

Thus, by Proposition 1, we know that a contact metric manifold with
C0 ≡ 0 is a K-contact manifold. But, since every 3-dimensional K-
contact manifold is Sasakian, M is Sasakian. So, it remains to show
that the ϕ-sectional curvature is constant.

Now, we substitute (3.2) into (3.1), we have

QX =
−3

4n− 5
ϕQϕX +

2(n− 2)
n(4n− 5)

(s− 2n)X

(3.3)

+
2

n(4n− 5)
{n(4n2 − 3n− 4)− (n− 2)s}η(X)ξ

Applying the operator ϕ to this identity and using (3.2), we also get

(3.4) g(ϕQX, Y ) =
3

4n− 5
g(QϕX,Y ) +

2(n− 2)(s− 2n)
n(4n− 5)

g(ϕX, Y )

since Q is a symmetric endomorphism.
Moreover, since ϕ is a skew-symmetric endomorphism, (3.4) implies

g(QϕX, Y ) =
3

4n− 5
g(ϕQX, Y ) +

2(n− 2)(s− 2n)
n(4n− 5)

g(ϕX, Y )

This together with (3.4) shows that g(ϕQX, Y ) = g(X,ϕY ), that is,

(3.5) Qϕ = ϕQ

Here, we use the identity given on p.98, [1];

s =
1
2
{n(2n + 1)(c + 3) + n(c− 1)}

where s is the scalar curvature and c is a ϕ-sectional curvature. Since
M is a 3-dimensional manifold, the ϕ-sectional curvature is constant
by Theorem 5. Thus, M is a Sasakian space form. ¤
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We recall that the curvature tensor of a 3-dimensional Riemannian
manifold is also given ([3]) by

R(X, Y )Z =g(Y, Z)QX − g(X, Z)QY + g(QY, Z)X
(3.6)

− g(QX, Z)Y − s

2
{ g(Y, Z)X − g(X,Z)Y }

We now present our main theorem. It is, in fact, a partial converse of
Theorem 4 and Corollary 6.

Theorem 7. Let M be a 3-dimensional Sasakian manifold. Then,
the contact conformal curvature tensor C0 on M vanishes.

Proof. Since M is Sasakian manifold, the Ricci operator Q com-
mutes with ϕ and h = 0. So, ∇ξ h = 0. Using Qϕ = ϕQ, ϕ ξ = 0, and
(2.4), we have

(3.7) Qξ = (Tr l) ξ

Using (2.1) and (3.7), we have from (3.6), for any tangent vector field
X,

lX = QX − η(X)Qξ + (Tr l)X − g(QX, ξ)ξ − s

2
(X − η(X)ξ)

(3.8)

= QX + (Tr l − s

2
)X + η(X)(

s

2
− Tr l )ξ − g(QX, ξ)ξ

and hence, Qϕ = ϕQ and ϕ ξ = 0 imply

(3.9) ϕl = lϕ

By virtue of (3.9), (2.5), and (2.6), we obtain

(3.10) − l = ϕ2

From this, we get g( lX, ξ ) = 0 and g( lX, ϕX ) = 0 for any X
orthogonal to ξ. Thus, lX is parallel to X for any X orthogonal to ξ.
So, we may write lX = αX for such X. Using (3.8), we have

(3.11) QX + ( Tr l − α− s

2
)X = 0
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Now, we let {X, ϕX, ξ } be a ϕ-basis. Taking X to be a unit vector
field, the scalar curvature can be computed as

s = g(QX, X) + g(QϕX, ϕX) + g(Qξ, ξ)

= 2 g(QX, X) + Tr l

=2 α− Tr l + s

So, α = 1
2 Tr l. Using (3.11) and (3.7), we get

(3.12) QX =
1
2

(s− Tr l )X +
1
2

(3Tr l − s) η(X)ξ

for any tangent vector field X. Substituting (3.12) in (3.7), we also have

R(X, Y )Z ={a g(Y, Z) + b η(Y )η(Z)}X
(3.13)

− {a g(X, Z) + b η(X)η(Z)}Y
+ b {η(X)g(Y, Z)− η(Y )g(X, Z)}ξ

where a = s
2 − Tr l and b = 1

2 (3Tr l − s) . For Z = ξ, (3.13) gives

(3.14) R(X, Y )ξ =
Tr l

2
(η(Y )X − η(X)Y )

Since M is a Sasakian, M is a contact metric manifold and Qϕ =
ϕQ. Thus, by Proposition 2, the function Tr l is constant on M . And,
we have

(3.15) R(X, Y )ξ = k (η(Y )X − η(X)Y )

where k is a constant.
We compare (3.14) and (3.15) using Qξ = (Tr l)ξ, and get

Qξ = 2kξ

Since M is a Sasakian manifold, it is K-contact. Thus, by Proposition
1, Qξ = 2ξ , i.e., k = 1. So, from (3.6), we find

(3.16) R(X,Y )ξ = η(Y )QX − η(X)QY + (2− s

2
)(η(Y )X − η(X)Y )
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Comparing (3.15) and (3.16), we get

η(Y ){QX + (1− s

2
)X} − η(X){QY + (1− s

2
)Y } = 0

Taking X = ξ, we have

(3.17) QY = (
s

2
− 1)Y + (3− s

2
) η(Y )ξ

for any tangent vector field Y .
Using (3.17), we easily have

g(QX,Y ) = (
s

2
− 1)g(X,Y ) + (3− s

2
)η(X)η(Y )

ϕQX = (
s

2
− 1)ϕX

(3.18)

and g(Y, Z)QX = (
s

2
− 1)g(Y,Z)X + (3− s

2
)g(Y, Z)η(X)ξ

Now, from the definition (2.7), we compute C0 using Proposition 3,
Qϕ = ϕQ, and (3.18) and finally get

C0 =R(X,Y )Z − (
s

8
+

1
4
)(g(Y,Z)X − g(X,Z)Y )

+ {(s

8
− 3

4
)(η(Y )η(Z)X − η(X)η(Z)Y

+ η(X)g(Y,Z)ξ − η(Y )g(X, Z)ξ

+ g(ϕX,Z)ϕY − g(ϕY,Z)ϕX + 2g(ϕX, Y )ϕZ}
= 0

This completes the proof of our theorem. ¤
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