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VANISHING OF CONTACT
CONFORMAL CURVATURE TENSOR ON
3-DIMENSIONAL SASAKIAN MANIFOLDS

KEUMSEONG BANG AND JUNGYEON KYE

ABSTRACT. We show that the contact conformal curvature ten-
sor on 3-dimensional Sasakian manifold always vanishes. We also
prove that if the contact conformal curvature tensor vanishes on a
3-dimensional locally p-symmetric contact metric manifold M, then
M is a Sasakian space form.

1. Introduction

The study of conformally invariant curvature tensors plays an im-
portant role in understanding various aspects of geometry. In 1949, S.
Bochner introduced a curvature tensor, called the Bochner curvature
tensor, on a Kéahler manifold analogous to the Weyl curvature tensor
on Riemannian manifolds. Recently, H. Kitahara, K. Matsuo and J. S.
Pak ([4]) defined a new tensor field, which is a conformal invariance, on
a hermitain manifold and studied some properties of this new tensor
field.

Further, J. C. Jeong, J. D. Lee, G. H. Oh and J. S. Pak defined a
new type of tensor field on Sasakian manifolds constructed from the
conformal curvature tensor field by using the Boothby-Wang fibration.
This curvature tensor, called the contact conformal curvature tensor,
seems to be fundamental in studying the spectral geometry of compact
Sasakian manifolds ([5]). Regarding the results of research on this field,
Tanno proved that every conformally flat K-contact manifold is a space
form, and Blair and Koufogiorgos improved this result by showing that
every conformally flat contact metric manifold with Qy = @ is a
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space form, where () is the Ricci operator. Moreover, J. S. Pak and
Y. J. Shin ([7]) gave a geometric characterization of a contact metric
manifold with vanishing contact conformal curvature tensor by showing
that;

Forn > 2, every (2n+ 1)-dimensional contact metric manifold with
vanishing contact conformal curvature tensor is a Sasakian space form.

In this paper, we shall give a partial extension of Pak and Shin’s
result to 3-dimensional locally ¢-symmetric contact metric manifold
M, and also show that the contact conformal curvature tensor on 3-
dimensional Sasakian manifold always vanishes.

2. Preliminaries

A (2n + 1)-dimensional differentiable manifold M?"*1! is called a
contact manifold if it carries a global 1-form 7 such that n A (dn)™ # 0
everywhere on M. Given a contact form 7, there exists a unique vector
field &, called the characteristic vector field of 7, satisfying n(¢) = 1
and dn(&, X) =0 for all vector fields X.

A differentiable manifold M?"*+! is said to have an almost contact
structure (¢, &, n) on M if it admits a field ¢ of endomorphisms of
tangent spaces satisfying;

P’ =-I+n®E @&=0, nop=0 and n) =1

where I denotes the identity transformation. We also call an almost
contact structure (¢, £, ) satisfying g(¢ X, oY) = g(X,Y)—n(X)n(Y)
for any vector field X, Y tangent to M, an almost contact metric
structure.

Suppose that a (2n + 1)-dimensional manifold M has an almost
contact metric structure. Then we define a 2-form ® on M by

CI)(Xa Y) = g((;OXv Y)

An almost contact metric structure (¢, &, 1, g) with ® = dn is called
a contact metric structure.

For the Lie differentiation L and the curvature tensor R, we define
the operators [ and h by

(2.1) IX=R(X,§)¢ and h= %ngp
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The (1,1)-type tensors h and [ are symmetric and satisfy
hé =0, 1£=0, Trh=0, Trho =0 and hp=—ph

We also have the following formulas for contact metric manifolds:

(2.2) Vx&=—pX —phX and hence V =0
(2.3) Vep =0

(2.4) Trl = g(Q¢,€) = 2n — Tr h?

(2.5) olo —1 = 2(p* + h?)

(2.6) Veh=9p—pl—@h?

where () is the Ricci operator and V the Riemannian connection of g.
For the formulas (2.2)-(2.5), refer to [1] and (2.6) to [3], respectively.

A contact metric manifold for which ¢ is Killing is called a K-contact
manifold. A contact metric structure (¢, &, 1, g) is called a normal
contact structure if it satisfies (Vx ¢)Y = n(Y)X — g(X,Y)¢. Also,
the normality condition is equivalent to [¢, 9] + 2dn®¢& = 0. A
manifold with a normal contact metric structure is called a Sasakian
manifold. Thus a Sasakian manifold is K-contact, but the converse is
not true except in dimension 3 ([1]). A 3-dimensional contact mani-
fold is Sasakian if and only if A = 0 ([1]). On a Sasakian manifold,
the Ricci operator @@ commutes with ¢ ([1]). Moreover, the following
propositions are well known:

PROPOSITION 1 ([1]). On a contact metric manifold M?*"*1  the
followings are equivalent:

(1) The manifold is a K-contact manifold.

(2) The sectional curvature of plane section containing & is equal
to 1.

(3) The Ricci curvature in the direction of € is 2n.

PROPOSITION 2 ([3]). Let M be a 3-dimensional contact metric
manifold with Q¢ = ¢ Q. Then the function Tr!l is constant on M.
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PROPOSITION 3 ([6]). On any 3-dimensional Sasakian manifold,

R(X,Y)Z = %(g(y, 2)X — g(X, 2)Y)

+ %{g(sﬂﬂ Z)pX — g(0X, Z)pY —2g9(0X,Y)pZ
—n(Y)n(Z)X +n(X)n(Z2)Y —n(X)g(Y, Z)§
+n(Y)g(X, Z)¢}

where k = 5 (s —4) and s is a scalar curvature.

The sectional curvature K (X, pX) of a plane section spanned by X
and ¢ X with X orthogonal to ¢ is called a ¢-sectional curvature. A
Sasakian manifold of constant (-sectional curvature is called a Sasakian
space form.

We then consider, for a (2n+1)-dimensional contact metric manifold
M, the following contact conformal curvature tensor Cy of type (1,3)
on M, which is defined([7]) by

(2.7)
Co =R(X,¥)Z + 5 {Qo(Y, 2)X — Qul(X, 2)¥

+9(Y, 2)QX — g(X, Z)QY +n(X)n(2)QY —n(Y)n(Z)QX

+n(Y)Qo(X, 2) —n(X)Qo(Y, Z)§

+ So(X, Z)pY — So(Y, Z)pX + 250(X,Y)pZ

+ O(X,2)SY — ®(Y, Z)SX +20(X,Y)SZ}

N 1 (n+ 2)5}
2n(n+1) 2n

<{D(Y, Z)pX — ®(X, Z)pY —20(X,Y)pZ}

(3n+2)s
9 _ 2T 4P
{n+ 2n

{2n® —n -2+

+m Ho(Y, 2)X —g(X, 2)Y}

(3n+2)s
" 2n(n+1) 2n }
xAn(Y)n(Z)X = n(X)n(2)Y +n(X)g(Y, Z2)§ —n(Y)g(X, Z)¢}
where Qg and s denote the Ricci tensor and the scalar curvature re-
spectively, i.e.,

Qo(X,Y) =g(QX,)Y), s=TrQ, 5X =Q(pX)

{4n* +5n +2 —
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and

3. Main Results

We now study contact conformal curvature tensor on Sasakian man-
ifolds. First of all, we recall the known result that gives a geometric
characterization of a contact metric manifold with vanishing contact
conformal curvature tensor.

THEOREM 4 ([7]). For n > 2, every (2n + 1)-dimensional contact
metric manifold with vanishing contact conformal curvature tensor is
a Sasakian space form.

We note that Theorem 4 holds only for dimension (2n 4+ 1) > 5. In
fact, we have a partial extension of it to 3-dimensional manifold. We
recall that a contact metric structure (¢, &, 7, g) is said to be locally
p-symmetric if p?(ViyR)(X,Y,Z) = 0 for all vectors W, X, Y, Z
orthogonal to £&. Then, we have a theorem due to D. Blair.

THEOREM 5 ([3]). Let M be a 3-dimensional contact metric mani-
fold with Q¢ = ¢ Q). Then M is locally p-symmetric if and only if the
scalar curvature of M is constant.

Using this theorem, we have an extension of Theorem 4 as mentioned
above.

COROLLARY 6. Let M be a 3-dimensional locally p-symmetric con-
tact metric manifold. If the contact conformal curvature tensor C|
vanishes on M, then M is a Sasakian space form.

Proof. Suppose that the contact conformal curvature tensor Cy van-
ishes identically on M. Then, from (2.7), we can get

(3.1)
QX == {=3pQpX — 3n(QX)¢ — 2n(X)QE}
2
+ m{n(n —2)s—2n(n —2)}X
+ #{Zn@nz +n—2)—(n—2)skn(X)¢

n(4n —5)
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Letting X = ¢ in (3.1), we obtain

(3.2) Q¢ = 2né.

Thus, by Proposition 1, we know that a contact metric manifold with
Cy = 0 is a K-contact manifold. But, since every 3-dimensional K-
contact manifold is Sasakian, M is Sasakian. So, it remains to show
that the (-sectional curvature is constant.

Now, we substitute (3.2) into (3.1), we have

(3.3)
QX :4n_i 590QSDX + TLQ((I”__?) (s —2n)X
2 2
n m{n(4n —3n—4) — (n - 2)sin(X)¢

Applying the operator ¢ to this identity and using (3.2), we also get

4n3_ -9(QeX,Y) + 2(”7;( 422(5 g):z”)

9(pX,Y)

(34) g(pQX,Y) =

since @) is a symmetric endomorphism.
Moreover, since ¢ is a skew-symmetric endomorphism, (3.4) implies

2(n—2)(s —2n)
n(4n —5)

9(QpX,Y) = 9(pQX,Y) + 9(pX,Y)

dn — 5
This together with (3.4) shows that g(¢QX,Y) = g(X, ¢Y), that is,
(3.5) Qe = ¢Q
Here, we use the identity given on p.98, [1];
1
s = §{n(2n +1)(c+3)+n(c—1)}
where s is the scalar curvature and c is a -sectional curvature. Since

M is a 3-dimensional manifold, the ¢-sectional curvature is constant
by Theorem 5. Thus, M is a Sasakian space form. OJ
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We recall that the curvature tensor of a 3-dimensional Riemannian
manifold is also given ([3]) by

(3.6)
R(X,Y)Z =g(Y,Z)QX — g(X, Z)QY +g(QY,Z)X

s
We now present our main theorem. It is, in fact, a partial converse of
Theorem 4 and Corollary 6.

THEOREM 7. Let M be a 3-dimensional Sasakian manifold. Then,
the contact conformal curvature tensor Cy on M vanishes.

Proof. Since M is Sasakian manifold, the Ricci operator ) com-
mutes with ¢ and h = 0. So, V¢h = 0. Using Q¢ = ¢@Q, & = 0, and
(2.4), we have

(3.7) Q¢ = (Trl)¢

Using (2.1) and (3.7), we have from (3.6), for any tangent vector field
X,

(3.8)
IX = QX = n(X)Q€ + (Tr X — g(QX,§)¢ — 5 (X —n(X)¢)

= QX+ (Trl = )X +n(X)(5 — Tr1)é — g(QX. €)8

and hence, Qp = p @ and p& = 0 imply
(3.9) pl=1p

By virtue of (3.9), (2.5), and (2.6), we obtain
(3.10) —1=¢?

From this, we get ¢((X,£) = 0 and g( (X, 9pX ) = 0 for any X
orthogonal to £. Thus, [X is parallel to X for any X orthogonal to &.
So, we may write [X = aX for such X. Using (3.8), we have

s

(3.11) QX+(Trl—oz—§)X:0
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Now, we let { X, ¢ X, £} be a p-basis. Taking X to be a unit vector
field, the scalar curvature can be computed as

=9(QX, X) + 9(QvX, X) + g(Q¢,§)
=29(QX,X)+ Trl
=2a—Trl+s

So, @ = 1 Trl. Using (3.11) and (3.7), we get

(3.12) QX:%(s—TrZ)X—I—%(BTrZ—s)n(X)f

for any tangent vector field X. Substituting (3.12) in (3.7), we also have
(3.13)
R(X,Y)Z ={ag(Y, Z) + bn(Y)n(2)} X
— {ag(X, 2) + bn(X)n(2)}Y
+ b{n(X)g(Y, Z2) —n(Y)g(X, Z)}¢

where a = £ — Trland b= 3 (3Trl —s) . For Z = ¢, (3.13) gives

Trl

(3.14) R(X,Y)¢ =

—— (V)X = n(X)Y)

Since M is a Sasakian, M is a contact metric manifold and Qp =
©Q. Thus, by Proposition 2, the function Tr/ is constant on M. And,
we have

(3.15) R(X,Y)E =k (n(Y)X —n(X)Y)

where £ is a constant.
We compare (3.14) and (3.15) using Q¢ = (Tr1)&, and get

QE = 2k¢

Since M is a Sasakian manifold, it is K-contact. Thus, by Proposition
1, Q¢ =2¢, i.e., k=1.So, from (3.6), we find

(3.16) R(X,Y)§ =n(Y)QX —n(X)QY + (2= Z)(n(Y)X — n(X)Y)
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Comparing (3.15) and (3.16), we get
n(Y){QX + (1= )X} = n(XN{QY + (1= )Y} =0
Taking X = &, we have

(3.17) QY = (5 - DY + (38— 5)n(¥)¢

for any tangent vector field Y.
Using (3.17), we easily have

9(QX.Y) = (5~ Dg(X.¥) + (8 = )n(X)n(Y)
(3.18)
PQX = (g — DX

and g(Y,2)QX = (5 = Dg(Y. 2)X + (3= J)g(Y. Z)n(X)¢

Now, from the definition (2.7), we compute Cy using Proposition 3,

Qe = ¢Q, and (3.18) and finally get

Co =R(X,Y)Z ~ (5 + D)(g(V: 2)X — (X, Z)Y)
FCE = D0OIM2X —n(X)n(2)Y
+ a(X)g(Y, 2)E — n(Y )a(X, 2)¢
+ 9(0X, Z2)pY — g(@Y, Z)pX +29(p X, Y )pZ}
=0

This completes the proof of our theorem. |
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