THE FROBENIUS NUMBERS OF SOME NUMERICAL SEMIGROUPS

Hyung Nae Lee and Byung Chul Song

Abstract

Let S_{i} be the numerical semigroup generated by the set $\{a, a+d, \cdots, a+(i-1) d, a+(i+1) d, \cdots, a+r d\}$. In this paper, we will formulate the largest nonmember, the Frobenius number, of each set S_{i}.

1. Introduction

If the greatest common divisor of the positive integers $a_{0}, a_{1}, \cdots, a_{r}$ is 1 , then the set

$$
S=\left\{\sum_{i=0}^{r} a_{i} n_{i} \mid n_{i} \in \mathbb{N}^{*}\right\}
$$

where $\mathbb{N}^{*}=\mathbb{N} \cup\{0\}$, contains all the nonnegative integers except a finite set of numbers. In this case we call the set S a numerical semigroup generated by the set $\left\{a_{0}, a_{1}, \cdots, a_{r}\right\}$. Denote S by $<a_{0}, a_{1}, \cdots, a_{r}>$. We denote $F(S)$ by the largest nonmember, the Frobenius number, of S. In 1956, Roberts [?] found $F(S)$ for $S=<a, a+d, \cdots, a+r d>$, when $(a, d)=1$. In general if 2 numerical semigroups T_{1} and T_{2} are generated by 2 sets B_{1} and B_{2} respectively with $B_{1} \subset B_{2}$, then $F\left(T_{1}\right) \geq F\left(T_{2}\right)$. So if we add (or delete) terms into (or from) a given set B to make B^{\prime}, then the Frobenius number of the numerical semigroup generated by B^{\prime} may be changed. Several authors [?], [?], [?] treated $F\left(B^{\prime}\right)$ when B is a finite arithmetical progression. Throughout this paper we assume that the positive numbers a, d, r satisfy $(a, d)=1$ with $a>r \geq 3$. Now we consider the sets $B=\{a, a+d, \cdots, a+r d\}, B_{i}=B \backslash\{a+i d\}, S=$ and $S_{i}=<B_{i}>$ for $1 \leq i \leq r-1$. Note that $F(S)=\left[\frac{a-2}{r}\right] a+(a-1) d$

Received August 21, 2002.
2000 Mathematics Subject Classification: Primary: 11D04, Secondary: 11B75, 20M14.

Key words and phrases: numerical semigroup, Frobenius number.
(See [?]), where $[q]$ be the largest integer less than or equal to q. In this paper we will compute $F\left(S_{i}\right)$ and find a necessary and sufficient condition under which $F(S)=F\left(S_{i}\right)$.

2. Main Theorems

Let $A_{i}^{(m)}$ be the set of numbers with m addition of elements from B_{i}, that is,

$$
A_{i}^{(m)}=\left\{\sum_{j=1}^{m} \alpha_{j} \mid \alpha_{j} \in B_{i}\right\} .
$$

Then clearly $S_{i}=\cup_{m=0}^{\infty} A_{i}^{(m)}$, where $A_{i}^{(0)}=\{0\}$.
If $2 \leq i \leq r-2$ and $m \geq 2$, then $A_{i}^{(m)}=\{m a, m a+d, \cdots, m a+m r d\}$. Since $S_{i}=<a, a+d, \cdots, a+r d>\backslash\{a+i d\}$,

$$
F\left(S_{i}\right)=\max \{F(S), a+i d\} .
$$

Note that $A_{i}^{(m)}=\{m a, m a+d, \cdots, m a+m r d\}$ for $m \geq 2$. If we choose n_{0} be the smallest integer such that $n_{0} r \geq a+1$, then it's easy to check that $n_{0}=\left[\frac{a}{r}\right]+1$. Since $n_{0} r \geq a+1, A_{1}^{\left(n_{0}\right)}$ contains the set $C=\left\{n_{0} a+2 d, \cdots, n_{0} a+(a+1) d\right\}=n_{0} a+\{2 d, 3 d, \cdots,(a+1) d\}$. We also note that since $(a, d)=1$ the set $C \equiv \mathbb{Z}_{a}(\bmod a)$.

Theorem 2.1. $F\left(S_{1}\right)=\left[\frac{a}{r}\right] a+(a+1) d$.
Proof. Let $\alpha=\left[\frac{a}{r}\right] a+(a+1) d$, then since $n_{0} r \geq a+1>\left(n_{0}-1\right) r$ we have $\alpha=\left[\frac{a}{r}\right] a+(a+1) d>\left(n_{0}-1\right) a+\left(n_{0}-1\right) r d$. Which means that $\alpha \notin \cup_{j=0}^{n_{0}-1} A_{1}^{(j)}$. Since $(a, d)=1$, we have $k d \not \equiv d(\bmod a)$ for any $k=2,3, \cdots, a$. So the smallest number in $\cup_{j=n_{0}}^{\infty} A_{1}^{(j)}$ that is equivalent to d modulo a is $n_{0} a+(a+1) d$. But $n_{0} a+(a+1) d>\alpha$, so that $\alpha \notin \cup_{j=n_{0}}^{\infty} A_{1}^{(j)}$. In conclusion we have $\alpha \notin \cup_{j=0}^{\infty} A_{1}^{(j)}=S_{1}$. Since C contains an element in each residue class modulo a, for any $p \geq 1$ there exists $\beta \in C$ such that $\alpha+p \equiv \beta(\bmod a)$. But we have $\beta-a \leq\left(n_{0}-1\right) a+(a+1) d<\alpha+p$, so that $\alpha+p \geq \beta$. And since $\beta \in C \subset A_{1}^{\left(n_{0}\right)} \subset S_{1}$, we have $\alpha+p \in S_{1}$. So that $\alpha=F\left(S_{1}\right)$.

Now we consider $A_{r-1}^{(m)}=\{m a, m a+d, \cdots, m a+(m r-2) d, m a+m r d\}$. And let n_{0} be the same as above. We denote the residue of n modulo t by $n(\bmod t)$.

Theorem 2.2. If $a(\bmod r)=1$, then $F\left(S_{r-1}\right)=\left[\frac{a}{r}\right] a+(a-2) d$ when $a>d$ and $F\left(S_{r-1}\right)=\left(\left[\frac{a}{r}\right]-1\right) a+(a-1) d$ when $a<d$.

Proof. If $a>d$, since $a=\left(n_{0}-1\right) r+1$, we have

$$
\begin{aligned}
A_{r-1}^{\left(n_{0}-1\right)} & =\left(n_{0}-1\right) a+\left\{0, d, \cdots,\left(\left(n_{0}-1\right) r-2\right) d,\left(n_{0}-1\right) r d\right\} \\
& =\left(n_{0}-1\right) a+\{0, d, 2 d, \cdots,(a-3) d,(a-1) d\} .
\end{aligned}
$$

Clearly $\alpha=\left[\frac{a}{r}\right] a+(a-2) d \notin A_{r-1}^{\left(n_{0}-1\right)}$, and so $\alpha \notin \cup_{j=0}^{n_{0}-1} A_{r-1}^{(j)}$. Now since $\alpha \equiv(a-2) d(\bmod a)$ and $(a, d)=1$, the smallest element in $\cup_{j=n_{0}}^{\infty} A_{r-1}^{(j)}$ that is equivalent to α modulo a is $n_{0} a+(a-2) d$ which is larger than α. That is $\alpha \notin \cup_{j=n_{0}}^{\infty} A_{r-1}^{(j)}$. Now since the set $D=\left(n_{0}-1\right) a+\{0, d, \cdots,(a-$ 1) $d\} \equiv \mathbb{Z}_{a}(\bmod a)$, for $p \geq 1, \alpha+p \equiv \beta(\bmod a)$ for some $\beta \in D$. If $\beta \neq\left(n_{0}-1\right) a+(a-2) d$, since $\beta-a \leq\left(n_{0}-2\right) a+(a-1) d=\alpha-a+d<\alpha$, $\alpha+p \geq \beta \in A_{r-1}^{\left(n_{0}-1\right)} \subset S_{r-1}$. If $\beta=\left(n_{0}-1\right) a+(a-2) d=\alpha$, since $\alpha+p>\beta, \alpha+p \geq \beta+a \in A_{r-1}^{\left(n_{0}\right)} \subset S_{r-1}$. So $\alpha+p \in S_{r-1}$. Thus $F\left(S_{r-1}\right)=\alpha$.
Let $\gamma=\left(\left[\frac{a}{r}\right]-1\right) a+(a-1) d$. If $a<d$, since $\left[\frac{a-2}{r}\right]=\left[\frac{a}{r}\right]-1, F\left(S_{r-1}\right) \geq$ $F(S)=\gamma$. If $p \geq 1, \gamma+p \equiv \beta(\bmod a)$ for some $\beta \in D$. If $\beta \neq$ $\left(n_{0}-1\right) a+(a-1) d$, since $\beta \leq\left(n_{0}-1\right) a+(a-2) d=\gamma+a-d<\gamma+p$, we have $\gamma+p \geq \beta+a \in A_{r-1}^{\left(n_{0}\right)} \subset S_{r-1}$. If $\beta=\left(n_{0}-1\right) a+(a-1) d$, since $\beta-a=\gamma<\gamma+p, \gamma+p \geq \beta \in A_{r-1}^{\left(n_{0}-1\right)} \subset S_{r-1}$. So $\gamma+p \in S_{r-1}$. Thus $F\left(S_{r-1}\right)=\gamma$.

Theorem 2.3. If $a(\bmod r) \neq 1$, then $F\left(S_{r-1}\right)=\left[\frac{a}{r}\right] a+(a-1) d$.
Proof. Since $(a, d)=1$ and $a-1 \leq n_{0} r-2$, the set $E=n_{0} a+$ $\{0, d, \cdots,(a-1) d\} \subset A_{r-1}^{\left(n_{0}\right)}$ is equivalent to \mathbb{Z}_{a} modulo a. If $a(\bmod r)=$ 0 , then $a=\left(n_{0}-1\right) r$. So $A_{r-1}^{\left(n_{0}-1\right)}=\left(n_{0}-1\right) a+\{0, d, \cdots,(a-2) d, a d\}$ and $\alpha=\left(n_{0}-1\right) a+(a-1) d \notin \cup_{j=0}^{n_{0}-1} A_{r-1}^{(j)}$. Moreover, since $(a, d)=$ 1 , the smallest number in $\cup_{j=n_{0}}^{\infty} A_{r-1}^{(j)}$ which is equal to α modulo a is $n_{0} a+(a-1) d$. And since $n_{0} a+(a-1) d>\alpha, \alpha \notin S_{r-1}$. Since $E \equiv \mathbb{Z}_{a}$ $(\bmod a)$, for any $p \geq 1$ there exists $\beta \in E$ such that $\alpha+p \equiv \beta(\bmod a)$. But $\beta-a \leq\left(n_{0}-1\right) a+(a-1) d<\alpha+p$. So that $\alpha+p \geq \beta \in S_{r-1}$. So $\alpha+p \in S_{r-1}$. We have $F\left(S_{r-1}\right)=\left[\frac{a}{r}\right] a+(a-1) d$. If $a(\bmod r)>1$, then $a>\left(n_{0}-1\right) r+1$. So that the largest element $\left(n_{0}-1\right) a+\left(n_{0}-1\right) r d$ in the set $\cup_{j=0}^{n_{0}-1} A_{r-1}^{(j)}$ is smaller than $\alpha=\left(n_{0}-1\right) a+(a-1) d$. And since $(a, d)=1$, the smallest element in $\cup_{j=n_{0}}^{\infty} A_{r-1}^{(j)}$ that is equivalent to
α modulo a is $n_{0} a+(a-1) d$, which is larger than α. Finally for any $p \geq 1$ there exists $\beta \in E$ such that $\alpha+p \equiv \beta(\bmod a)$. Similar to the above, $\alpha+p \geq \beta \in S_{r-1}$, which implies $F\left(S_{r-1}\right)=\alpha$.

Corollary 2.4. Two Frobenius numbers $F\left(S_{i}\right)$ and $F(S)$ are different if and only if $i=1$ or $r=a-1$ and $i d>a d-a-d$ or $i=r-1$ and $a(\bmod r)=0$ or $i=r-1, a>d$ and $a(\bmod r)=1$.

Proof. If $i=1, F\left(S_{1}\right)=\left[\frac{a}{r}\right] a+(a+1) d>\left[\frac{a-2}{r}\right] a+(a-1) d=F(S)$. If $2 \leq i \leq r-2$ and $r<a-1$, since $a+i d<a+(a-1) d \leq\left[\frac{a-2}{r}\right] a+$ $(a-1) d=F(S), F\left(S_{i}\right)=F(S)$.
If $2 \leq i \leq r-2$ and $r=a-1, F\left(S_{i}\right)=F(S)$ is equivalent to $a+i d \leq$ $(a-1) d$.
If $i=r-1$ and $a(\bmod r) \neq 1$, by Theorem 2. 3., $F\left(S_{i}\right)=F(S)$ is equivalent to $\left[\frac{a}{r}\right]=\left[\frac{a-2}{r}\right]$. This condition is identical to $a(\bmod r) \geq 2$. If $i=r-1, a(\bmod r)=1$ and $a>d, F\left(S_{r-1}\right)=\left[\frac{a}{r}\right] a+(a-2) d \neq$ $\left[\frac{a-2}{r}\right] a+(a-1) d=F(S)$.
If $i=r-1, a(\bmod r)=1$ and $a<d, F\left(S_{r-1}\right)=\left(\left[\frac{a}{r}\right]-1\right) a+(a-1) d=$ $\left[\frac{a-2}{r}\right] a+(a-1) d=F(S)$.

References

[1] Ritter, S. M., The linear diophantine problem of Frobenius for subsets of arithmetic sequences, Arch. Math. 69 (1997), 31-39.
[2] Ritter, S. M., On a linear diophantine problem of Frobenius: Extending the basis , J. Number Theory 69 (1998), 201-212.
[3] Roberts, J. B., Notes on linear forms, Proc. Amer. Math. Soc. 7 (1956), 465-469
[4] Selmer, E. S., On the linear diophantine problem of Frobenius, J. reine angew. Math. 293/294 (1977), 1-17.

Daein High School
47-3 Kongchondong, Seo Gu
Inchon, Korea
E-mail: galois@dreamwiz.com
Department of Mathematics
Kangnung National University
210-702 Kangnung Kangweondo, KOREA
E-mail: bcsong@knusun.kangnung.ac.kr

