Kangweon-Kyungki Math. Jour. 10 (2002), No. 2, pp. 191–194

THE FROBENIUS NUMBERS OF SOME NUMERICAL SEMIGROUPS

HYUNG NAE LEE AND BYUNG CHUL SONG

ABSTRACT. Let S_i be the numerical semigroup generated by the set $\{a, a + d, \dots, a + (i - 1)d, a + (i + 1)d, \dots, a + rd\}$. In this paper, we will formulate the largest nonmember, the Frobenius number, of each set S_i .

1. Introduction

If the greatest common divisor of the positive integers a_0, a_1, \cdots, a_r is 1, then the set

$$S = \{\sum_{i=0}^{r} a_i n_i | n_i \in \mathbb{N}^*\}$$

where $\mathbb{N}^* = \mathbb{N} \cup \{0\}$, contains all the nonnegative integers except a finite set of numbers. In this case we call the set S a numerical semigroup generated by the set $\{a_0, a_1, \dots, a_r\}$. Denote S by $\langle a_0, a_1, \dots, a_r \rangle$. We denote F(S) by the largest nonmember, the Frobenius number, of S. In 1956, Roberts [?] found F(S) for $S = \langle a, a + d, \dots, a + rd \rangle$, when (a, d) = 1. In general if 2 numerical semigroups T_1 and T_2 are generated by 2 sets B_1 and B_2 respectively with $B_1 \subset B_2$, then $F(T_1) \geq F(T_2)$. So if we add (or delete) terms into (or from) a given set B to make B', then the Frobenius number of the numerical semigroup generated by B'may be changed. Several authors [?], [?], [?] treated F(B') when B is a finite arithmetical progression. Throughout this paper we assume that the positive numbers a, d, r satisfy (a, d) = 1 with $a > r \geq 3$. Now we consider the sets $B = \{a, a+d, \dots, a+rd\}, B_i = B \setminus \{a+id\}, S = \langle B \rangle$ and $S_i = \langle B_i \rangle$ for $1 \leq i \leq r - 1$. Note that $F(S) = [\frac{a-2}{r}]a + (a-1)d$

Received August 21, 2002.

²⁰⁰⁰ Mathematics Subject Classification: Primary: 11D04, Secondary: 11B75, 20M14.

Key words and phrases: numerical semigroup, Frobenius number.

192 The Frobenius numbers of some numerical semigroups

(See [?]), where [q] be the largest integer less than or equal to q. In this paper we will compute $F(S_i)$ and find a necessary and sufficient condition under which $F(S) = F(S_i)$.

2. Main Theorems

Let $A_i^{(m)}$ be the set of numbers with m addition of elements from B_i , that is,

$$A_i^{(m)} = \{\sum_{j=1}^m \alpha_j | \alpha_j \in B_i\}.$$

Then clearly $S_i = \bigcup_{m=0}^{\infty} A_i^{(m)}$, where $A_i^{(0)} = \{0\}$. If $2 \le i \le r-2$ and $m \ge 2$, then $A_i^{(m)} = \{ma, ma + d, \cdots, ma + mrd\}$. Since $S_i = \langle a, a + d, \cdots, a + rd \rangle \setminus \{a + id\}$,

$$F(S_i) = \max\{F(S), a + id\}.$$

Note that $A_i^{(m)} = \{ma, ma + d, \dots, ma + mrd\}$ for $m \ge 2$. If we choose n_0 be the smallest integer such that $n_0r \ge a+1$, then it's easy to check that $n_0 = [\frac{a}{r}] + 1$. Since $n_0r \ge a+1$, $A_1^{(n_0)}$ contains the set $C = \{n_0a + 2d, \dots, n_0a + (a+1)d\} = n_0a + \{2d, 3d, \dots, (a+1)d\}$. We also note that since (a, d) = 1 the set $C \equiv \mathbb{Z}_a \pmod{a}$.

THEOREM 2.1. $F(S_1) = [\frac{a}{r}]a + (a+1)d.$

Proof. Let $\alpha = [\frac{a}{r}]a + (a+1)d$, then since $n_0r \ge a+1 > (n_0-1)r$ we have $\alpha = [\frac{a}{r}]a + (a+1)d > (n_0-1)a + (n_0-1)rd$. Which means that $\alpha \notin \bigcup_{j=0}^{n_0-1} A_1^{(j)}$. Since (a,d) = 1, we have $kd \not\equiv d \pmod{a}$ for any $k = 2, 3, \cdots, a$. So the smallest number in $\bigcup_{j=n_0}^{\infty} A_1^{(j)}$ that is equivalent to $d \mod a$ is $n_0a + (a+1)d$. But $n_0a + (a+1)d > \alpha$, so that $\alpha \notin \bigcup_{j=n_0}^{\infty} A_1^{(j)}$. In conclusion we have $\alpha \notin \bigcup_{j=0}^{\infty} A_1^{(j)} = S_1$. Since C contains an element in each residue class modulo a, for any $p \ge 1$ there exists $\beta \in C$ such that $\alpha + p \equiv \beta \pmod{a}$. But we have $\beta - a \le (n_0 - 1)a + (a+1)d < \alpha + p$, so that $\alpha + p \ge \beta$. And since $\beta \in C \subset A_1^{(n_0)} \subset S_1$, we have $\alpha + p \in S_1$. So that $\alpha = F(S_1)$.

Now we consider $A_{r-1}^{(m)} = \{ma, ma+d, \cdots, ma+(mr-2)d, ma+mrd\}$. And let n_0 be the same as above. We denote the residue of n modulo t by $n \pmod{t}$. THEOREM 2.2. If $a \pmod{r} = 1$, then $F(S_{r-1}) = [\frac{a}{r}]a + (a-2)d$ when a > d and $F(S_{r-1}) = ([\frac{a}{r}] - 1)a + (a-1)d$ when a < d.

Proof. If a > d, since $a = (n_0 - 1)r + 1$, we have

$$A_{r-1}^{(n_0-1)} = (n_0 - 1)a + \{0, d, \cdots, ((n_0 - 1)r - 2)d, (n_0 - 1)rd\}$$

= $(n_0 - 1)a + \{0, d, 2d, \cdots, (a - 3)d, (a - 1)d\}.$

Clearly $\alpha = [\frac{a}{r}]a + (a-2)d \notin A_{r-1}^{(n_0-1)}$, and so $\alpha \notin \bigcup_{j=0}^{n_0-1} A_{r-1}^{(j)}$. Now since $\alpha \equiv (a-2)d \pmod{a}$ and (a,d) = 1, the smallest element in $\bigcup_{j=n_0}^{\infty} A_{r-1}^{(j)}$ that is equivalent to α modulo a is $n_0a + (a-2)d$ which is larger than α . That is $\alpha \notin \bigcup_{j=n_0}^{\infty} A_{r-1}^{(j)}$. Now since the set $D = (n_0-1)a + \{0, d, \cdots, (a-1)d\} \equiv \mathbb{Z}_a \pmod{a}$, for $p \ge 1$, $\alpha + p \equiv \beta \pmod{a}$ for some $\beta \in D$. If $\beta \neq (n_0-1)a + (a-2)d$, since $\beta - a \le (n_0-2)a + (a-1)d = \alpha - a + d < \alpha$, $\alpha + p \ge \beta \in A_{r-1}^{(n_0-1)} \subset S_{r-1}$. If $\beta = (n_0-1)a + (a-2)d = \alpha$, since $\alpha + p > \beta$, $\alpha + p \ge \beta + a \in A_{r-1}^{(n_0)} \subset S_{r-1}$. So $\alpha + p \in S_{r-1}$. Thus $F(S_{r-1}) = \alpha$. Let $\gamma = ([\frac{a}{r}] - 1)a + (a-1)d$. If a < d, since $[\frac{a-2}{r}] = [\frac{a}{r}] - 1$, $F(S_{r-1}) \ge F(S) = \gamma$. If $p \ge 1$, $\gamma + p \equiv \beta \pmod{a}$ for some $\beta \in D$. If $\beta \neq (n_0 - 1)a + (a - 1)d$, since $\beta \le (n_0 - 1)a + (a - 2)d = \gamma + a - d < \gamma + p$, we have $\gamma + p \ge \beta + a \in A_{r-1}^{(n_0)} \subset S_{r-1}$. If $\beta = (n_0 - 1)a + (a - 1)d$, since $\beta - a = \gamma < \gamma + p$, $\gamma + p \ge \beta \in A_{r-1}^{(n_0-1)} \subset S_{r-1}$. If $\beta = (n_0 - 1)a + (a - 1)d$, since $\beta < a = \gamma + p + \beta = \beta + a \in A_{r-1}^{(n_0-1)} \subset S_{r-1}$. If $\beta = (n_0 - 1)a + (a - 1)d$, since $\beta - a = \gamma < \gamma + p$, $\gamma + p \ge \beta \in A_{r-1}^{(n_0-1)} \subset S_{r-1}$. So $\gamma + p \in S_{r-1}$. Thus

THEOREM 2.3. If $a \pmod{r} \neq 1$, then $F(S_{r-1}) = [\frac{a}{r}]a + (a-1)d$.

 $F(S_{r-1}) = \gamma.$

Proof. Since (a,d) = 1 and $a-1 \leq n_0r-2$, the set $E = n_0a + \{0, d, \cdots, (a-1)d\} \subset A_{r-1}^{(n_0)}$ is equivalent to \mathbb{Z}_a modulo a. If $a \pmod{r} = 0$, then $a = (n_0 - 1)r$. So $A_{r-1}^{(n_0-1)} = (n_0 - 1)a + \{0, d, \cdots, (a-2)d, ad\}$ and $\alpha = (n_0 - 1)a + (a - 1)d \notin \bigcup_{j=0}^{n_0-1}A_{r-1}^{(j)}$. Moreover, since (a,d) = 1, the smallest number in $\bigcup_{j=n_0}^{\infty}A_{r-1}^{(j)}$ which is equal to α modulo a is $n_0a + (a-1)d$. And since $n_0a + (a-1)d > \alpha$, $\alpha \notin S_{r-1}$. Since $E \equiv \mathbb{Z}_a$ (mod a), for any $p \geq 1$ there exists $\beta \in E$ such that $\alpha + p \equiv \beta \pmod{a}$. But $\beta - a \leq (n_0 - 1)a + (a - 1)d < \alpha + p$. So that $\alpha + p \geq \beta \in S_{r-1}$. So $\alpha + p \in S_{r-1}$. We have $F(S_{r-1}) = [\frac{a}{r}]a + (a-1)d$. If $a \pmod{r} > 1$, then $a > (n_0 - 1)r + 1$. So that the largest element $(n_0 - 1)a + (n_0 - 1)rd$ in the set $\bigcup_{j=0}^{n_0-1}A_{r-1}^{(j)}$ is smaller than $\alpha = (n_0 - 1)a + (a - 1)d$. And since (a, d) = 1, the smallest element in $\bigcup_{j=n_0}^{\infty}A_{r-1}^{(j)}$ that is equivalent to

 α modulo a is $n_0 a + (a - 1)d$, which is larger than α . Finally for any $p \ge 1$ there exists $\beta \in E$ such that $\alpha + p \equiv \beta \pmod{a}$. Similar to the above, $\alpha + p \ge \beta \in S_{r-1}$, which implies $F(S_{r-1}) = \alpha$.

COROLLARY 2.4. Two Frobenius numbers $F(S_i)$ and F(S) are different if and only if i = 1 or r = a - 1 and id > ad - a - d or i = r - 1 and $a \pmod{r} = 0$ or i = r - 1, a > d and $a \pmod{r} = 1$.

Proof. If i = 1, $F(S_1) = [\frac{a}{r}]a + (a+1)d > [\frac{a-2}{r}]a + (a-1)d = F(S)$. If $2 \le i \le r-2$ and r < a-1, since $a + id < a + (a-1)d \le [\frac{a-2}{r}]a + (a-1)d = F(S)$, $F(S_i) = F(S)$. If $2 \le i \le r-2$ and r = a-1, $F(S_i) = F(S)$ is equivalent to $a + id \le (a-1)d$. If i = r-1 and $a \pmod{r} \ne 1$, by Theorem 2. 3., $F(S_i) = F(S)$ is equivalent to $[\frac{a}{r}] = [\frac{a-2}{r}]$. This condition is identical to $a \pmod{r} \ge 2$. If i = r-1, $a \pmod{r} = 1$ and a > d, $F(S_{r-1}) = [\frac{a}{r}]a + (a-2)d \ne [\frac{a-2}{r}]a + (a-1)d = F(S)$. If i = r-1, $a \pmod{r} = 1$ and a < d, $F(S_{r-1}) = ([\frac{a}{r}] - 1)a + (a-1)d = [\frac{a-2}{r}]a + (a-1)d = F(S)$. □

References

- Ritter, S. M., The linear diophantine problem of Frobenius for subsets of arithmetic sequences, Arch. Math. 69 (1997), 31-39.
- [2] Ritter, S. M., On a linear diophantine problem of Frobenius: Extending the basis , J. Number Theory 69 (1998), 201-212.
- [3] Roberts, J. B., Notes on linear forms, Proc. Amer. Math. Soc. 7 (1956), 465-469
- [4] Selmer, E. S., On the linear diophantine problem of Frobenius, J. reine angew. Math. 293/294 (1977), 1-17.

Daein High School 47-3 Kongchondong, Seo Gu Inchon, Korea *E-mail*: galois@dreamwiz.com

Department of Mathematics Kangnung National University 210-702 Kangnung Kangweondo, KOREA *E-mail*: bcsong@knusun.kangnung.ac.kr

194