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THE FROBENIUS NUMBERS OF SOME NUMERICAL

SEMIGROUPS

Hyung Nae Lee and Byung Chul Song

Abstract. Let Si be the numerical semigroup generated by the set
{a, a + d, · · · , a + (i − 1)d, a + (i + 1)d, · · · , a + rd}. In this paper,
we will formulate the largest nonmember, the Frobenius number, of
each set Si.

1. Introduction

If the greatest common divisor of the positive integers a0, a1, · · · , ar

is 1, then the set

S = {
r∑

i=0

aini|ni ∈ N∗}

where N∗ = N∪{0}, contains all the nonnegative integers except a finite
set of numbers. In this case we call the set S a numerical semigroup
generated by the set {a0, a1, · · · , ar}. Denote S by < a0, a1, · · · , ar >.
We denote F (S) by the largest nonmember, the Frobenius number, of S.
In 1956, Roberts [?] found F (S) for S =< a, a + d, · · · , a + rd >, when
(a, d) = 1. In general if 2 numerical semigroups T1 and T2 are generated
by 2 sets B1 and B2 respectively with B1 ⊂ B2, then F (T1) ≥ F (T2).
So if we add (or delete) terms into (or from) a given set B to make B′,
then the Frobenius number of the numerical semigroup generated by B′

may be changed. Several authors [?], [?], [?] treated F (B′) when B is a
finite arithmetical progression. Throughout this paper we assume that
the positive numbers a, d, r satisfy (a, d) = 1 with a > r ≥ 3. Now we
consider the sets B = {a, a+d, · · · , a+rd}, Bi = B\{a+id}, S =< B >
and Si =< Bi > for 1 ≤ i ≤ r − 1. Note that F (S) = [a−2

r
]a + (a− 1)d
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(See [?]), where [q] be the largest integer less than or equal to q. In
this paper we will compute F (Si) and find a necessary and sufficient
condition under which F (S) = F (Si).

2. Main Theorems

Let A
(m)
i be the set of numbers with m addition of elements from Bi,

that is,

A
(m)
i = {

m∑
j=1

αj|αj ∈ Bi}.

Then clearly Si = ∪∞m=0A
(m)
i , where A

(0)
i = {0}.

If 2 ≤ i ≤ r − 2 and m ≥ 2, then A
(m)
i = {ma,ma + d, · · · ,ma + mrd}.

Since Si =< a, a + d, · · · , a + rd > \{a + id},
F (Si) = max{F (S), a + id}.

Note that A
(m)
i = {ma,ma + d, · · · ,ma + mrd} for m ≥ 2. If we

choose n0 be the smallest integer such that n0r ≥ a + 1, then it’s easy

to check that n0 = [a
r
] + 1. Since n0r ≥ a + 1, A

(n0)
1 contains the set

C = {n0a + 2d, · · · , n0a + (a + 1)d} = n0a + {2d, 3d, · · · , (a + 1)d}. We
also note that since (a, d) = 1 the set C ≡ Za (mod a).

Theorem 2.1. F (S1) = [a
r
]a + (a + 1)d.

Proof. Let α = [a
r
]a + (a + 1)d, then since n0r ≥ a + 1 > (n0 − 1)r

we have α = [a
r
]a + (a + 1)d > (n0 − 1)a + (n0 − 1)rd. Which means

that α /∈ ∪n0−1
j=0 A

(j)
1 . Since (a, d) = 1, we have kd 6≡ d (mod a) for any

k = 2, 3, · · · , a. So the smallest number in ∪∞j=n0
A

(j)
1 that is equivalent to

d modulo a is n0a+(a+1)d. But n0a+(a+1)d > α, so that α /∈ ∪∞j=n0
A

(j)
1 .

In conclusion we have α /∈ ∪∞j=0A
(j)
1 = S1. Since C contains an element

in each residue class modulo a, for any p ≥ 1 there exists β ∈ C such
that α+p ≡ β (mod a). But we have β−a ≤ (n0−1)a+(a+1)d < α+p,

so that α + p ≥ β. And since β ∈ C ⊂ A
(n0)
1 ⊂ S1, we have α + p ∈ S1.

So that α = F (S1).

Now we consider A
(m)
r−1 = {ma,ma + d, · · · ,ma + (mr− 2)d,ma + mrd}.

And let n0 be the same as above. We denote the residue of n modulo t
by n (mod t).
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Theorem 2.2. If a (mod r) = 1, then F (Sr−1) = [a
r
]a + (a − 2)d

when a > d and F (Sr−1) = ([a
r
]− 1)a + (a− 1)d when a < d.

Proof. If a > d, since a = (n0 − 1)r + 1, we have

A
(n0−1)
r−1 = (n0 − 1)a + {0, d, · · · , ((n0 − 1)r − 2)d, (n0 − 1)rd}

= (n0 − 1)a + {0, d, 2d, · · · , (a− 3)d, (a− 1)d}.
Clearly α = [a

r
]a + (a− 2)d /∈ A

(n0−1)
r−1 , and so α /∈ ∪n0−1

j=0 A
(j)
r−1. Now since

α ≡ (a− 2)d (mod a) and (a, d) = 1, the smallest element in ∪∞j=n0
A

(j)
r−1

that is equivalent to α modulo a is n0a+(a−2)d which is larger than α.

That is α /∈ ∪∞j=n0
A

(j)
r−1. Now since the set D = (n0−1)a+{0, d, · · · , (a−

1)d} ≡ Za (mod a), for p ≥ 1, α + p ≡ β (mod a) for some β ∈ D. If
β 6= (n0−1)a+(a−2)d, since β−a ≤ (n0−2)a+(a−1)d = α−a+d < α,

α + p ≥ β ∈ A
(n0−1)
r−1 ⊂ Sr−1. If β = (n0 − 1)a + (a − 2)d = α, since

α + p > β, α + p ≥ β + a ∈ A
(n0)
r−1 ⊂ Sr−1. So α + p ∈ Sr−1. Thus

F (Sr−1) = α.
Let γ = ([a

r
]− 1)a + (a− 1)d. If a < d, since [a−2

r
] = [a

r
]− 1, F (Sr−1) ≥

F (S) = γ. If p ≥ 1, γ + p ≡ β (mod a) for some β ∈ D. If β 6=
(n0− 1)a + (a− 1)d, since β ≤ (n0− 1)a + (a− 2)d = γ + a− d < γ + p,

we have γ + p ≥ β + a ∈ A
(n0)
r−1 ⊂ Sr−1. If β = (n0− 1)a + (a− 1)d, since

β − a = γ < γ + p, γ + p ≥ β ∈ A
(n0−1)
r−1 ⊂ Sr−1. So γ + p ∈ Sr−1. Thus

F (Sr−1) = γ.

Theorem 2.3. If a (mod r) 6= 1, then F (Sr−1) = [a
r
]a + (a− 1)d.

Proof. Since (a, d) = 1 and a − 1 ≤ n0r − 2, the set E = n0a +

{0, d, · · · , (a−1)d} ⊂ A
(n0)
r−1 is equivalent to Za modulo a. If a (mod r) =

0, then a = (n0 − 1)r. So A
(n0−1)
r−1 = (n0 − 1)a + {0, d, · · · , (a− 2)d, ad}

and α = (n0 − 1)a + (a − 1)d 6∈ ∪n0−1
j=0 A

(j)
r−1. Moreover, since (a, d) =

1, the smallest number in ∪∞j=n0
A

(j)
r−1 which is equal to α modulo a is

n0a + (a− 1)d. And since n0a + (a− 1)d > α, α /∈ Sr−1. Since E ≡ Za

(mod a), for any p ≥ 1 there exists β ∈ E such that α+ p ≡ β (mod a).
But β − a ≤ (n0 − 1)a + (a − 1)d < α + p. So that α + p ≥ β ∈ Sr−1.
So α + p ∈ Sr−1. We have F (Sr−1) = [a

r
]a + (a− 1)d. If a (mod r) > 1,

then a > (n0−1)r+1. So that the largest element (n0−1)a+(n0−1)rd

in the set ∪n0−1
j=0 A

(j)
r−1 is smaller than α = (n0 − 1)a + (a − 1)d. And

since (a, d) = 1, the smallest element in ∪∞j=n0
A

(j)
r−1 that is equivalent to
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α modulo a is n0a + (a − 1)d, which is larger than α. Finally for any
p ≥ 1 there exists β ∈ E such that α + p ≡ β (mod a). Similar to the
above, α + p ≥ β ∈ Sr−1, which implies F (Sr−1) = α.

Corollary 2.4. Two Frobenius numbers F (Si) and F (S) are differ-
ent if and only if i = 1 or r = a− 1 and id > ad− a− d or i = r− 1 and
a (mod r) = 0 or i = r − 1, a > d and a (mod r) = 1.

Proof. If i = 1, F (S1) = [a
r
]a + (a + 1)d > [a−2

r
]a + (a− 1)d = F (S).

If 2 ≤ i ≤ r − 2 and r < a − 1, since a + id < a + (a − 1)d ≤ [a−2
r

]a +
(a− 1)d = F (S), F (Si) = F (S).
If 2 ≤ i ≤ r − 2 and r = a− 1, F (Si) = F (S) is equivalent to a + id ≤
(a− 1)d.
If i = r − 1 and a (mod r) 6= 1, by Theorem 2. 3., F (Si) = F (S) is
equivalent to [a

r
] = [a−2

r
]. This condition is identical to a (mod r) ≥ 2.

If i = r − 1, a (mod r) = 1 and a > d, F (Sr−1) = [a
r
]a + (a − 2)d 6=

[a−2
r

]a + (a− 1)d = F (S).
If i = r−1, a (mod r) = 1 and a < d, F (Sr−1) = ([a

r
]− 1)a+(a−1)d =

[a−2
r

]a + (a− 1)d = F (S).
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