Investigation of Effects of Shield Gas on Counterflow Flame Structure

차폐가스가 대향류 화염구조에 미치는 영향의 조사

  • Park, Woe-Chul (Department of Safety Engineering, Pukyong National University)
  • Published : 2002.06.30

Abstract

The effects of shield gas on the structure of methane-air nonpremixed counterflow flames were numerically investigated. The near extinction flame of a low global strain rate 20 $s^{-1}$ of 19% methane diluted by 81% nitrogen by volume and undiluted air was computed. The flame shape, centerline temperature and axial velocity profiles were compared for different velocity of the shield gas and with and without the shield gas. The effects of the velocity of the shield gas were negligible for $V_{S}/V_{F}{\leq}2$ in normal gravity. Under normal gravity conditions, the flame shape and its position with the shield gas were different from those of the flame without the shield gas, whereas no discernible effects of the shield gas along the centerline were observed in zero gravity.

메탄-공기의 비예혼합 대향류 확산화염 차폐가스가 화염구조에 미치는 영향을 수치적으로 조사하였다. 20 $s^{-1}$의 저변형율, 메탄가스 19%와 질소 79%의 혼합가스 연료와 공기의 확산화염을 대상으로 하였다. 질소차폐가스의 속도의 차폐가스의 유무에 따른 화염의 형태와 중심선상의 온도 및 축방향 속도의 분포를 비교하였다. 정상중력에서 $V_{S}/V_{F}{\leq}2$일 때 차폐가스의 유동이 화염구조에 미치는 영향은 무시할 수 있었다. 정상중력에서 차폐가스가 없는 경우의 화염형태와 그 위치는 차폐가스가 있는 경우와 다르지만, 무중력에서는 중심선상에서 차폐가스의 영향이 거의 없었다.

Keywords

References

  1. K. Maruta, M. Yoshida, H. Guo, Y. Ju and T. Niioka, Extinction of Low-Stretched Diffusion Flame in Microgravity, Combustion and Flames, Vol. 112, pp. 181-187, 1998 https://doi.org/10.1016/S0010-2180(97)81766-X
  2. K. B. McGrattan, H. R. Baum, R. G. Rehm, A. Hamins, G. P. Forney, J. E. Floyd and S. Hostikka, Fire Dynamics Simulator Technical Reference Guide V.2, National Institute of Standards and Technology, Gaithersburg, MD, U.S.A. http://fire.nist.gov/fds/, 2001
  3. Simulation for Counterflow DifIusion Flames, Korea Institute for Industrial Safety Journal, Vol 16, No. 4, pp. 74-81, 2001 (in Korean)
  4. A. Lutz, R. J. Kee, J. Grcar and F. M. Rupley, A Fortran Program Computing Opposed Flow Diffusion Flames, SAND96-8243, Sandia Na- tional Laboratories, Livermore, CA, 1997
  5. W. C. Park and A. Hamins, Investigation of Velocity Boundary Conditions in Counterflow Flames, KSME Intl J., Vol. 16, No. 2, pp. 262-269, 2002 https://doi.org/10.1007/BF03185178
  6. J. E. Floyd, K. B. McGrattan and H. R. Baum, A Mixture Fraction Combustion Model for Fire Si- mulation Using CFD, Proc. Intl Conf. on Engi- neensd Fire Protection Design, pp. 279-290, 2001
  7. K. Seshadri, and F. A. Williams, Laminar Flow Between Parallel Plates with Injection of a Reactant at High Reynolds Number, Intl J. Heat Mass Transfer, Vol. 21, pp. 251-253, 1978 https://doi.org/10.1016/0017-9310(78)90230-2