技術現況分析

엔지니어링 소재로서 벌크 비정질합금 개발 및 응용연구 동향

技術現況分析

1.서 론

첨단 신산업의 발달로 각종 전자기기의 극소 형화, 경량화가 급속히 진행되고, 에너지 절약 및 환경보호 등 새로운 사회적 이슈가 대두됨 에 따라 과학기술 분야에서도 신기술에 대한 욕구가 증대되고 있다. 재료, 특히 금속 분야에 서도 새로운 기능성 소재에 대한 관심과 개발 이 꾸준히 진행되고 있으며 비정질합금도 신 기능성 소재의 하나로서 주목을 받고 있다.

고체 상태에서의 제조도 가능한 것으로 알려 져 있지만 대부분의 경우 비정질합금은 액상의 합금이 융점(melting point) 이하로 냉각되는 동안, 과냉각 상태에서 결정화(crystallize)되지 못한 채 그대로 응고(solidification)된 것으로서 기계적, 화학적 특성이 향상되고 전자기적 특성 이 우수하다. 따라서 1980년대 초부터 꿈의 신 소재로 많은 관심을 받아왔으나 제조 기술의 어려움 등으로 인해 실제적인 활용은 많이 이 루어지지 못하여왔다.

비정질합금의 연구는 1930년경부터 시작되었 으나 1960년 Caltec(California Institute of Technology)의 Pol Duwez 교수팀^[1]에 의해 실질적인 비정질합금이 최초로 제조됨으로써 본격화되었다. 그러나 1990년대 초반까지 발견 된 Fe-계, Co-계 및 Ni-계 비정질합금을 제조 하기 위해서는 10⁵ K/s 이상의 높은 냉각속도 를 필요로 했으며 제품의 두께도 약 50µm 이하 로 제한되었다.^[2] 이러한 이유로 비정질합금의

技術現況分析

응용도 변압기 및 일부 전자부품, 브레이징 삽 입금속 등으로 제한되어 있었다.

그러나 1988년 이래로 미국, 일본, 독일 등 기술 선진국에서 비정질 구조를 얻기 위한 임 계냉각속도가 낮은 다성분계 합금들을 발견하 고^[3-11] 최대 100mm의 두께를 갖는 비정질 소 재를 제조하고,^[12] 비정질 분말이나 리본 (ribbon)을 이용하여 벌크 비정질합금을 제조하 기 위한 기술들이 개발됨으로써^[13-15] 신 기능 성 엔지니어링 소재로의 응용 가능성도 증대되 고 있다. 뿐만아니라 다양한 복합재료에 강화섬 유(reinfor- cing fiber)로 비정질합금을 사용함 으로써 강도 및 인성을 향상시키기 위한 노력 도 계속되고 있다.^[16,17]

따라서 본고에서는 비정질합금의 일반적인 특징과 더불어 벌크 비정질합금의 개발 및 제 조 동향을 알아보고, 벌크 비정질합금의 간단한 응용 사례 등을 통해 향후 벌크 비정질합금의 응용 및 연구 동향에 대해 간략하게 언급하고 자 한다.

2. 비정질 합금의 특성

비정질합금은 액상의 급속 응고에 의해 제조 되기 때문에 그들의 원자 배열 구조는 액상의 구조와 유사한 것으로 간주되어 왔다. 반면에 비정질합금 내의 원자들의 움직임도 결정합금 과 마찬가지로 이웃하는 원자에 의해 제한되고 따라서 종종 비정질합금 내의 국부적인 원자 배열은 결정원자 배열과 유사하다고 전제된 다.^[16] 비정질합금의 원자구조는 회절실험을 통 한 radial distribution function 분석이나 고분 해능 전자현미경을 통해 연구되어져 왔는 데, 이에대한 다양한 연구를 통해^[18,19] 국부적인 단 범위 규칙(short range ordering)을 갖는 것으 로 파악되고 있다. 그림 1은 비정질합금의 단범 위 규칙성을 보여주는 고분해능 전자현미경 사 진이다. Spaepen 등은^[20,21] 비정질합금의 결정

그림 1. Pd₇₅Si₂₅ 비정질 박막의 고분해능 전자현미경 사진.

화에 대한 속도론적 연구 결과를 핵생성 및 성 장모델과 비교함으로써 비정질합금에 존재하는 단범위 규칙성이 열역학적으로 안정한 결정체 의 구조는 아니라고 판단하였다. 최근의 컴퓨터 시뮬레이션과 실험적 관찰에 따르면 비정질합 금의 단범위 규칙성은 12면체 구조 (icosahedral)를 갖는 나노 크기의 준결정체 (quasi-crystal) 인 것으로 판단되고 있다. 이러 한 비정질합금의 특성들은 그들의 특성에 지대 한 영향을 미치며 본 고에서는 실제적인 응용 측면에서 중요한 기계적 특성을 위주로 언급하 고자 한다.

엔지니어링 소재로서의 응용측면에서 비정질

機械와 材料 14권 3호 (2002. 秋)

그림 3. Zr₅₅Al₁₀Ni₅Cu₃₀ 벌크 비정질합금의 파괴인성 시편 균열첨단 주위의 파면 전자현미경 사진과 시편 및 사진 촬영 위치

합금의 기계적 특성은 매우 중요하다. 그림 2는 다양한 벌크 비정질 합금에 대해 영률(E, Young's Modulus)과 인장파단강도(of) 및 비이 커스 경도(Hv)간의 관계를 보여주고 있으며, 비 교를 위해 몇몇 결정질 합금에 대한 데이터를 함께 보여주고 있다. 비정질합금에서 영률이 증 가함에 따라 인장파단강도 및 비이커스 경도 값이 증가하는 경향을 보였으며, 결정질 합금과 비교했을 때 인장파단강도와 경도가 높고 영률 은 더 낮은 경향을 보였다. Zhang^[22] 등은 Zr-계 벌크 비정질합금에 대해 굽힘강도(bending strength)를 측정하였는 데, Zr-계 및 Ti-계 결정질합금에 비해 2-2.5배 정도 높은 값을 얻 었다.

벌크 비정질 합금이 내부에 결함을 포함하고 있을 때 외부의 힘(load)에 견딜 수 있는 정도 를 파악하기 위해 벌크 비정질합금의 파괴인성 (Kc, fracture toughness)을 측정한 결과도 발 표되고 있다.^[23] Zr-계 벌크 비정질 합금에 대 해 Kc 값을 측정한 결과 합금 조성에 따라 약 간의 차이는 있지만 약 70MPa√m 정도의 값을 보였으며, 그림 3에 균열첨단(crack tip) 근처

技術現況分析

의 파면을 보여주고 있다. 그림 3에 따르면 취 성파괴(brittle fracture) 경향은 관찰할 수 없 었으며, 이로부터 벌크 비정질 합금의 소성가공 성(plastic defor-mability)이 우수함을 짐작할 수 있다. 이때 Kc 값은 두께 3mm인 시편을 이 용하여 측정하였는 데, 비록 여기서 측정한 Kc 값이 평면 변형 파괴인성(Krc) 값에 해당한다고 는 할 수 없지만, 시효경화된 Al-계 결정질 합 금(24-36MPa√m)보다 높고 상용의 Ti-계 결정 질 합금(54-98MPa√m)과 유사한 값을 갖는다. 한편 Zr-계 벌크 비정질합금 내부에 나노 결정 입자(nanocry- stalline particles)를 형성시킨 경우 비정질 합금의 용질 농도 변화에 따라 파 괴인성 값이 크게 증가^[24] 또는 감소^[25]하는 경 향이 관찰되었으며 이에 대한 세밀한 조사를 위해서는 지금보다 더 두꺼운 파괴 인성 시편 을 제조할 수 있는 벌크 비정질합금이 개발되 고 제조되어야 한다.

한편 비정질합금의 경우 결정질 합금에 존재 하는 결정립계와 같은 부분이 없고 소재 전체 가 균일한 특성을 나타내기 때문에 우수한 부 식특성을 갖는 것은 이미 잘 알려져 있다. 또한 비정질 합금의 변형은 소성변형(plastic deformation)이라기 보다는 점성변형(viscous deformation)에 가까우며 따라서 적절한 온도(통 상적으로 Tg와 Tx 사이의 과냉각 액상상태의 온도) 조건에서 고속 초소성 성형이 가능한 것 으로 기대되고 있으며 이에 대한 많은 연구가 진행되고 있고, [12,26,27] 이러한 특성을 이용하여 초소형 MEMS 부품을 성형하기 위한 연구도 진행중이다.^[28-30]

3. 벌크 비정질합금 제조 기술 동향

벌크 비정질합금은 크게 응고(solidification) 법^[23,31-33]과 합체(consolidation)법^[13-16]의 2가 지 방법을 통해 제조할 수 있다.

합체법은 비정질합금 분말을 이용하여 벌크 소재를 제조하는 방법으로서 충격합체(shock consolidation), 폭발성형(explosive forming), 분말소결(sintering), 열간압출 및 압연(hot extru- sion and hot rolling) 등의 방법이 이 에 속한다. 충격합체법^[13]은 분말합금 중합체에 충격파를 가함으로써 파동이 입자 경계를 따라 전달되고 입자 계면에서 에너지 흡수가 일어나 며, 이때 흡수된 에너지가 입자 표면에 미세한 용융층을 형성함으로써 벌크 비정질합금을 생 산하는 방법이다. 이때 생성된 용융층은 입자

機械와 材料 14권 3호 (2002. 秋)

내부로의 열전달을 통해 비정질상태를 유지할 수 있도록 충분히 빠르게 냉각되어야 한다. 이 방법을 통해 비정질합금 본래 밀도의 99% 까 지의 충진밀도를 갖는 벌크 비정질합금을 제조 할 수 있었으며 충분한 기계적 특성을 얻을 수 있었다. 폭발성형법은 충격합체법과 유사한 방 법으로서 Hopper^[14] 등은 이 방법을 이용하여 비정질합금 막대 및 실린더를 성공적으로 제조 하였다.

열간 압출 및 압연법은 고온에서 비정질합금 의 유동성을 이용한 것으로서 Shingu^[15] 등에 의해 최근 제안되었는 데, 이들이 사용한 압연 공정이 그림 4에 보여지고 있다. 이 방법에 의 하면 재킷(jacket)에 비정질합금 분말을 채운 후 Tg 근처의 온도까지 가열하여 압연하고, 압 연성형 후 급냉시킴으로써 충분한 밀도와 강도 를 갖는 벌크 비정질합금을 얻을 수 있다.

응고법에는 동합금 몰드주조법(coppor mold casting), 고압 다이캐스팅(high pressure die casting), 아크용해(arc melting), 일방향 용해 (unidirectional melting), 스퀴즈 캐스팅 (squeez casting), 스트립 캐스팅 등 대부분의 주조 및 용해법이 이에 해당한다. 표 1 및 그림 5에 응고법에 의해 연구되어 온 벌크 비정질합 금의 종류 및 연도를 보여주고 있다. 표에서 알 수 있는 바와 같이 응고법에 의한 벌크 비정질 합금의 제조 연구는 그 역사가 매우 짧지만 그 럼에도 불구하고 많은 발전과 관심을 유발하고 있다. 그림 6에 동합금 몰드주조법에 의해 링 (ring) 형태의 비정질합금을 제조한 장치의 개 략도를 보여주고 있다. 표 2에 몇몇 합금계에 대해 응고법에 의해 지금까지 제조된 비정질합 금의 최대두께(tmax)와 비정질합금으로 응고되기 위한 임계냉각속도(Rc)를 보여주고 있다. Pd-Cu-Ni-P 합금의 경우 tmax값이 75mm에 이르렀으며 Zr-계 및 Ti-계 합금의 경우 각각 30mm, 6mm 정도에 이르렀고, Ni-계 합금의 경우^[34] 약 3mm 정도에 이르렀다. 그림 7에

技術現況分析

응고법으로 제조된 몇몇 비정질합금을 보여주 고 있다. 이들 벌크 비정질합금은 건전한 표면 상태와 금속광택을 보여주고 있으며, 그 크기도 Zr-계 합금의 경우 직경 17mm x 길이 120-600mm 정도이고 Pd-계 합금의 경우 직

벌크 비정질 합금	발표년도	벌크 비정질 합금	발표년도
A. Nonferrous metal base		B. Ferrous group metal base	
Mg-Ln-M	1988	Fe-(Al,Ga)-(P,C,B,Si,Ge)	1995
Ln-Al-TM, Ln-Ga-TM	1989	Fe-(Nb,Mo)-(Al,Ga)-(P,B,Si)	1995
Zr-Al-TM	1990	Co-(Al,Ga)-(P,B,Si)	1996
Zr-Ti-Al-TM	1990	Fe-(Zr,Hf,Nb)-B	1996
Ti-Zr-TM	1993	Co-Fe-(Zr,Hf,Nb)-B	1996
Zr-Ti-TM-Be	1993	Ni-(Zr,Hf,Nb)-(Cr,Mo)-B	1996
Zr-(Nb,Pd)-Al-TM	1995	Fe-Co-Ln-B	1998
Pd-Cu-Ni-P	1996	Fe-(Nb,Cr,Mo)-(P,C,B)	1999
Pd-Ni-Fe-P	1996	Ni-(Nb,Cr,Mo)-(P,B)	1999
Pd-Cu-B-Sn	1997		
Ti-Ni-Cu-Sn	1998		
*Ln=Lanthanide metal *M=Ni, Cu or Zn *TM=VI-VIII 족 천이금속			

표 1. 벌크 비정질 합금 및 합금별 최초의 연구결과 발표년도

표 2. 벌크 비정질합금의 최대 두께(t_{max}) 및 임계냉각속도(R_c)

합금 시스템	t _{max} (mm)	Rc(K/sec)
Ln-Al-(Cu,Ni)	≅10	≅200
Mg-Al-(Cu,Ni)	≅10	≅200
Zr-Al-(Cu,Ni)	≅30	1-10
Zr-Ti-Al-(Cu,Ni)	≅30	1-5
Zr-Ti-(Cu,Ni)-Be	≅30	1-5
Fe-(Al,Ga)-(P,C,B,Si)	$\cong 3$	<i>≅</i> 400
Pd-Cu-Ni-P	≅75	0.1
Fe-(Co,Ni)-(Zr,Hf,Nb)-B	$\cong 6$	≅200
Ti-Ni-Cu-Sn	≅6	≅200

경 75mm x 길이 80mm 정도이다. 지금까지 얻어진 t_{max}값이 엔지니어링 소재로서의 응용성 을 확대하기에는 아직 충분하진 않지만 과거 급냉응고법에 의해 제조된 50µm 정도의 리본이 나 분말에 비한다면 매우 증가한 크기이며 추 가적인 합금 개발을 통해 더욱 증가될 수 있을 것이다. 한편 R_c 값은 t_{max} 값과 밀접한 관련이 있는데, R_c 값이 감소할수록 t_{max} 값이 증가한 다. Inoue^[11] 등은 Pd-계 합금에서 응고시 B₂O₃ flux를 흘려줌으로써 R_c 값을 1.58 K/s에 서 0.1 K/s 까지 감소시켰으며 이는 응고 환경 의 변화를 통해 t_{max}를 더욱 증가시킬 수 있음 을 암시한다. 4. 벌크 비정질합금의 응용 및 연구 동향

과거 비정질합금은 급냉응고법에 의해 리본 이나 분말 형태로만 제조되었기 때문에 벌크 상태로의 응용은 거의 없었다. 하지만 최근 분 말 합체에 의한 벌크 비정질합금 제조기술의 발전과 단순 응고법에 의해 벌크상태로 제조될 수 있는 새로운 비정질 합금 개발로 벌크 비정 질합금의 응용은 앞으로 크게 확대될 전망이다. 벌크 비정질합금은 기계류 구조소재, 자성재 료, 음향재료, 생체재료, 광학용 재료, 스포츠 용품 소재 및 전극재료 등 다양한 분야에서 엔 지니어링 소재로 활용될 수 있으며 표 3에 비

機械와 材料 14권 3호 (2002. 秋)

그림 8. Zr-계 벌크 비정질합금이 앞면소재 (face material)로 사용된 골프클럽

그림 9. 응고법으로 제조된 벌크 비정질 합금 링(ring)

정질합금의 기본적인 특성과 벌크 비정질합금 이 엔지니어링 소재로 사용될 수 있는 응용분 야를 요약하였다. 그림 8에서 보여주는 바와 같 이 높은 인장강도, 굽힘강도, 충격강도, 인성, 피로강도 등의 특성과 더불어 우수한 주조성, 가공성 및 내부식성 등으로 인해 Zr-계 벌크 비정질합금의 경우 던롭(Dunlop)사에 의해 이 미 스포츠 용품인 골프 클럽의 앞면 소재(face

技術現況分析

material)로 응용되고 있고,^[35] 광학용 소재로 서 사용하기 위한 시도가 상당부분 이루어졌으 며 현재 상용화를 위한 작업중인 것으로 알려 져 있다. Pd-계 합금의 경우 전극재료로 사용 하기 위하여 많은 연구를 수행해 왔으며 역시 상용화를 위한 작업중이다.

한편 비정질합금의 우수한 자기적 성질로 인 해 비정질합금 리본이나 포일 등의 적층을 통해 변압기 코어 소재로 사용되어져 온 것은 잘 알 려져 있다. 변압기 코어의 에너지 손실은 주로 코어손실(core loss)과 와류손실(eddy current loss)에 의해 발생하는 데, 코어손실의 경 우 비정질합금의 낮은 coercive force로 인해 감소될 수 있다. 와류손실(eddy current loss) 의 경우 소재의 전기전도도에 비례한다. 비정질 합금의 경우 그 특성상 결정질 코어 소재에 비 해 전기전도도가 낮기 때문에 와류손실을 줄일 수가 있다. 한편 와류손실은 적층된 비정질 박 판의 두께에 반비례하는데 벌크 비정질합금을 변압기 코어 소재로 사용할 경우 와류손실을 더 욱 감소시킬 수 있을 것으로 판단되며 특히 박 판 비정질합금 제조 공정에 비해 벌크 비정질합 금의 제조 비용이 크게 저렴하기 때문에 변압기 코어로서 벌크 비정질합금을 적용하기 위한 가 능성은 열려있다. Inoue^[36] 등은 자신들이 개발 한 Fe-계 벌크 비정질합금 소재를 이용하여 변 압기 코어, 소프트 마그넷 등 연자성 특성을 활 용한 부품으로 사용하기 위해 링(ring) 형태의 비정질합금 부품 개발을 시도하였으며, 그림 9 에 그들이 제조한 비정질 링(외경 10mm, 내경 6mm, 두께 1mm)을 보여주고 있다.

한편 비정질합금의 고강도 특성은 복합재료 의 강화소재로 사용 가능하다. 일례로 콘크리트 에 부피분율로 단지 수%의 비정질합금 섬유를 첨가함으로써 일반 콘크리트에 비해 복합소재 의 파단에 필요한 에너지가 100배 가량 증가하 였다.^[16] 또한 금속기지 복합재료에 강화소재로 사용하기 위한 연구가 진행된 바 있으며,^[17] 타

81

표 3. 벌크 비정질합금의 기본적인 특성 및 응용가능 분야

기 본 특 성	응 용 분 야
High Strength High Hardness High Fracture Toughness High Impact Fracture Energy High Fatigue Strength High Elastic Energy	중 용 군 야 Machinery structural materials Cutting materials Die materials Tool materials Composite materials Sporting goods materials
High Diastic Energy High Corrosion Resistance High Wear Resistance High Viscous Flowability High Reflection Ratio Good Soft Magnetism High Frequency Permeability High Magnetostriction Effecient Electrode(Chlorine gas) High Hydrogen Storage	Corrosion resistance materials Writing appliance materials Bonding materials Optical precision materials Soft magnetic materials High magnetostrictive materials Ornamental materials Electrode materials Hydrogen storage materials

그림 10. 미세 초소성 성형 장치 개략도와 Si 금형(a, b), Zr-계 벌크 비정질합금 성형품(c, d, f) 및 La-계 벌크 비정질합금 성형품(e)

이어와 같은 플라스틱 복합재료의 강화소재로 응용하기 위한 노력이 있었다.

벌크 비정질합금은 결정질합금의 미세조직을 제어하기 위한 선행소재(precursor material)로 서 사용될 수도 있다. 유리온도(Tg) 근처에서 결정상의 핵생성 및 성장이 높은 정밀도로 조 절될 수 있으며 이러한 특성을 이용하여 일반 생산 공정으로는 얻을 수 없는 결정립 크기 및 상분포를 갖는 마이크로 또는 나노 결정질 합 금을 제조할 수 있다. 일례로 최적의 강자성 특 성을 갖는 초미세 결정립 크기를 갖는 Fe-Nd-B 합금 제조에 위의 기술이 활용된 바 있다.^[37,38]

또한 비정질합금의 우수한 기계적 특성과 더 불어 마이크로 규모에서의 소재의 균질성(homogeneity) 및 우수한 성형성(formability) 등

機械와 材料 14권 3호 (2002. 秋)

82

을 이용하여 MEMS(MicroElectro-Mechanical System) 등 미세 전자기 부품용 소재로 활용하 기 위한 노력이 진행된 바 있으며(그림 10 참 조) 뿐만 아니라 미세 전자기 부품 성형이나 플 라스틱 소재 등 성형 온도가 낮은 미소 부품 성형을 위한 금형 소재로의 사용 가능성도 제 시되고 있다.^[28,29]

5. 맺음말

비정질합금의 특성에 대한 이해가 증가하고 경제적인 제조 공정들이 개발됨으로써 비정질 합금의 응용은 앞으로도 계속 확대되어 나갈 것이다. 특히 비정질합금의 구조 및 이론적인 이해가 증대되고 새로운 벌크 비정질 합금이 꾸준히 개발됨으로써 이들 합금의 구조 적, 기계적, 전자기적, 화학적 특성을 활용하여 엔지니어링 소재에 까지 응용분야를 넓히기 위 한 가능성이 증대되고 있다. 현재 사용되고 있 는 대부분의 엔지니어링 소재에 비한다면 비정 질합금의 역사는 상대적으로 매우 짧다. 따라서 엔지니어링 소재로서 비정질합금의 사용 가능 성이 대두되고 있고 이미 일부 적용이 이루어 졌음에도 불구하고 아직까지는 초기단계라 할 수 있으며 향후 벌크 비정질합금의 응용 분야 는 크게 증가될 것으로 기대된다.

참 고 문 헌

- W. Klement and R. H. Willens, P. Duwez
 Nature, 187 (1960) p.869
- R. W. Cahn : Rapidly Solidified Alloys, ed. H. H. Libermann, Marcel Dekker, New York, 1993, p.1
- A. Inoue, K. Ohtera, K. Kita and T. Masumoto : Japan. J. appl. Phys., 27 (1988) p.L2248
- 4. A. Peker and W. L. Johnson : Appl.

Phys. Lett., 63 (1993) p.2342

- L. Q. Xing, P. Ochin, M. Harmelin, F. Faudot, J. Bigot and J. P. Chevalier : Mater. Sci. Eng., A220 (1996) p.155
- L. Q. Xing, G. P. Gorler and D. M. Herlach : Mater. Sci. Eng., A226-228 (1997) p.429
- R. B. Schwarz and Y. He : Mater. Sci. Forum, 235-238 (1997) p.231
- 8. A. Inoue : Mater. Sci. Eng., A304-306 (2001) p.1
- A. Inoue, T. Zhang, S. Ishihara, J. Saida and M. Matsushita : Scripta Mater., 44 (2001) p.1615
- S. Yi, J. K. Lee, W. T. Kim and D. H. Kim : J. of Non-crystalline Solids, 291 (2001) p. 132
- A. Inoue and N. Nishiyama : Mater. Sci. Eng., A226-228 (1997) p.401
- 12. A. Inoue : Acta Mater., 48 (2000) p.279
- R. B. Schwarz, P. Kasiraj, T. Vreeland, Jr. and T. Ahrens : Acta Metall., 32 (1984) p.1243
- C. Cline and R. Hopper : Scripta Metall., 11 (1977) p.1137
- 15. P. Shingu : Mater. Sci. Eng., 97 (1988) p.137
- W. L. Johnson : ASM Handbook, Volume 2, Special-Purpose Materials: Metallic Glasses, (2002) p.1
- 17. S. J. Cytron : J. Mater. Sci. Eng., 11 (1982) p.211
- J. Bletry and J. F. Sadoc : J. Phys. F, Met. Phys., 5 (1975) p.L110
- P. Gaskell : Glassy Metals II, ed. H. J. Gtherodt and H. Beck, Springer-Verlag, 1983, p.5

技術現況分析

- 20. F. Spaepen : Mater. Res. Soc. Symp., 132 (1989) p.127
- 21. C. V. Thompson, H. J. Frost and F. Spaepen : Acta Metal., 35 (1987) p.887
- T. Zhang and A. Inoue : Mater. Trans. Japan Inst. Metals, 39 (1998) p.857
- A. Inoue : Bulk Amorphous Alloys, Trans Tech Publications, Zurich, 1998
- Y. Yokoyama, K. Yamano, H. Fukaura,H. Sunada and A. Inoue : Mater. Trans.Japan Inst. Metals, 40 (1999) p.1382
- 25. C. J. Gilbert, V. Schroeder and R. O. Ritchie : Metall. Mater. Trans., 30A (1999) p.1739
- T. Zhang, A. P. Tsai, A. Inoue and T. Masumoto : Boundary, 7 (1991) p.39
- A. Inoue and T. Zhang : Mater. Sci. Forum, 243-245 (1997) p.197
- 28. Y. Saotome, S. Miwa, T. Zhang and A. Inoue : J. Mater. Processing Tech., 113 (2001) p.64
- 29. Y. Saotome, T. Hatori, T. Zhang and A. Inoue : Mater. Sci. Eng., A304-306 (2001), p.716
- Y. Saotome, K. Itoh, T. Zhang and A. Inoue : Scripta Mater., 44 (2001) p.1541
- 31. A. Inoue : Mater. Sci. Eng., A226-228 (1997) p.357
- 32. A. Inoue, T. Zhang and A. Takeuchi : Mater. Sci. Forum, 269-272 (1998) p.855
- 33. A. Inoue, A. Takeuchi and T. Zhang : Metall. Mater. Trans., 29A (1998) p.1779
- 34. A. Inoue, X. M. Wang and I. Yoshii : Mater. Trans. Japan. Inst. Metals, 40 (1999) p.1130
- 35. T. Masumoto, A. Inoue, Y. Nagai and

- A. Uoya : US patent 6,162,130, Dec. 19, 2000
- 36. K. Ikarashi, T. Mizushima, A. Makino and A. Inoue : Mater. Sci. Eng., A304-306 (2001) p.763
- 37. General Motors Corporation, US patent 5,172,751, Dec. 22, 1992
- General Motors Corporation, US patent 4,802,931, Feb. 7, 1989

機械와 材料 14권 3호 (2002. 秋)

84