Synthesis of Ketoconazole Derivatives

Jae Chun Ryu, Kwang Jae Lee, and Sang Hee Lee*
Department of (hemistry, Kumsan Xational Inversity, Kunsan, Chonhuk 573-701, Korea
Received.Jamay 20,2003

Abstract

For the drug master file (DMF) of ketoconazole, four impurities (1-4) contained in ketoconazole were synthesized. During the synthesis of 2 a new synthetic method of 1,4 -dihydropyrazine was established. To oxidize the aminoalcohol ($\mathbf{2} \mathbf{j}$) to the aminal $(\mathbf{2 j} \mathbf{- 1})$, the standard Swern oxidation condition was modified to mask the nucleophilicity of the amino group temporarily using one equivalent of acetic acid. Derivative $\mathbf{3}$ was synthesized via regioselective bromination at the 2 position of the 4 -aninophenol derivative (3a) using Br_{2} in the presence of p-IsOII. The etherification of aryl bromide with the phenol derivative ($\mathbf{1 f}$) was accomplished by a modification of the general Cu-mediated reaction condition using excess $\mathbf{1 f}$ itself as a solvent at elevated temperature ($190^{\circ} \mathrm{C}$).

Key Words: Drug master file (DMF), Keloconazole, Impurities, 1,4-Dilydropyrazine

Introduction

In USA and European countries. a sy stem of drug master files (DMF) ${ }^{1.2}$ has been established to protect the confidential detailed information of third-party suppliers of a raw material. A DMF contains all the relevant details concerning the facilities. processes or articles used in the manufacturing. processing, packaging. and storing of human drugs or medical devices. and this is given to the authorities, e.g. the FDA. Since dependency on imports from various countries of the raw materials is increasing, a DMF system will be established in Korea within the next few years.
Ketoconazole ${ }^{\text {i- }-3}$ is a potent orally active broad-spectrum antifungal agent. which was recently developed from imidazole derivatives. To export ketoconazole, advanced countries require a DMF that includes spectral data on all of the
impurities that ketoconazole contains. As ketoconazole contains four impurities (less than 1%) that are difficult to isolate. ${ }^{*}$ this study established synthetic procedures for the four impurities to obtain their spectral data.

Experimental Section

NMR spectra was recorded on a JEOL-ECP 500 spectrometer ('H NMR. $500 \mathrm{MHz},{ }^{1.3} \mathrm{C}$ NMR. 125 MHz) and chemical shifts was reported in ppm relative to TMS ($\delta 0.00$) as a internal standard. The hydrogenation was performed using a PARR-3911 EA hydrogenation apparatus. Flash column chromotography was carried out using silicagel Merck 60 ($230-400$ mesh). Thin layer chromatography (TLC) was performed on Merck kieselgel 60. F254. Most chemicals were purchased from Aldrich and used without

cis - Ketokonazole

1

3

2

Figure 1. Structures of cis-ketoconazole and its derivatives

[^0]purification. cis-Ketokonazole and some intermediates (1a. 1f, 2n) were provided by Choongwae Pharma Corp (Korea). General workup procedure was followed that the reaction misture was quenched by adding of water. The mixture was extracted with ethyl acetate, and the organic phase was dried over anly drous $\mathrm{Na}_{2} \mathrm{SO}_{1}$ and concentrated.

2-Bromomethyl-2-(2,4 -dichlorophenyl)-[1,3]-dioxolan-t-yImethylbenzonate (1b). A solution of 1a ($6 \mathrm{~g}, 13.4 .5$ mmol) and dried ρ - $\mathrm{TsOH}(0.116 \mathrm{~g}, 0.67 \mathrm{mmol})$ in dried toluene (50 mL) was reflused at $150^{\circ} \mathrm{C}$ for 10 h . After workup. the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/toluene $\left.=3 / 1\right)$ to give $1 \mathrm{~b}(2.07 \mathrm{~g} .35 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.8+3.90(\mathrm{~mm}, 3 \mathrm{H}) .+2+$ $(\mathrm{dd}, J=11.9 .3 .7 \mathrm{~Hz}, \mathrm{lH}) .4 .43(\mathrm{dd}, J=8.3 .6 .5 \mathrm{~Hz}, \mathrm{lH})$. $4.54(\mathrm{dd} . J=12.4 .4 .2 \mathrm{~Hz} .1 \mathrm{H}) .4 .76(\mathrm{~m} .1 \mathrm{H}) .7 .13-7.70(\mathrm{~m}$. $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 36.8 .62 .9,67.5,108.5 .127 .5$. 128.9. 130.0. 130.1, 131.7, 133.6. 133.8. 136.0.

2-(2,4-Dichlorophenyl)-2-imidazol-1-ylmethyl-[1,3]-di-oxolan-4-ylmethylbenzonate (1c). A solution of $1 \mathrm{~b}(2.07 \mathrm{~g}$. 4.64 mmol) and imidazole ($2.52 \mathrm{~g}, 37.1 \mathrm{nmol}$) in dried py rrolidinone (20 mL) was refluxed for 8 h . After workup. the residue was dissolved in diethyl ether and the resulting solid was filtered off. After addition of conc. $\mathrm{HNO}_{3}(1 \mathrm{eq})$ to the filtrate, the resulting $\mathbf{1 c} \cdot \mathrm{HNO}_{3}$ was collected as a white solid ($2.2 \mathrm{~g} .96 \%$). ${ }^{.} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.73(\mathrm{dd} . J=7.4 .7 .4$ $\mathrm{Hz} .1 \mathrm{H}) .3 .90(\mathrm{dd} . J=8.2 .6 .4 \mathrm{~Hz} .1 \mathrm{H}) .4 .08(\mathrm{~m} .1 \mathrm{H}) .+.12$ $(\mathrm{dd} . J=11.9 .4 .0 \mathrm{~Hz}, 1 \mathrm{H}) .4 .38(\mathrm{~s} .2 \mathrm{H}) .4 .4+(\mathrm{dd} . J=12.0$. $3.7 \mathrm{~Hz} .1 \mathrm{H}) .7 .00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d} . J=8.7 \mathrm{~Hz}$. $1 \mathrm{H}) .7 .31-7.35$ (m. 2H). $7.51-7.56$ (m. 2H). $7.68(\mathrm{~d} . J=8.3$ Hz. 2H).
2-(2,4-Dichlorophenyl)-2-imidazol-1-ylmethyl-[1,3]-di-oxolan-4-yImethyltoluene-4-sulfonate (1e). A solution of $1 \mathrm{c}(1.67 \mathrm{~g} .3 .36 \mathrm{mmol})$ and $\mathrm{NaOH}(0.3+\mathrm{g} .8 .42 \mathrm{nmol})$ in $\mathrm{CH}_{3} \mathrm{OH}$ was stirred at room temperature for 40 min . After evaporation of methanol, water was added to the mixture to precipitate $\mathbf{1 d}(0.86 \mathrm{~g} .78 \%)$. To a solution of $\mathbf{1 d}(0.86 \mathrm{~g}$. $2.61 \mathrm{mmol})$ and triethy lamine ($0.73 \mathrm{~mL}, 5.23 \mathrm{mmol}$) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $p-\mathrm{TsCl}(0.65 \mathrm{~g}, 3.4 \mathrm{mmol})$ portion wise at $0^{\circ} \mathrm{C}$, and stirred at room temperature for 1 h . After workup. the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=15 / 1\right)$ to obtain 1 e as an oil $(1.14 \mathrm{~g} .70 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.47(\mathrm{~m} .2 \mathrm{H}) .3 .59(\mathrm{dd} . J$ $=6.9 .6 .9 \mathrm{~Hz} .2 \mathrm{H}) .3 .8+(\mathrm{m}, 2 \mathrm{H}) .4 .37(\mathrm{dd} . J=14.6 .14 .6 \mathrm{~Hz}$. $2 \mathrm{H}) .6 .96$ (s. 2 H). $7.20(\mathrm{dd} . J=8.3 .1 .8 \mathrm{~Hz} .1 \mathrm{H}) .7 .42(\mathrm{~d} . J=$ $1.8 \mathrm{~Hz} .1 \mathrm{H}) .7 .57(\mathrm{~d} . J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$.

1-(4-4-[2-(2,4-Dichlorophenyl)-2-imidazol-1-ylmethyl-[1,3]-dioxolan-4-ylmethoxy]-phenylpiperazin-1-yl)ethanone (1). A solution of $1 \mathrm{f}(0.35 \mathrm{~g} .1 .56 \mathrm{mmol}), 60 \%$ sodium hydride (70 mg .1 .71 mmol), and $1 \mathrm{e}(0.688 \mathrm{~g} .1 .42 \mathrm{mmol}$) in dried DMSO (10 mL) was stirred at $60^{\circ} \mathrm{C}$ for 1 h . After workup. the residue was purified by column chromatography ($\mathrm{SiO} . \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20 / \mathrm{L}$) to give $1(0.61 \mathrm{~g} .82 \%)$ as a white solid. ${ }^{\prime} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{7}\right)$: $\delta 2.1$ (s. 3 H). 3.01 (m. H). $3.5(\mathrm{~d} . J=4.8 \mathrm{~Hz} .2 \mathrm{H}) .3 .74(\mathrm{~m} .4 \mathrm{H}) .3 .86(\mathrm{~m} .2 \mathrm{H}) .4 .12(\mathrm{~m}$. $1 \mathrm{H}) .4 .37(\mathrm{dd} . J=14.4 .14 .8 \mathrm{~Hz}, 2 \mathrm{H}), 6.6(\mathrm{~d} . J=8.8 \mathrm{~Hz}$. $2 \mathrm{H}) .6 .8(\mathrm{~d} . J=8.8 \mathrm{~Hz} .2 \mathrm{H}) .6 .98(\mathrm{~d} . J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) .7 .15$ $(\mathrm{d} . J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .7 .39(\mathrm{~d} . J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .7 .+9(\mathrm{~s} .1 \mathrm{H})$.
$7.59(\mathrm{~d}, J=8 .+\mathrm{Hz}, 1 \mathrm{H}) .{ }^{1.3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.3,+1.4$. 46.3. 50.6. 51. 67.4. 67.5. 76, 76.6. 108. 115.1, 118.6. 126.94. 126.99. 129.3. 130.9, 132.7, 135.3, 135.52, 145.6, 152.7. 168.8. EIMS: m/z (\%) 59 (100). $70(21) .82(25) .120$ (37). 173 (49). 219 (57). 458 (85), 471 (82), 530 ($56, \mathrm{M}$). HRMS (El. M'): Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{1} \mathrm{O}_{1} 530.1488$, found 530.1491 .

4-Aminophenyl acetate (2c). A solution of 4 -nitrophenol 2a (1.0 g .7 .19 mmol) and triethylamine ($1.52 \mathrm{~mL}, 10.8$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to acetic anly dride (0.8 $\mathrm{mL}, 7.91 \mathrm{mmol}$) drop wise under ice bath. The mixture was stirred at room temperature for 15 min. and then $\mathrm{CH}_{3} \mathrm{OH}$ was added to destroy the excess acetic anlydride followed by additional stirring of 30 min. After usual work up. 2b (1.25 g .6 .88 mmol) and $10 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was shaked at room temperature under $\mathrm{H}_{2}(40 \mathrm{psi})$ for I h . The reaction misture was filtered through celite and the filtrate was concentrated to give crude $2 \mathrm{c}(0.97 \mathrm{~g} .93 \%)$. Since 2c was unstable. it was immediately used in the next step without further purification.
N, N-Bis-(2-acetoxyethyl)acetamide (2e). To a solution of diethanolamine 2 d (20 g .190 .2 mmol) in pyridine (40 mL) was added acetic anhydride drop wise, and the reaction mixture was stirred for 2 h at $60^{\circ} \mathrm{C}$. After methanolysis of the excess acetic anhydride by adding of methanol (10 mL) and usual workup. the resulting $2 \mathrm{e}(43 \mathrm{~g}, 98 \%$) as a yellow oil was used in the next step without further purification. ${ }^{\text {' }} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.77(\mathrm{~s}, 3 \mathrm{H}) .1 .79(\mathrm{~s}, 3 \mathrm{H}) .1 .87(\mathrm{~s} .3 \mathrm{H})$, $3.3+(\mathrm{m} .4 \mathrm{H}) .3 .9+(\mathrm{m} .4 \mathrm{H}) .{ }^{1.3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.4 .20 .5$. 21.1. 45.1, 48.0.61.6.61.9. 170.3. 170.5. 171.2.
N, N-Bis-(2-hydroxyethyl)acetamide (2f). A solution of compound 2 e ($+4 \mathrm{~g}, 190 \mathrm{nmmol}$) and $\mathrm{NaOH}(16 \mathrm{~g}, 380$ mmol) in $\mathrm{CH}_{3} \mathrm{OH}(50 \mathrm{~mL})$ was stirred at room temperature for 1 h . After workup, the residue was purified by flash column chromatography ($\mathrm{SiO}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=10 / 1$) to give compound $2 \mathbf{f}(21 \mathrm{~g} .75 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $2.1+(\mathrm{s} .3 \mathrm{H}) .3 .47(\mathrm{t} . J=5.1 \mathrm{~Hz}, 2 \mathrm{H}) .3 .51(\mathrm{t} . J=5.1 \mathrm{~Hz}$. $2 \mathrm{H}) .3 .76(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}) .3 .80(\mathrm{t} . J=5.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{1 .} \mathrm{C}$ NMR (CDCl_{3}): $\delta 22.1 .50 .4,53.2 .60 .5,61.0 .173 .2$ EIMS: $\mathrm{m} / \mathrm{z}(\%)+3$ (76). 56 (34). $7+(100), 104$ (34), 116 (24). 129 (15). 147 (6. M').
N-[2-(tert-Butyldimethylsilanyloxy)ethyl|- N -(2-hydroxyethyl)acetamide (2 g). To a solution of 2 f (11 g. 74.76 mmol) and imidazole (9 g .149 .52 mmol) in DMF (10 mL) was added ter-butyldimethylsilyl chloride (TBSCl) (12.4 g . 82.24 mmole). and stirred at room temperature for 30 min . After workup, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2} . n\right.$-hexane/ethyl acetate $=1 / 1 \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ $=15 / 1)$ to give $2 \mathrm{~g}(7.8 \mathrm{~g}, 40 \%)$ as an oil. ${ }^{\prime} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.0+(\mathrm{s} .6 \mathrm{H}) .0 .86(\mathrm{~s} .9 \mathrm{H}) .2 .10(\mathrm{~s} .1 .2 \mathrm{H}) .2 .13$ (s. 1.8 H). $3.43-3.51(\mathrm{~m} .4 \mathrm{H}) .3 .72(\mathrm{t} . J=5.5 \mathrm{~Hz} .3 \mathrm{H}) .3 .84(\mathrm{t} . J=5.5$ Hz. 1H).

N -[2-(tert-Butyldimethylsilanyloxy)ethyl]-N-(2-oxoethyl)acetamide (2 h). To a solution of oxalyl chloride (2.29 $\mathrm{mL}, 25.70 \mathrm{mmol}$) and DMSO ($3.8+\mathrm{mL}, 53.55 \mathrm{mmol}$) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under N_{2} atmosphere were added 2 g $(5.6 \mathrm{~g} .21 .42 \mathrm{mmol})$ and triethylamine $(15.08 \mathrm{~mL} .107 .10$
munol) at $-78{ }^{\circ} \mathrm{C}$, and the reaction misture was stirred at room temperature for 10 min . After workup, $\mathbf{2 h}(5 .+\mathrm{g} .97 \%$) as a oil was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}$): $\delta 0.03$ (s. 9H), 0.86 (s. 6H). 2.19 (s. 3H). $3.49(\mathrm{t} . J=5.0 \mathrm{~Hz} .2 \mathrm{H}) .3 .70(\mathrm{t} . J=5.0 \mathrm{~Hz}) .5 .25-5.33(\mathrm{ml}$. 2H). $9.50(\mathrm{~s}, \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-5.5,-3.5,18.2$. 21.2. 25.9. 52.4. 61.7, 171.9. 198.3. EIMS: m/z (\%) 43 (100). 58 (18). $130(29) .146$ (28). 160 (30), 202 (20), 259 (3. M')
N-[2- N '-(4-Acetoxyphenyl)aminoethyl]- N-(2-hydroxyethyl)acetamide (2 j). A solution of $2 \mathrm{~h}(5 .+\mathrm{g} .20 .82 \mathrm{mmol}$) and $2 \mathrm{c}(4.09 \mathrm{~g} .27 .06 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ was shaked under $\mathrm{H}_{2}(40 \mathrm{psi})$ in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$ for 10 h . and then the reaction mixture was filtered through celite. To a resulting crude $2 \mathbf{i}$ in EtOH was added l N HCl (33 mmol). and the reaction mixture was stirred at it for lh . After workup, the residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=30 / 1 \rightarrow 20 / 1\right)$ to give compound $2 \mathrm{j}(2.0 \mathrm{~g} .34 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.13$ (s. 1.3 H). 2.16 (s. 1.7 H). 2.24 (s. 1.7 H). 2.25 $(\mathrm{s}, 1.3 \mathrm{H}) .3 .29(\mathrm{t} . J=6.0 \mathrm{~Hz} .1 \mathrm{H}) .3 .33(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$. $3.42(\mathrm{t} . J=5.5 \mathrm{~Hz} .1 \mathrm{H}) .3 .52(\mathrm{~mm}, 2 \mathrm{H}), 3.59(\mathrm{t} . J=6.0 \mathrm{~Hz}$. 1H). $3.71(\mathrm{t} . J=5.1 \mathrm{~Hz} . \mathrm{lH}) .3 .76(\mathrm{t} . J=5.1 \mathrm{~Hz} . \mathrm{lH}), 6.57$ (m. 2 H), 6.86 (m. 2 H).
N-Acetyl- N^{\prime}-(4-acetoxyphenyl)-1,2,3,4-tetrahydropyrazine (21). To a solution of oxalyl clloride ($0.76 \mathrm{~mL}, 8.57$ mmol) and DMSO (1.28 mL .17 .86 mmol) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ under N_{2} atmosphere were added $2 \mathrm{j}(2 \mathrm{~g} .7 .1+$ mmol), acetic acid (0.41 mg .7 .14 mmol) and triethy lamine ($5 \mathrm{~mL}, 35.72 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. and the reaction mixture was stirred at room temperature for 10 min . After workup, the residue was purified by column chromatograply $\left(\mathrm{SiO}_{2}, n-\right.$ hexane/ethyl acetate $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / \mathrm{l} / \mathrm{l}$) to give $21(0.98 \mathrm{~g}$. 53%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 2.15$ (s. IH), 2.18 (s. 2H). 2.23 (s. 3 H). 3.63 (dd. $J=5.5,5.5 \mathrm{~Hz} .1 .3 \mathrm{H}$). $3.85(\mathrm{~m}, 2 \mathrm{H}) .6 .03(\mathrm{~d} . J=6.5,0.7 \mathrm{H}) .6 .19(\mathrm{~d} . J=6.8 \mathrm{~Hz}$. $0.7 \mathrm{H}), 6.26(\mathrm{~d} . J=6.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.46(\mathrm{~d} . J=6.9 \mathrm{~Hz}) .6 .96-$ $7.01(\mathrm{~m} .4 \mathrm{H}){ }^{1 .} \mathrm{C}$ NMR (CD3 OD$): \delta 19.5,19.6 .19 .7 .38 .8$. 43.7. $+4.2 .4+3,102.7$. 113.8. 115.1. 115.2. 122.1. 1+3.3. 144.4. 167.0. 167.4. 170.3. EIMS: m/z (\%) 43 (100). 176 (64), 218 (49), 260 ($25, \mathrm{M}^{\prime}$).
N-Acetyl- N^{N}-(4-hydroxyphenyl)-1,4-diydropyravine (2m). To a solution of $21(0.47 \mathrm{~g} .1 .8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ was added $1 \mathrm{~N} \mathrm{NaOH}(2.0 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 10 min . Before extraction of $\mathbf{2 m}$ with ethyl acetate, methanol was evaporated and the reaction mixture was neutralized using phosphate buffer (pH 7). After workup the resulting $\mathbf{2 m}$ as a yellow solid (0.38 g . 97%) was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.13(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~s} .2 \mathrm{H}) .3 .56(\mathrm{~m}$. $1.3 \mathrm{H}) .3 .62(\mathrm{~m} .0 .7 \mathrm{H}) .3 .82(\mathrm{~m} .2 \mathrm{H}) .5 .92(\mathrm{~d} . J=6 .+\mathrm{Hz}$. $0.7 \mathrm{H}) 6.08(\mathrm{~d}, J=6.9 \mathrm{~Hz} .0 .7 \mathrm{H}), 6.14(\mathrm{~d}, J=6.9 \mathrm{~Hz} .0 .3 \mathrm{H})$, $6.36(\mathrm{~d} . J=6.4 \mathrm{~Hz}, 0.3 \mathrm{H}) .6 .71-6.7+(\mathrm{ml} .2 \mathrm{H}) .6 .81-6.8+(\mathrm{m}$. $2 \mathrm{H}) .{ }^{17} \mathrm{C}$ NMR (CD3 $\left.\mathrm{O}_{3} \mathrm{OD}\right): \delta 19.6 .19 .7 .38 .8 .43 .8 .45 .2$. 101.2, 102.1. 115.6. 117.1, 118.0. 139.1. 151.6, 167.2. EIMS: m/z (\%) 43 (100), 65 (22), 120 (22). 147 (21). 175 (+5). 218 (34. M').

1-Acetyl-4-[4-[(2RS,4SR)-2-(2,4-dichlorophenyl)-2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxylphenyl]-$1,2,3,+$-tetrahydropyrazine (2). A solution of 2 m (0.37 g . 1.70 mmol). 60% sodium hydride (0.1 g .2 .54 mmol). 2 n $(0.9 \mathrm{~g} .1 .87 \mathrm{nmol})$ in dried DMSO $(10 \mathrm{~mL})$ was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 1 lh . After workup, the residue was purified by flash column chromatography ($\mathrm{SiO}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=50 / 1$) to give 2 as a yellow solid $(0.83 \mathrm{~g}, 93 \%)$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): δ $2.14(\mathrm{~s}, ~ \mathrm{lH}) .2 .16(\mathrm{~s} .2 \mathrm{H}) .3 .30(\mathrm{~m} .1 \mathrm{H}) .3 .40(\mathrm{~s} .1 \mathrm{H}) .3 .43$ $(\mathrm{dd}, J=10.1 .6 .0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m} .1 \mathrm{H}) .3 .64(\mathrm{dd} . J=9.7$. $5.5 \mathrm{~Hz} .1 \mathrm{H}), 3.73(\mathrm{dd} . J=8.3 .4 .6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=9.6$. $5.1 \mathrm{~Hz} . \mathrm{lH}) .3 .87(\mathrm{dd} . J=8.3,6.9 \mathrm{~Hz}, \mathrm{lH}) .4 .34(\mathrm{~m} . \mathrm{lH})$, $+.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) .4 .60(\mathrm{~d} . J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) .6 .79(\mathrm{~d}$. $J=9.2 \mathrm{~Hz} .2 \mathrm{H}) .6 .9(\mathrm{~m} .3 \mathrm{H}) .7 .08(\mathrm{~s} .1 \mathrm{H}) .7 .3+(\mathrm{d} . J=8.3$ $\mathrm{Hz} .1 \mathrm{H}) .7 .53$ (d. $J=1.8 \mathrm{~Hz} .1 \mathrm{H}$). 7.63 (m. 2 H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 19.6,38.8 .43 .7 .4 .8,51.0 .66 .9 .67 .9 .75 .0$. $101.8,102.8,108.0 .115 .3,116.3,117.2$. 121.6. 126.8. 127.0, 129.9. 130.8. 1332.0. 135.0. 135.5. 140.2, 153.0. 166.8. 167.3. EIMS: m/z (\%) 69 (100). 78 (82). 148 (22). 175 (40), 217 (26). 485 (24). 528 ($55, M^{\prime}$). HRMS (EI, M') Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{1} \mathrm{O}_{2} 528.1331$. found 528.1339 .
N-Acetyl- N^{\prime}-(3-bromo-+acetyloxyphenyl)piperazine (3b). To a solution of $\mathbf{1 f}(1.0 \mathrm{~g} .4 .55 \mathrm{mmol})$ and triethylamine (1.27 mL .9 .1 mmol) in THF (20 mL) was added acetyl chloride (0.39 mL .5 .45 mmol) and the reaction mixture was stirred at room temperature for 30 min . After usual workup. the resulting $3 \mathrm{a}(1.19 \mathrm{~g}, 4.54 \mathrm{mmol})$ and $p-\mathrm{TsOH}(0.82 \mathrm{~g}$. 4.76 mmol) were dissolved in acetonitrile (10 mL) and a solution of $\mathrm{Br}_{2}(0.76 \mathrm{~g} .4 .76 \mathrm{nmmol})$ in acetonitrile (1 mL) was added drop wise at $0^{\circ} \mathrm{C}$ and then the reaction mixture was stirred at rt for 3 h . After usual workup, the residue was purified by column chromatography (SiO_{2}, n-hexame/ethyl acetate $=1 / 4$) to give $3 \mathrm{~b}(1.0 \mathrm{~g} .92 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.08$ (s. 3 H). 2.23 (s. 3H). $2.91(\mathrm{dd} . J=4.7 .4 .7$ $\mathrm{Hz} .2 \mathrm{H}), 2.9+(\mathrm{dd} . J=5.1 .5 .1 \mathrm{~Hz}, 2 \mathrm{H}) .3 .57(\mathrm{dd} . J=4.7 .4 .7$ $\mathrm{Hz} .2 \mathrm{H}) .3 .73(\mathrm{~s} .2 \mathrm{H}) .6 .97(\mathrm{~m} .2 \mathrm{H}) .7 .3(\mathrm{~d} . J=2.4 \mathrm{~Hz} .1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.0,21.5,+1.7,46.6 .51 .5 .52 .1$. 120.0.121.2, 121.5. 127.0. 146.7, 147.8. 169.2. 169.3. EIMS: m/z (\%) I48 (50). 212 (67). 259 (100). 297 (15). 340 (5. M-I). $3+2(6, M+1)$.
N-Acetyl- N^{\prime}-(3-bromo-4-hydroxyphenyl)piperazine (3c). A solution of compound 3 b ($0 .+\mathrm{g} .1 .12 \mathrm{mmol}$) and NaOH (4.8 mg .1 .12 mmol) in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ was stirred at room temperature for 10 min . After workup. the residue was purified by column chromatography ($\mathrm{SiO}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ $=10 / 1)$ to give compound $3 \mathrm{c}(0.32 \mathrm{~g}, 96 \%)$ as a solid. ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.12(\mathrm{~s} .3 \mathrm{H}) .2 .86(\mathrm{dd} . J=5.0 .+.6 \mathrm{~Hz}$. $2 \mathrm{H}) .2 .91(\mathrm{dd} . J=5.0 .46 \mathrm{~Hz} .2 \mathrm{H}) .3 .65(\mathrm{dd} . J=5.1 .+6 \mathrm{~Hz}$. 1H). $3.70(\mathrm{~s} .1 \mathrm{H}) .6 .73(\mathrm{ml}, 1 \mathrm{H}) .6 .98(\mathrm{~d} . J=8.3 \mathrm{~Hz} .1 \mathrm{H})$. $7.02(\mathrm{~d} . J=2.8 \mathrm{~Hz} .1 \mathrm{H})$.
N-Acetyl- N^{\prime}-(4-benzyloxy-3-bromophenyl)piperazine (3 d). To a solution of compound $3 \mathrm{c}(0.3 \mathrm{~g} .1 .0 \mathrm{nmol}$) and 60% sodium hydride (60 mg . 1.5 mmol) in DMF was added benzyl bromide (0.12 mL . 1.0 mmol) and the reaction mixture was stirred at room temperature for 10 min. After workup. the resulting $3 \mathbf{d}(0.377 \mathrm{~g} .97 \%)$ as a yellow solid was used in the next step without further purification. ${ }^{1} \mathrm{H}$

NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.12$ (s. 3 H). $2.90(\mathrm{~m} .+\mathrm{H}) .3 .59(\mathrm{t} . J=4.1$ $\mathrm{Hz} .4 \mathrm{H}), 4.99$ (s. 2 H). 6.86-6.94 (m, 2H). $7.2+7.40$ (mil. 6 H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.3,21,1,21.4 .41 .5,+1.7 .+6.1,46.6$. $50.4 .50 .8,51.5 .60 .5 .70 .5,107.4,109.0$. 118.5. 119.3. 120.3. 127.6. 128.1. 128.6, 136.5. 136.8. 147.2, 150.8. 151.3. 155.4. 169.0. 169.1. 171.2. EIMS: $\mathrm{m} / \mathrm{z}(\%) 79$ (100), 108 (100). 297 (22). 299 (17). 388 (11. M-1). 390 (10. M+1).
N-Acetyl- N^{\prime}-3-[4-(4-acetylpiperazin-1-yl)phenoxy]-4benzyloxyphenylpiperazine (3f). 3 e was prepared from a solution of $1 \mathrm{f}(23 \mathrm{~g}, 10+.55 \mathrm{mmol})$ and $\mathrm{NaOH}(3.76 \mathrm{~g}, ~ 94.99$ mmol) in $\mathrm{CH}_{3} \mathrm{OH}(60 \mathrm{~mL})$. A mixture of $\mathbf{3 d}(10.47 \mathrm{~g} .26 .92$ mmol). $1 \mathrm{f}(17.75 \mathrm{~g} .80 .55 \mathrm{mmol}) .3 \mathrm{e}(19.5+\mathrm{g} .80 .75 \mathrm{mmol})$ and 50% active $\mathrm{Cu}(0.68 \mathrm{~g} .5 .38 \mathrm{mmol})$ was heated up to 190 ${ }^{\circ} \mathrm{C}$ for +h . DMSO (30 mL) was added to the reaction misture at $150^{\circ} \mathrm{C}$ and then the reaction mixture was cooled to room temperature. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 1 N NaOH to remove excess 1 f . Organic layer was dried. concentrated and purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $=1 / 3$ $\rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{3} / \mathrm{CH}_{3} \mathrm{OH}=20 / 1$) to give compound 3f (4.97 g. $35 \%)$ as a yellow solid. 'H NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.15(\mathrm{~d} . J=16$ $\mathrm{Hz} .6 \mathrm{H}), 3.1(\mathrm{~m}, 8 \mathrm{H}), 3.64(\mathrm{~m} .8 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 6.52(\mathrm{~d} . J=$ $+2 \mathrm{~Hz}, 1 \mathrm{H}) .6 .67(\mathrm{~m} .1 \mathrm{H}) .6 .9(\mathrm{ml}, 5 \mathrm{H}), 7.35(\mathrm{~s}, 5 \mathrm{H})$. ElMS: m / z (\%) 91 (27). 112 (16). 217 (13). 437 (100). 528 (5+. M^{\prime}).

1-(t-3-[4-(t-Acetylpiperazin-1-yl)phenoxy|-t-[2-(2,+-dichlorophenyl)-2-imidazole-1-ylmethyl-[1,3]-dioxolan-+-yImethoxylphenylpiperazin-1-yl)ethanone (3). A solution of $3 \mathrm{f}(1.3 \mathrm{~g} .2 .46 \mathrm{mmol})$ in acetic acid (10 mL) was stirred under $\mathrm{H}_{2}(15 \mathrm{psi})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.26 \mathrm{~g})$ at room temperature for 8 h . and then the mixture was filtered through celite. The filtrate was concentrated and recrystallized from n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ to obtain $3 \mathrm{~g}(1.06 \mathrm{~g}, 98 \%)$ as a pale yellow solid. A solution of 3 g (1.06 g .2 .42 mmol). 60% sodium hydride (87 mg .3 .63 mmol), and $2 \mathrm{n}(1.167 \mathrm{~g} .2 .12$ munol) in dried DMSO (10 mL) was stirred at $60^{\circ} \mathrm{C}$ for 1 h . After workup. the residue was purified by column chromatography (SiO_{2}. ethyl acetate $\rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=30 / 1 \rightarrow$ 20/l) to give compound 3 ($1.52 \mathrm{~g} .95 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.1(\mathrm{~s} .3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~m}, 4 \mathrm{H}), 3.1$ (m. 4 H). $3.2(\mathrm{~m} .1 \mathrm{H}) .3 .63(\mathrm{~m} .5 \mathrm{H}) .3 .78(\mathrm{dd} . J=4.8 .5 .2 \mathrm{~Hz}$. $2 \mathrm{H}) .3 .83(\mathrm{dd} . J=8.4 .6 .0 \mathrm{~Hz} .1 \mathrm{H}) .4 .3(\mathrm{~m} .1 \mathrm{H}) .4 .37(\mathrm{~d} . J=$
$14.8 \mathrm{~Hz}, 1 \mathrm{H}) .4 .48(\mathrm{~d} . J=14.8 \mathrm{~Hz}, 1 \mathrm{H}) .6 .39(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}) .6 .49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .6 .92(\mathrm{~s} .8 \mathrm{H}) .7 .24(\mathrm{dd} . J \quad 8.8$, $2.0 \mathrm{~Hz} .1 \mathrm{H}), 7.45(\mathrm{~d} . J=2 \mathrm{~Hz} .1 \mathrm{H}) .7 .55(\mathrm{~d} . J=8.4 \mathrm{~Hz} .1 \mathrm{H})$. ${ }^{1,2} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): δ 21.4, 30.9. +1.4. 41.7, 46.3. 46.6. $50.3 .50 .6,50.7,51.3 .67 .4 .67 .5,74.6 .107 .2,107.9,108.4$. 118.3, 119.12, 120.1, 127.1. 129.4. 131.2. 132.8, 134.3. 135.8, 136.7, 147, 150.6. 150.9. 154.5, 168.8. EIMS: m/z (\%) 82 (51). 173 (92). 217 (27). 255 (20), 531 (13), 559 (100), $743\left(14, M^{\prime}\right)$. HRMS (EI, M): Caled for $\mathrm{C}_{3 \times 1} \mathrm{H}_{\cdot 13} \mathrm{Cl}_{2}-$ $\mathrm{N}_{6} \mathrm{O}_{3} 748.2543$, found 748.2551 .

1-4-[2-(2,4-Dichlorophenyl)-2-imidazol-1-ylmethyl-[1,3]-dioxolan-4-ylmethoxylphenyl-piperazine (4). A solution of cis-ketoconazole $(2.0 \mathrm{~g} .3 .76 \mathrm{mmol})$ and $\mathrm{KOH}(0.63 \mathrm{~g}$. 11.3 mmol) in DMSO (20 mL) $-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 5 h . The mixture was solidified by adding of excess water. The resulting solid was collected to give derivative $4(1.55 \mathrm{~g} .84 .2 \%)$ as a brownish solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.05(\mathrm{~s}, 8 \mathrm{H}), 3.31(\mathrm{dd}, J=9.2 .6 .8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{dd}, J=8.4 .4 .8 .2 \mathrm{H}) .3 .87(\mathrm{dd}, J=6.8 .6 .8 \mathrm{~Hz} . \mathrm{H}) .4 .34(\mathrm{~m}$. 1H). $4.40(\mathrm{dd} . J=14.4 .1 .0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d} . J=9.2 \mathrm{~Hz}$. $2 \mathrm{H}) .6 .88(\mathrm{~d} . J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .6 .97(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}) .7 .24$ $(\mathrm{s}, 1 \mathrm{H}) .7 .48(\mathrm{~d}, J=16.8 \mathrm{~Hz} .2 \mathrm{H}), 7.57(\mathrm{~d} . J=8.4 \mathrm{~Hz} .1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta+6.1,51.3,51.6,67.6 .67 .7 .74 .8$, 107.9. 115. 118.1. 121. 127.1. 128.5. 129.4. 131.3. 132.9. $134.5,135.7,138.7,146.5,152.2$. EIMS: m/z (\%) 82 (63), 120 (47). 136 (36). 177 (61). 255 (9). $4+6$ (66), 459 (100), 488 (24, M). HRMS (EI, M'): Caled for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{1} \mathrm{O}_{3}$ 488.1382, found +88.1388 .

Results and Discussion

lmpurity 1 was synthesized as shown in Scheme 1 . Although it was thought that $\mathbf{1 b}$ can be synthesized using the same procedure as is used to synthesize $\mathbf{1 a}{ }^{9}$ we prepared $\mathbf{1 b}$ by isomerization of $\mathbf{1 a}$. which was provided by Choongwae Pharma Co. In the isomerization reaction, the acetal ring was opened and closed in the presence of anhydrous $p-\mathrm{TsOH}$. resulting in equilibration between $\mathbf{1 a}$ and $\mathbf{1 b}$ in a roughly 1 : I ratio. Since 1b differs from $\mathbf{1 a}$ in the $R_{f}(\mathbf{1 a}: 0.5$. $\mathbf{1 b}: 0.4)$ on TLC (SiO_{2}, hexane/ethyl acetate $=9 / \mathrm{l}$), $\mathbf{1 b}$ was isolated by colunun chromatography. 1 was synthesized from 1b following the same synthetic procedure ${ }^{y}$ as used to obtain

Scheme 1

Scheme 2

ketoconazole from 1a. The bromide of $\mathbf{1 b}$ was converted to the imidazole to get 1c which was hydrolyzed to 1d. The hydroxyl group of $\mathbf{1 d}$ was tosylated and coupled with $\mathbf{1 f}$ to obtain 1.
lmpurity 2 contains a $1 .+$-dihydropyrazine ring instead of the piperazine in ketoconazole. Therefore, the oxidation of $\mathbf{3 a}$ to $\mathbf{2 k}$ was first tried using a rhodium catalyst ${ }^{1 i}$ or photooxidation ${ }^{11}$ in the presence of photosensitizer. These methods failed, so $2 \mathbf{k}$ was synthesized from the diethanolamine (2d), as shown in Scheme 2. The hydrosyl and amine groups of $2 \mathbf{d}$ were acetylated using acetic anlydride. and then two O-acetyl groups were removed by partial hydrolysis. In the hydrolysis reaction, when more than 2 eq . of NaOH was used. the X-acetyl group was also hydrolyzed very easily at rt . The instability of the amide bond is thought to be due to an intramolecular acyl-transfer reaction involv-
ing the alkoxide. Therefore, the hydrolysis reaction should be performed carefully at $0^{\circ} \mathrm{C}$ using less than 2 eq . of NaOH . This phenomenon was also observed in the step used to protect the hydroxyl group of $2 f$ with benzyl bromide. as shown in Scheme 3. in which the major product was F berzy lated $2 \mathrm{f}-\mathbf{1}$. Without using a strong base. the hydroxyl group of $2 f$ could be protected with TBS to obtain 2 g . Swern oxidation of 2 g followed by reductive amination with aniline derivative 2 c gave $2 \mathbf{i}$. which was comerted to 2 j by acidic hydrolysis of the TBS group. 2c was obtained from p-nitrophenol (2a) by acetylation and hydrogenation. as shown in Scheme 4. In the Swern oxidation of $\mathbf{2 j}$. the standard conditions ${ }^{12}$ did not work. because of the nucleophilicity ${ }^{13}$ of the amine of aminoalcohol 2 j . The addition of one equivalent of acetic acid was crucial to temporarily mask the nucleophilicity of the amine. The resulting aldehyde $\mathbf{2 k}$

Scheme 3

was transformed to 21 via spontancous cyclization and dehydration. ${ }^{1} \mathrm{II}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed that 21 is a mixture of two rotomers in a $2: 1$ ratio. These rotomers were thought to result from steric hindrance between the methyl proton of the acetyl group and the vinyl proton. To confirm the structure of 21 , it was hydrogenated to $\mathbf{3 a}$ in the presence of Pd / C. Due to the instability of $\mathbf{2 m}$ under acidic conditions, after basic hydrolysis of 21 , the reaction mixture was neutralized using phosphate buffer (pH [7) for extraction. 2m was coupled with $2 \mathbf{n}$ to obtain 2 , which is also a mixture of two rotomers according to the ${ }^{1} \mathrm{I}$ and ${ }^{13} \mathrm{C}$ NMR spectra.
The synthetic procedure for 3 is outlined in Scheme 5. Since direct bromination of $\mathbf{I f}$ gave side products, it was lirst acelylated to $\mathbf{3 a}$. The selective bromination at the ortho position of the phenolic oxygen was accomplished by protonation of the anilinic nitrogen with p-TsOH during bromination using Br_{2}. The acetyl-protecting group of $\mathbf{3} \mathbf{b}$ was replaced by a benzyl group, due to the instability of the ester under next harsh condition. For the diaryl ether
coupling of $\mathbf{3 d}$ with $\mathbf{3 e}$, several procedures, such as Pd^{14} - or Cu -mediated coupling in toluene ${ }^{15}$ or $\mathrm{ClI}_{3} \mathrm{CN}^{16}$ solvent were tried. lowever, these procedures were not ellective. Replacement of these solvents by phenol derivative If and increasing the reaction temperature to $190^{\circ} \mathrm{C}$ gave $\mathbf{3 f}$ in 35% yield. Alter debenzylation of $\mathbf{3 f}$ by hydrogenolysis. the resulting $\mathbf{3 g}$ was coupled with $\mathbf{2 n}$ to obtain 3 .

Finally, derivative 4 was obtained by deacelylation from ketoconazole using an aqueous KOH-DMSO system.

Conclusion

For DMF of ketoconazole, four impurities (1-4) contained in ketoconazole were synthesized. During the synthesis of 2 , a new synthetic method for 1,4-dihydropyrazine was established. To oxidize the aminoalcohol ($\mathbf{2 j}$) to the aminal ($\mathbf{2 k}$), standard Swern oxidation condition was modified to temporarily mask the nucleophilicity of the amino group of $\mathbf{2 j}$ using one equivalent of acetic acid. Derivative 3 was
synthesized wia regioselective bromination at the 2 position of the + -aminophenol derivative (3a) using Br_{2} in the presence of $p-\mathrm{TsOH}$. The etherification of the aryl bromide with the phenol derivative (3e) was accomplished by modifying the general Cu -mediated reaction using the phenol derivative itself as the solvent at $190^{\circ} \mathrm{C}$.

References

1. The Rules Goveming Medicinal Products in the European Union. Quality Guidelines Emopean Drug Master File Procedue for Active Smbstonces: 1998: Vol. 3A.
2. Bendix. D. To/umer Degradaion ond Stability 1998. 59. 129.
3. Heel. R. C:: Brogden. R. N.: Carmine. A.: Morley. l'. A.: Speight. T. M.: Avery, G. S. Dhugs 1982, 23. I
4. Vanden Bossehe. I .: Willemsens. G.: Cools. W: Comelissen, F.: Jauners, W.: Van Cutsem, J. M. intimicroh Igents (hemother: 1980. 17. 922.
5. Kraemer. F. B.: Ponl. A. Am. J. Mhed 198G. so. 616.
6. Ballard. S. A.: Lodola. A.: larbit. M. H. Biochem. Phamacol. 1988.37. 4643.
7. Shepherd, F. A.: Hottert, B.: Fivans. W. K.: Fmery, G.: Trachtenberg. J. Irch. Intern W/ed. 1985. 1+5. 863.
8. Camps, P., Farres. X. Tetrahedron: Lspmmetry 1995, 6. 128.3.
9. Heeres. J.: Bachx. L. I.: Mostmans. J. H.: Van Culsem. J. J. A/ed. Chem. 1979. 22. 1003.
10. Ishii. Y.: Chatani. N.: Kakiuchi. F.: Murai. S. Terrahedron Leffery 1997, 38.7565.
11. Kallinayer, H. J.: Petesch. N. Pharm. Acta I/eh: 1991, 66, 178.
12. Omura, K: Swert. D. Tetrahedron 1978. 37. 1651.
13. Keirs. D.: Overton. K. J. Chem. Soc., Chem. Comman. 1987. 1660.
14. Aranvos. A.: Oid. D. W.: Kivomori. A.: Wolle. J. P’: Sadiethi. J. P.: Buchwald. S. I.. J. Im. Chem. Soc. 1999. 121. 4369.
15. Marcoux, J. [., Dove. S.: Buchwald, S. I. Am. (hem. Soc. 1997. //0. 10539.
16. Sawyer. J. S.: Schmittling. E. A.: Palkowitz. J. A.: Smith. W. ,I. J. Org. Chem. 1998. 63.6338.

[^0]: *'lo whom all correspondence should be addressed. Phone: +82-63-469-4578. Fax: +82-63-469-4578, E-mail: leesh'tikunsan ackr

