DOI QR코드

DOI QR Code

Electronic Structure and Bonding in the Ternary Silicide YNiSi3

  • Published : 2003.03.20

Abstract

An analysis of the electronic structure and bonding in the ternary silicide YNiSi₃is made, using extended Huckel tight-binding calculations. The YNiSi₃structure consists of Ni-capped Si₂dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of $(Y^{3+})(Ni^0)(Si^3)^{3-}$ for YNiSi₃constitutes a good starting point to describe its electronic structure. Si atoms receive electrons from the most electropositive Y in YNiSi₃, and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the ${\pi}^*$ orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi₃can be rewritten as $(Y^{3+})(Ni^{2-})(Si^{2-})(Si-Si)^+$, making the Si₂layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si₂double layer possesses single bonds within a dimer with a partial double bond character. Strong Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si₂π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis.

Keywords

References

  1. Shah, D. M.; Berczik, D.; Anton, D. L.; Hecht, R. Mater. Sci. Eng. A 1992, 155, 45. https://doi.org/10.1016/0921-5093(92)90311-N
  2. Reader, A. H.; Vanommen, A. H.; Weijs, P. J. W.; Wolters, R. A. M.; Oostra, D. J. Rep. Prog. Phys. 1993, 56(11), 1397. https://doi.org/10.1088/0034-4885/56/11/002
  3. Parthe, E.; Chabot, B. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A., Jr., Eyring, L., Eds.; Elsevier: Amsterdam, 1984; Vol. 6, p 113.
  4. Villars, P. Pearson's Handbook, Desk Edition; ASM International: Materials Park, OH, 1997.
  5. Shoemaker, C. B.; Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900. https://doi.org/10.1107/S0365110X65002189
  6. Voroshilov, Yu. V.; Markiv, V. Ya.; Gladyshevskii, E. I. Inorg. Mater. (Engl. Transl.) 1967, 3, 1224.
  7. Ganglberger, E.; Nowotny, H.; Benesovsky, F. Monatsh. Chem. 1967, 98, 95. https://doi.org/10.1007/BF00901102
  8. Markiv, V. Ya.; Gladyshevskii, E. I.; Skolozdra, R. V.; Kripyakevich, P. I. Dopov. Akad. Nauk. Ukr. RSR, Ser. A: Fiz.-Tekh. Mat. Nauki 1967, 3, 266.
  9. Bardos, D. I.; Gupta, K. P.; Beck, P. A. Trans. Metall. Soc. AIME 1961, 221, 1087.
  10. Mittal, R. C.; Si, S. K.; Gupta, K. P. J. Less-Common Met. 1978, 60, 75. https://doi.org/10.1016/0022-5088(78)90091-7
  11. Yarmolyuk, Ya. P.; Grin, Yu. N.; Gladyshevskii, E. I. Sov. Phys. Crystallogr. (Engl. Transl.) 1977, 22, 416.
  12. Yarmolyuk, Ya. P.; Pecharskii, V. K.; Aksel'rud, L. G. Sov. Phys. Crystallogr. (Engl. Transl.) 1988, 33, 601.
  13. Horache, E.; Feist, T. P.; Stuart, J. A.; Fischer, J. E. J. Mater. Res. 1990, 5, 1887. https://doi.org/10.1557/JMR.1990.1887
  14. Aksel'rud, L. G.; Lysenko, L. A.; Yarmolyuk, Ya. P.; Gladyslevskii, E. I. Dopov. Akad. Nauk. Ukr. RSR, Ser. A: Fiz.-Mat. Tekh. Nauki 1977, 39, 657.
  15. Spiegel, F. X.; Bardos, D.; Beck, P. A. Trans. Metall. Soc. AIME 1963, 227, 575.
  16. Gladyshevskii, E. I. Sov. Powder Metall. Met. Ceram. (Engl. Transl.) 1962, 1, 262.
  17. Chen, X. Z.; Larson, P.; Sportouch, S.; Brazis, P.; Mahanti, S. D.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1999, 11, 75. https://doi.org/10.1021/cm980447v
  18. Bodak, O. I.; Pecharskii, V. K.; Mruz, O. Ya.; Zavodnik, V. E.; Vilvitsaya, G. M.; Salamanko P. S. Dopov. Akad. Nauk. Ukr. RSR, Ser. B 1985, 2, 37.
  19. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093. https://doi.org/10.1021/ja00487a020
  20. Hoffmann, R. Solids and Surfaces: A Chemist's View of Bonding in Extended Structures; VCH Publishers: New York, 1988.
  21. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.
  22. Bondi, A. J. Phys. Chem. 1964, 68, 441. https://doi.org/10.1021/j100785a001
  23. Hoffmann, R.; Janiak, C.; Kollmar, C. Macromolecules 1991, 24, 3725 https://doi.org/10.1021/ma00013a001
  24. Lee, K.-S.; Koo, H.-J.; Dai, D.; Ren, J.; Whangbo, M.-H. Inorg. Chem. 1999, 38, 340. https://doi.org/10.1021/ic980761r
  25. Vlassov, M.; Palacin, M. R.; Beltran-Porter, D.; Oro-Sole, J.; Canadell, E.; Alemany, P.; Fuertes, A. Inorg. Chem. 1999, 38, 4530. https://doi.org/10.1021/ic9903127
  26. Landrum, G. A.; Hoffmann, R.; Evers, J.; Boysen, H. Inorg. Chem. 1998, 37, 5754. https://doi.org/10.1021/ic980223e

Cited by

  1. Electronic Structure and Bonding in the Ternary Silicide YNiSi3 vol.34, pp.29, 2003, https://doi.org/10.1002/chin.200329002
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Ab initio calculation of the structural, elastic, electronic, and linear optical properties of ZrPtSi and TiPtSi ternary compounds vol.62, pp.None, 2012, https://doi.org/10.1016/j.commatsci.2012.05.052
  4. Superconductivity in monocrystalline $ \mathrm{YNiSi}_{3}$ and $ \mathrm{LuNiSi}_{3}$ vol.99, pp.22, 2003, https://doi.org/10.1103/physrevb.99.224505