DOI QR코드

DOI QR Code

Observation of Methyl Radical Recombination Following Photodissociation of CH3I at 266 nm by Time-Resolved Photothermal Spectroscopy

  • Published : 2003.03.20

Abstract

A time-resolved probe beam deflection (PBD) technique was employed to study the energy relaxation dynamics of photofragments produced by photodissociation of $CH_3I$ at 266 nm. Under 500 torr argon environment, experimental PBD transients revealed two energy relaxation processes; a fast relaxation process occurring within an acoustic transit time (less than 0.2 ㎲ in this study) and a slow relaxation process with the relaxation time in several tens of ㎲. The fast energy relaxation of which signal intensity depended linearly on the excitation laser power was assigned to translational-to-translational energy transfer from the photofragments to the medium. As for the slow process, the signal intensity depended on square of the excitation laser power, and the relaxation time decreased as the photofragment concentration increased. Based on experimental findings and reaction rate constants reported previously, the slow process was assigned to methyl radical recombination reaction. In order to determine the rate constant for methyl radical recombination reaction, a theoretical equation of the PBD transient for a radical recombination reaction was derived and used to fit the experimental results. By comparing the experimental PBD curves with the calculated ones, the rate constant for methyl recombination is determined to be $3.3({\pm}1.0)\;{\times}\;10^6\;s^{-1}torr^{-1}$ at 295 ± 2 K in 500 torr Ar.

Keywords

References

  1. Knee, J. L.; Khundkar, L. R.; Zewail, A. H. J. Chem. Phys. 1985, 83, 1996. https://doi.org/10.1063/1.449339
  2. Gedanken, A.; Rowe, M. D. Chem. Phys. Lett. 1975, 34, 39. https://doi.org/10.1016/0009-2614(75)80196-5
  3. Dzvonik, M.; Yang, S.; Bersohn, R. J. Chem. Phys. 1974, 61, 4408. https://doi.org/10.1063/1.1681758
  4. Sparks, R. K.; Shobatake, K.; Carlson, L. R.; Lee, Y. T. J. Chem. Phys. 1981, 75, 3838. https://doi.org/10.1063/1.442538
  5. Barry, M. D.; Gorry, M. D. Mol. Phys. 1984, 52, 461. https://doi.org/10.1080/00268978400101331
  6. Black, F.; Powis, I. J. Chem. Phys. 1988, 89, 3986. https://doi.org/10.1063/1.454832
  7. Ogorzalek Loo, R.; Haerri, H.-P.; Houston, P. L. J. Phys. Chem. 1988, 92, 5. https://doi.org/10.1021/j100312a002
  8. Hall, G. E.; Sears, T. J.; Frye, J. M. J. Chem. Phys. 1989, 90, 6234. https://doi.org/10.1063/1.456340
  9. Hess, W. P.; Kohler, S. J.; Haugen, H. K.; Leone, S. R. J. Chem. Phys. 1986, 84, 2143. https://doi.org/10.1063/1.450375
  10. Sundberg, R. L.; Imre, D.; Hale, M. O.; Kinsey, J. L.; Coalson, R. D. J. Phys. Chem. 1986, 90, 5001. https://doi.org/10.1021/j100412a027
  11. Shapiro, M.; Bersohn, R. J. Chem. Phys. 1980, 73, 3810. https://doi.org/10.1063/1.440611
  12. Henrikson, N. E. Chem. Phys. Lett. 1985, 121, 139. https://doi.org/10.1016/0009-2614(85)87171-2
  13. Xie, D. Q.; Guo, H.; Amatatsu, Y.; Kosloff, R. J. Phys. Chem. A 2000, 104, 1009. https://doi.org/10.1021/jp9932463
  14. Hennig, S.; Engel, V.; Schinke, R. J. Chem. Phys. 1986, 84, 5444. https://doi.org/10.1063/1.449953
  15. Yabushita, S.; Morokuma, K. Chem. Phys. Lett. 1988, 153, 517. https://doi.org/10.1016/0009-2614(88)85253-9
  16. Lao, K. Q.; Person, M. D.; Xayariboun, P.; Butler, L. J. J. Chem. Phys. 1990, 92, 838.
  17. Guo, H.; Schatz, G. C. J. Chem. Phys. 1990, 95, 3091.
  18. Guo, H. J. Chem. Phys. 1992, 96, 2731. https://doi.org/10.1063/1.462021
  19. Gray, S. K.; Child, M. S. Mol. Phys. 1984, 51, 189. https://doi.org/10.1080/00268978400100151
  20. Hermann, H. W.; Leone, S. R. J. Chem. Phys. 1982, 76, 4766. https://doi.org/10.1063/1.442795
  21. Kasper, J. V. V.; Parker, H.; Pimentel, G. C. J. Chem. Phys. 1965, 43, 1827. https://doi.org/10.1063/1.1697016
  22. Choi, Y.-K.; Koo, Y.-M.; Jung, K.-W. J. Photochem. Photobiol. A: Chem. 1999, 127, 1. https://doi.org/10.1016/S1010-6030(99)00151-3
  23. Ford, J. V.; Poth, L.; Zhong, Q.; Castleman Jr., A. W. Int. J. Mass Spectrom. 1999, 192, 327. https://doi.org/10.1016/S1387-3806(99)00131-1
  24. Lee, A. Y. T.; Yung, Y. L.; Moses, J. J. Geophys. Res. E, 2000, 105, 20207. https://doi.org/10.1029/1999JE001186
  25. Bezard, B.; Romani, P. N.; Feuchtgruber, H.; Encrenaz, T. Astrophys. J. 1999, 515, 868. https://doi.org/10.1086/307070
  26. Burde, D. H.; McFarlane, R. A. J. Chem. Phys. 1976, 64, 1850. https://doi.org/10.1063/1.432323
  27. Macpherson, M. T.; Pilling, M. J.; Smith, M. J. C. J. Phys. Chem. 1985, 89, 2268. https://doi.org/10.1021/j100257a024
  28. Palmer, R. E.; Padrick, T. D. J. Chem. Phys. 1976, 64, 2051. https://doi.org/10.1063/1.432427
  29. Baulch, D. L.; Duxbury, J. J. Combust. Flame 1980, 37, 313. https://doi.org/10.1016/0010-2180(80)90098-X
  30. Kerr, J. A.; Parsonage, M. J. Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals; Butterworths: London, 1976.
  31. Laman, D. M.; Falvey, D. E. Rev. Sci. Instrum. 1996, 67, 3260. https://doi.org/10.1063/1.1147406
  32. Tam, A. C. In Photothermal Investigations of Solids and Fluids; Academic Press: New York, 1989; Chap. 1.
  33. Barker, J. R.; Toselli, B. M. In Photothermal Investigations of Solids and Fluids; Academic Press: New York, 1989; Chap. 5.
  34. Braslavsky, S. E.; Heibel, G. E. Chem. Rev. 1992, 92, 1381. https://doi.org/10.1021/cr00014a007
  35. Yeh, S.-R.; Falvey, D. E. J. Photochem. Photobiol. A: Chem. 1995, 87, 13. https://doi.org/10.1016/1010-6030(94)03965-W
  36. Terazima, M.; Azumi, T. J. Phys. Chem. 1990, 94, 4775. https://doi.org/10.1021/j100375a007
  37. Terazima, M.; Azumi, T. J. Phys. Chem. 1990, 94, 4775. https://doi.org/10.1021/j100375a007
  38. Robbins, R. J.; Laman, D. M.; Falvey, D. E. J. Am. Chem. Soc. 1996, 118, 8127. https://doi.org/10.1021/ja961518z
  39. Toselli, B. M.; Walunas, T. L.; Barker, J. R. J. Chem. Phys. 1990, 92, 4793. https://doi.org/10.1063/1.458573
  40. Grabiner, F. R.; Siebert, D. R.; Flynn, G. W. Chem. Phys. Lett. 1972, 17, 189. https://doi.org/10.1016/0009-2614(72)87051-9
  41. Bailey, R. T.; Cruickshank, F. R.; Guthrie, R.; Pugh, D.; Weir, I. J. M. Chem. Phys. 1987, 114, 411. https://doi.org/10.1016/0301-0104(87)85054-1
  42. Trevor, P. L.; Rothem, T.; Barker, J. R. Chem. Phys. 1982, 68, 341. https://doi.org/10.1016/0301-0104(82)87041-9
  43. Calasso, I. G.; Delgadillo, I.; Sigrist, M. W. Chem. Phys. 1998, 229, 181. https://doi.org/10.1016/S0301-0104(98)00009-3
  44. Sontag, H.; Tam, A.; Hess, P. J. Chem. Phys. 1987, 86, 3950. https://doi.org/10.1063/1.451904
  45. Cambron, R. T.; Harris, J. M. Anal. Chem. 1995, 67, 365. https://doi.org/10.1021/ac00098a022
  46. O'Connor, M. T.; Diebold, G. J. Nature 1983, 301, 321. https://doi.org/10.1038/301321a0
  47. Suh, M.; Sung, W.; Heo, S.-U.; Hwang, H. J. J. Phys. Chem. A 1999, 103, 8365. https://doi.org/10.1021/jp991969g
  48. Lee, J. S.; Hwang, H. J. Bull. Korean Chem. Soc. 1997, 18, 11.
  49. van den Bergh, H. E.; Callear, A. B.; Norstrom, R. J. Chem. Phys. Lett. 1969, 4, 101. https://doi.org/10.1016/0009-2614(69)85080-3
  50. James, F. C.; Simons, J. P. Int. J. Chem. Kinet. 1974, 6, 887. https://doi.org/10.1002/kin.550060611
  51. Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1999, 110, 832. https://doi.org/10.1063/1.478051
  52. Bass, A. M.; Laufer, A. H. Int. J. Chem. Kinet. 1973, 5, 1053. https://doi.org/10.1002/kin.550050614
  53. Jackson, W. B.; Amer, N. M.; Boccara, A. C.; Fournier, D. Appl.Opt. 1981, 20, 1333. https://doi.org/10.1364/AO.20.001333
  54. Waschewsky, G. C. G.; Horansky, R.; Vaida, V. J. Phys. Chem. 1996, 100, 11559. https://doi.org/10.1021/jp960809r

Cited by

  1. Trajectory Studies of Methyl Radical Reaction with Iodine Molecule vol.26, pp.9, 2003, https://doi.org/10.5012/bkcs.2005.26.9.1369
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Destruction of methane in low-pressure, electrodeless radio frequency plasma on quartz walls vol.110, pp.5, 2003, https://doi.org/10.1063/1.3629982