
178 Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2 Song Hi Lee et al.

Molecular Dynamics Simulations for Transport Coefficients of Liquid Argon : 
New Approaches

Song Hi Lee,* Dong Kue Park, and Dae Bok Kang

Basic Science Research Center, Kyungsung University, Busan 608-736, Korea
Received August 30, 2002

The stress and the heat-flux auto-correlation functions in the Green-Kubo formulas for shear viscosity and 
thermal conductivity have non-decaying long-time tails. This problem can be overcome by improving the 
statistical accuracy by N (number of particles) times, considering the stress and the heat-flux of the system as 
properties of each particle. The mean square stress and the heat-flux displacements in the Einstein formulas for 
shear viscosity and thermal conductivity are non linear functions of time since the quantities in the mean square 
stress and the heat-flux displacements are not continuous under periodic boundary conditions. An alternative 
to these quantities is to integrate the stress and the heat-flux with respect to time, but the resulting mean square 
stress and heat-flux displacements are still not linear versus time. This problem can be also overcome by 
improving the statistical accuracy. The results for transport coefficients of liquid argon obtained are discussed.
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Introduction

Transport coefficients - self-diffusion coefficient, shear 
viscosity, and thermal conductivity - are defined in terms of 
the response of a system to a perturbation. For example, the 
diffusion coefficient relates the particle flux to a concent­
ration gradient, whereas the shear viscosity is a measure of 
the shear stress induced by an applied velocity gradient. By 
introducing such perturbations into the Hamiltonian, or 
directly into the equations of motion, their effect on the 
distribution function may be calculated. By retaining the 
linear terms in the perturbation, comparing the equation for 
the response with a macroscopic transport equation, we can 
identify the transport coefficient. This is usually the infinite 
time integral of an equilibrium correlation function of the 
form known as the Green-Kubo formula:

/ = J； dt〈 A( 0). A( t)〉， (1)J 0

where Y is the transport coefficient and A is a variable 
appearing in the perturbation term in the Hamiltonian. 
Associated with any expression of this kind, there is also the 
Einstein formula:

1dY = him d〈[A(t) - A(0)]2〉， (2)
21 T ； dt

which holds at large t (compared with the correlation time of 
A).

In recent years, non-equilibrium molecular dynamics 
(NEMD) simulations have emerged as a powerful tool for 
the study of transport coefficients of both simple and 
molecular fluids.1-20 The general principle of the NEMD 
method21 is to introduce a (possibly fictitious) external field 
X into the equations of motion of the system, which derives
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the corresponding thermodynamic flux J. The first require­
ment for this applied field is that it should be consistent with 
the periodic boundary conditions to ensure that the simulation 
box remains homogeneous. The second requirement is that 
the transport coefficient Y of interest can be calculated from 
the constitutive relation:

Y = lim Flim 으(閔. (3)
X T 0 |_t T 8 -X

The formal proof that an algorithm satisfies these two 
requirements is given by linear response theory.15,22,23

Eq. (3) indicates an extrapolation method - applying 10-20 
values of the external field, obtaining the thermodynamic 
flux, and extrapolating to zero external field. This kind of 
calculation is fairly expensive. Especially, the averaging of 
the thermodynamic flux at small external fields requires very 
long time simulations. Another drawback of NEMD compared 
with equilibrium molecular dynamics (EMD) simulation is 
to provide only one fundamental transport coefficient, while 
EMD produces an entire range of correlation functions and 
transport coefficients from the output of a single equilibrium 
run by Green-Kubo and Einstein formulas. The problem in 
the calculation of transport properties, using the EMD 
simulation is a non-decaying long-time tail of the time 
correlation functions in Eq. (1) or a non-linear slope in the 
mean square displacement of the variables in Eq. (2).

In the present paper, we examine the Green-Kubo and 
Einstein formulas for the calculation of the transport proper­
ties of liquid argon, using the EMD simulation. The primary 
goal of this study is to seek an alternate route for the non­
decaying long-time tail of the time correlation functions in 
Eq. (1) or the non-linear slope in the mean square displace­
ment of the variables in Eq. (2). In the following section, we 
describe the technical details of MD simulation. We present 
some theoretical aspects in Section III, our results in Section 
IV, and concluding remarks in Section V.

mailto:shlee@star.ks.ac.kr


MD Simulation for Transport Coefficients of Argon Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2 179

M이ecular Dynamics Simulation Details

The usual Lennard-Jones (LJ) 12-6 potential for the 
interaction between atoms was used with LJ parameters, 
b=0.34 nm and £/k = 120 K, where k is the Boltzmann 
constant. The inter-atomic potential was truncated at 0.85 
nm, which is the cut-off distance used in many other 
simulations. Long-range corrections were applied to the 
energy, pressure, etc. due to the potential truncation.24 The 
preliminary canonical ensemble (NVT fixed) MD simulation 
of 1728 argon atoms was started in the cubic box of length 
L = 4.3696 nm, of which the density is equal to 1.374 g/cm3 
at 94.4 K and 1 atm. First, the equations of motion were 
solved using the leap-frog algorithm25 with a time step of 
10-14 second, but later it was switched to a velocity Verlet 
algorithm26 for NVT EMD simulation and a fifth-order 
predictor-corrector Gear integration27 for NpT EMD simulation. 
Both systems were fully equilibrated and the equilibrium 
properties were averaged over five blocks of 100,000 time 
steps. The brief summary of thermodynamic averages is 
given in Table 1. The configurations of argon atoms were 
stored every time step for further analysis.

Theoretical Backgrounds

Self-diffusion coefficient. The Green-Kubo formula for 
self-diffusion coefficient Ds in three dimensions is given by

Ds = 3- i°^dt〈 v (0 ). v (t)), (4)

while the Einstein formula for self-diffusion coefficient is

Ds=6 阻 d〈％官＜ 0)d 2. (5)

These averages are computed for each of the N particles in 
the simulation, the results were added together, and divided 
by N, to improve statistical accuracy.

Shear viscosity. The Green-Kubo formula for shear 
viscosity n is given by

n = V J； dt〈 PaP( 0). p 洲 t)〉， (6)

where

PMt) = V_ £ mvia(t) . Ft)+ £ £. Rja(t) - fj(t)]

(7)

or P耶(t) = V £mvia(t)- Ft)+ £ ria(t) - ftp(用(8) 
V i i

and 아3 = xy, xz, yx, yz, zx, and zy. The equality of these two

Table 1. Liquid argon systems at T = 94.4 K

Methods p (g/cm3) p (atm) -Etotal (kJ/mol)
Vrlet NVT EMD 1.374 38 4.641
Gear NpT EMD 1.361 1.0 4.592

t(ps)

Figure 1. Normalized stress auto-correlation (SAC) functions of 
liquid argon in Eq. (6) using the stress tensors defined by Eqs. (7) 
and (8), and that in Eq. (10) using Eq. (9), obtained Verlet NVT 
EMD simulations.

stress tensors without potential truncation is fully discussed28 
and it is recommended to use the former form in a 
simulation that employs periodic boundary conditions. The 
stress autocorrelation (SAC) functions, the integrand of Eq. 
(6), obtained from Eqs. (7) and (8) do not decay to zero in 
the long time as shown in Figure 1 and the resulting shear 
viscosity is not well-defined.

Though the stress is a property of the system, it can be 
considered as a property of each particle i, writing Piap as

Pi이3(t) = Vmv,a(t) - V从t) + 履t) - f"、t)] . (9)

With this expression, n in Eq. (6) may be rewritten as

n = V J；dt £〈 P1。"t). ptap( t)〉. (1。)

Then the statistical accuracy is improved, being N (number 
of particles) as large as that of using Eq. (7) or (8). Figure 1 
shows a perfect decay of the SAC, the integrand of Eq. (10). 
This kind of treatment in calculating shear viscosity has 
already appeared in solute molecular dynamics in a mesoscale 
solvent.29 Since there is no interaction between solvent 

rm 
29

particles in the mesoscale solvent, the second te 
vanishes and Vi" is treated as cell-jump velocity.

of Eq. (9)

The Einstein formula for shear viscosity is

1 V d — - 2
n = 2kTJ!。瓦〈[ME赤0)]〉, (11)

where
Q 아3( t) = V £ ria( t). p" t). (12)

V i

In the previous section time differentiating of r in Eq. (5) 
gives Vi in Eq. (4) and the same relationship stands for Qa§ in 
Eq. (12) and Pa" in Eq. (8) - time differentiating of Qa" gives 
Pa". Since Qa" is not continuous under periodic boundary
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Figure 2. Mean square stress displacement (MSSD) of liquid argon 
in Eq. (11) using Qa§ defined by Eq. (12), those in Eq. (11) using 
Q예3 defined by Eq. (13) through Pa§ of Eqs. (7) and (8), and that in 
Eq. (15) using Eq. (14), obtained Verlet nVt EmD simulations. 
The units are in (g/(mol・ps・nm))2.

Figure 3. Normalized heat-flux auto-correlation (HFAC) functions 
of liquid argon in Eq. (16) using the hea flux defined by Eqs. (17) 
and (18), and that in Eq. (21) using Eq. (20), obtained Verlet NVT 
EMD simulations.

conditions,30 the calculated mean square stress displacement 
(MSSD), using Eq. (12) is not a linear function of time as 
shown Figure 2. An attractive alternative for Qa is to 
integrate Pa^ with respect to time:

Q아3t)- Q아3(0)= J0 dT Pa禮) . (13)

There are two Pa in Eqs. (7) and (8) for Eq. (13) but both 
calculated MSSD of Qa§ are also non linear functions of 
time as shown Figure 2.

To improve the statistical accuracy, we define Qia/3 as a 
property of each particle i from Eq. (9):

Qiag(t) - Qia3(0) = J0dT Pia*T)， (14)
and the shear viscosity is defined as

n = 2京im d £〈[Qi아3(t) - Qi아3(0)]2〉. (15)
2KT t t 8 dt i

The calculated MSSD of Qi아 gives a perfect linear function 
of time as shown Figure 2.

Therm지 conductivity. The discussion here is exactly the 
same as the previous section. First, the Green-Kubo formula 
for thermal conductivity A is given by

2 = VJ8 dt〈Jq아0)' Jq아t)〉, (16)

where

Jq아t) = V[£ 易(t) - vta(t) + £ £ r!ja(t) - [%(t) - f (t)]] 

' '1 >' (17)
or

Jq아t) = •，[£ 与(t) - via(t) + £ ria(t) - [v(t) - ft(t)]] , 

' i (18)

p( t) 1 一& (t) = 싹丄 + 4 £ 例 上(t)], (19)
2 2 mi 2打广1 '」， v丿

and a = x, y, and z. 0 [rj(t)] is the potential energy between 
particles i and 1 at time t. The heat-flux auto-correlation 
(HFAC) functions, the integrand of Eq. (16), obtained from 
Eqs. (17) and (18) do not decay to zero as shown in Figure 3 
and the resulting thermal conductivity is also not well- 
defined.

Again the heat flux is considered as a property of each 
particle i, writing jQia as

Jqi아t) = V【£i(t)' vi«(t) + ri아t) -[vi(t) - fi(t)]] (20)

With this expression, A in Eq. (16) may be rewritten as

A = V J8 dt£〈 Jqi아 0)' Jqi아 t)〉. (21)
kT 。 i

Here again the statistical accuracy is improved, being N 
(number of particle) as large as that of using Eq. (17) or (18). 
Figure 3 shows a perfect decay of the HFAC, the integrand 
of Eq. (21).

The Einstein formula for thermal conductivity is

.1 V 一. d , 2
A =护亍皿 %〈 [&(t) - &(0)]2〉, (22)

2 kT t t 8 dt
where

&( t) = V £ r,아 t). £i (t), (23)

or sometimes

財 t) = V £ 服(t). [£i( t)-〈编]. (24)

Here again time differentiating of £a in Eq. (23) gives jQa in
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Figure 4. Mean square heat-flux displacements (MSHFD) of liquid 
argon in Eq. (22) using & defined by Eqs. (23) and (24), those in 
Eq.(22) using £a defined by Eq. (25) through Jq& of Eqs. (17) and 
(18), and that in Eq. (26) using Eq. (27), obtained Verlet NVT 
EMD simulations. Here MSHFD is multiplied by V and the units 
are in (g/(molp-s2))2nm3.

Eq. (18). Since £a is not continuous under periodic boundary 
conditions,29 the calculated mean square heat-flux displace­
ments (MSHFD) using Eqs. (23) and (24) are non linear 
functions of time as shown Figure 4. An attractive alternative 
for £a is to integrate JQa with respect to time:

&(t) - &( 0) = £ dT JQa(T) . (25)

There are two JQa Eqs. (17) and (18), for Eq. (25) and both 
calculated MSHFD's are also non linear functions of time as 
shown Figure 4.

Again, to improve the statistical accuracy, we define JQia 

as a property of each particle i from Eq. (20):

易a(t)-臥(0) = J： dT J0a(T) , (26)

and the thermal conductivity is defined as

1 V d//、、i2\
尢=2~TJ% dif ^^£ia(t^-£ia(0)]〉， (27)

The calculated MSHFD gives a perfect linear function of 
time as shown Figure 4.

Results and Discussion

The calculated velocity auto-correlation (VAC) function, 
the integrand of Eq. (4), decays to zero quickly(not shown) 
and the resulting self-diffusion coefficient is well-defined. 
Also, the calculated mean square displacement (MSD) is 
perfectly linear (not shown) and one-sixth of the slope gives 
the self-diffusion coefficient. The self-diffusion coefficients 
obtained from VAC (Eq. (4)) and MSD (Eq. (5)) are listed in 
Table 2 and the agreement with the experimental results31 is 
quite good. But non-equilibrium molecular dynamics (NEMD)

Table 2. Comparison of self-diffusion coefficients (Ds, 10-5 cm2/ 
sec), shear viscosities (n, millipoise), and thermal conductivities (& 
10-4 cal/K・cm・sec) of liquid argon at 94.4 K obtained from the 
Green-Kubo [Eq. (4), (10), and (21)] and Einstein formulas [Eq. 
(5), (15), and (27)], with the experimental measures and NEMD 
results32

Transport 
properties

Vrlet NVT 
EMD

Gear NpT 
EMD Experimental NEMD

Ds (Eq.4) 2.48±0.07 2.56±0.04 2.83a 4.02
Ds (Eq.5) 2.47±0.07 2.54±0.05 2.430

n (Eq.10) 3.08±0.19 3.14±0.22 1.97a 2.13
n (Eq.15) 3.15±0.23 3.01±0.19
X (Eq.21) 3.05±0.22 3.54±0.18 2.74a 2.31
A (Eq.27) 3.07±0.24 3.37±0.21

^Obtained from Lagrange interpolation of experimental results31 at 94.4 
K.力At 90 K and 1.374 g/cm3.

result32 overestimates the experimental results.31
Figure 5 shows the shear viscosities of liquid argon, time- 

integrated from the stress auto-correlation functions(SAC), 
Figure 1, as a function of time, and only the last result gives 
a constant value in the long time, which is listed in Table 2. 
The mean square stress displacements(MSSD) of liquid 
argon are shown in Figure 2. The only linear curve among 
them is the last one and the obtained shear viscosity is listed 
in Table 2. The obtained shear viscosities from the Green- 
Kubo formulas, using Piap in Eqs. (9) and (10) and the Einstein 
formulas, using Qiap in Eqs. (14) and (15) in velocity Verlet 
algorithm26 NVT and fifth-order predictor-corrector Gear 
integration27 NpT EMD simulations are generally in good 
agreement but overestimate the experimental result.31 How­
ever, NEMD result32 gives a better agreement with the 
experimental result31 than EMD results.

The results for the thermal conductivity of liquid argon 
have a very similar situation to those for the shear viscosity.

Figure 5. The shear viscosities (arbitrary units) of liquid argon, 
time-integrated from the stress auto-correlation functions (SAC), 
Figure 1, as a function of time.
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Figure 6. The thermal conductivities (arbitrary units) of liquid 
argon, time-integrated from the heat-flux auto-correlation functions 
(HFAC), Figure 3, as a function of time.

In Figure 6, we show the thermal conductivities of liquid 
argon, time-integrated from the heat-flux auto-correlation 
functions (HFAC), Figure 3, as a function of time, and only 
the last result, gives a constant value in the long time, which 
is listed in Table 2. The mean square heat-flux displacements 
(MSHFD) of liquid argon are shown in Figure 4. The only 
linear curve among them is the last one and the obtained 
thermal conductivity is listed in Table 2. The thermal 
conductivities obtained from the Green-Kubo formulas, 
using jQia in Eqs. (20) and (21) and the Einstein formulas, 
using £ia in Eqs. (26) and (27) in the velocity Verlet 
algorithm26 NVT EMD are slightly lower than that obtained 
from those from the fifth-order predictor-corrector Gear 
integration27 NpT EMD simulations but also overestimate 
the experimental result.31 Unlike the viscosity result, the 
EMD result gives a slightly better agreement with the 
experimental result31 than NEMD result.32

Concluding Remarks

In the present paper, we examine the Green-Kubo and 
Einstein formulas for the calculation of the transport proper­
ties of liquid argon, using the equilibrium molecular dynamics 
(EMD) simulation. For self-diffusion coefficient, there is no 
problem since the velocity auto-correlation (VAC) function 
decays to zero quickly and the mean square displacement 
(MSD) gives a linear line. This is because the velocity and 
position of each particle are properties of particle. However, 
for shear viscosity and thermal conductivity, the stress 
(SAC) and the heat-flux auto-correlation (HFAC) functions 
in the Green-Kubo formulas have non-decaying long-time 
tails, and the mean square stress (MSSD) and heat-flux 
displacements (MSHFD) in the Einstein formulas are non 
linear functions of time. This is because the stress and the 
heat flux are not properties of particle but of system. By 

considering the stress and the heat-flux of the system as 
properties of each particle, this problem can be overcome by 
improving the statistical accuracy by N (number of particles) 
times. The obtained results for shear viscosities and thermal 
conductivities of liquid argon from the Green-Kubo and 
Einstein formulas using velocity Verlet algorithm NVT 
EMD and fifth-order predictor-corrector Gear integration 
NpT EMD simulations give a reasonable agreement with the 
experimental results and NEMD results. The applications of 
this method for molecular liquids, such as H2O, CH4, and 
C4H10 are presently under study.

Acknowledgment. This research was supported by the 
Special Research Project Fund from Basic Science Research 
Center, Kyungsung University, 2002.

References

1. Kushik, J.; Berne, B. J. Modern Theoretical Chemistry. Vbl. 6. 
Statistical Mechanics. Part B. Time Dependent Process,Plenum: 
New York, 1977; Chap. 6.

2. Evans, D. J. Mol Phys. 1979, 37, 1745.
3. Evans, D. J. Phys. Lett. A 1979, 74,229.
4. Evans, D. J. J. Stat. Phys. 1980, 22, 81.
5. Hoover, W. G.; Evans, D. J.; Hickman, R. B.; Ladd, A. J. C.; 

Ashurst, W. T.; Moran, B. Phys. Rev. A 1980, 22, 1690.
6. Evans, D. J.; Hanley, H. J. M. Physica A 1980, 103, 343.
7. Evans, D. J. Phys. Rev. A 1981, 23, 1988.
8. Evans, D. J. Mol. Phys. 1981, 41,1355.
9. Evans, D. J. Phys. Lett. A 1982, 91, 457.

10. Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, V. J.
C. Phys. Rev. A 1983, 28, 1016.

11. Gillan, M. J.; Dixon, M. J. Phys. C 1983, 16, 869.
12. Evans, D. J. J. Chem. Phys. 1983, 78, 3297.
13. Evans, D. J. Physica A 1983, 118, 51.
14. Evans, D. J.; Morris, G. P. Chem. Phys. 1983, 77, 63.
15. Evans, D. J.; Morris, G. P. Phys. Rev. A 1984, 30, 1528.
16. Simmons, A. D.; Cummings, P. T. Chem. Phys. Lett. 1986, 129,92.
17. Evans, D. J. Phys. Rev. A 1986, 34, 1449.
18. Cummings, P. T.; Morris, G. P. J. Phys. F: Met. Phys. 1987, 17, 593.
19. Cummings, P. T.; Morris, G. P. J. Phys. F: Met. Phys. 1988, 18, 

1439.
20. Cummings, P. T.; Varner, T. L. J. Chem. Phys. 1988, 89, 6391.
21. Evans, D. J.; Morris, G. P. Comput. Phys. Rep. 1984, 1, 297.
22. Ciccotti, G.; Jacucci, G.; McDonald, I. R. J. Stat. Phys. 1979, 21, 1.
23. Morriss, G. P; Evans, D. J. Mol. Phys. 1985, 54,135.
24. Allen, M. P; Tildesley, D. J. Computer Simulation of Liquids'; 

Oxford Univ. Press.: Oxford, 1987; p 64.
25. Allen, M. P; Tildesley, D. J. Computer Simulation of Liquids'; 

Oxford Univ. Press.: Oxford, 1987; p 80.
26. Allen, M. P; Tildesley, D. J. Computer Simulation of Liquids'; 

Oxford Univ. Press.: Oxford, 1987; p 81.
27. Gear, C. W. Numerical Initial Value Problems in Ordinary 

Differential Equation; Prentice-Hall: Englewood Cliffs, NJ, 1971.
28. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; 

Oxford Univ. Press.: Oxford, 1987; p 48.
29. Malevanets, A.; Kapral, R. J. Chem. Phys. 2000, 112, 7260: Lee, 

S. H.; Kapral, R. Physica A 2001, 298, 56.
30. Haile, J. M. Molecular Dynamics Simulation'; Wiley: New York, 

1992; Chap. 7.
31. Cook, G. A. Argon, Helium and the Rare Gases'; Intersciences: 

NY, 1961.
32. Moon, C. B.; Moon, G. K.; Lee, S. H. Bull. Korean Chem. Soc. 

1991, 12, 309.


