DOI QR코드

DOI QR Code

Two-Dimensional Raman Correlation Spectroscopy Study of the Pathway for the Thermal Imidization of Poly(amic acid)

  • Han Yu, Keun-Ok (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Yoo, Yang-Hyun (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Rhee, John-Moon (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Lee, Myong-Hoon (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Yu, Soo-Chang (Department of Chemistry, Kunsan National University)
  • Published : 2003.03.20

Abstract

The pathway producing imide ring closure during the thermal imidization of poly(amic acid) (PAA) was investigated in detail using a new analytical method, two-dimensional (2D) Raman correlation spectroscopy. The signs of the cross peaks in synchronous spectra provided evidence of the thermal imidization of PAA into PI as the heating temperature increased. The signs of the cross peaks in asynchronous spectra suggested that the imide-related modes changed prior to the amide or carboxylic mode, which indicates that cyclization occurred before the amide proton was abstracted.

Keywords

References

  1. Wilson, A. M. In Polyimides: Synthesis, Characterization, andApplications; Mittal, K. L., Ed.; Plenum Press: New York, U.S.A.,1984; Vol. 2, p 715.
  2. Chakravorty, K. K.; Chien, C. P. In Advances in Polyimide Scienceand Technology; Feger, C.; Khojastech, M. M.; Htoo, M. S., Eds.; Technomic: Lancaster, U. S. A., 1993; p 682.
  3. Bessonov, M. I.; Koton, M. M.; Kudryavtsev, V. V.; Laius, L. A.Polyimides; Consultants Bureau: New York, U. S. A., 1987; p 271.
  4. Dine-Hart, R. A.; Wright, W. W. J. Appl. Polym. Sci. 1967, 11,609. https://doi.org/10.1002/app.1967.070110501
  5. Aust, J. F.; Higgins, M. K.; Groner, P.; Morgan, S. L.; Myrick, M.L. Anal. Chim. Acta 1994, 293, 119. https://doi.org/10.1016/0003-2670(94)00100-6
  6. Buchwalter, L. P. J. Vac. Sci. Technol. 1989, A7(3), 1772.
  7. Cheng, R. R.; Wunder, S. L. J. Polym. Sci., Part B, Polym. Phys.1996, 34, 435. https://doi.org/10.1002/(SICI)1099-0488(199602)34:3<435::AID-POLB4>3.0.CO;2-S
  8. Denisov, V. M.; Kol'tsov, A. I.; Mikhailova, N. V.; Nikitin, V. N.;Bessonov, M. I.; Glukhov, N. A.; Shcherbakova, L. M. Polym. Sci. U.S.S.R. 1976, A18, 1780.
  9. Dickinson, P. R.; Sung, C. S. P. Macromolecules 1992, 25, 3758. https://doi.org/10.1021/ma00040a023
  10. Hay, J. N.; Boyle, J. D.; James, P. G.; Walton, J. R.; Bare, K. J.;Konarski, M.; Wilson, D. High Performance Polymers 1989, 1(2),145. https://doi.org/10.1177/152483998900100205
  11. Snyder, R. W. In Polyimides: Materials, Chemistry andCharacterization; Feger, C.; Khojasteh, M. M.; McGrath, J. E.,Eds.; Elsevier: Amsterdam, the Netherlands, 1989; p 363.
  12. Snyder, R. W.; Sheen, C. W. Appl. Spectrosc. 1988, 42(4), 655. https://doi.org/10.1366/0003702884429300
  13. Pyun, E.; Mathisen, R. J.; Sung, C. S. P. Macromolecules 1989,22, 1174. https://doi.org/10.1021/ma00193a031
  14. Stoffel, N. C.; Kramer, E. J.; Vqlksen, W.; Russell, T. P. Polymer1993, 34(21), 4524. https://doi.org/10.1016/0032-3861(93)90159-8
  15. Johnson, C.; Wunder, S. L. J. Polym. Sci., Part B, Polym. Phys.1993, 31, 677. https://doi.org/10.1002/polb.1993.090310608
  16. Kardash, I. Y.; Ardashnikov, A. Y.; Yakushin, F. S.; Pravednikov,A. N. Polym. Sci. U.S.S.R. 1975, A17(3), 598.
  17. Kreuz, J. A.; Endrey, A. L.; Gay, F. P.; Sroog, C. E. J. Polym. Sci.,Part A-1 1966, 4, 2607. https://doi.org/10.1002/pol.1966.150041023
  18. Harris, F. W. In Polyimides; Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M., Eds.; Blackie: London, U. K., 1990; p 1.
  19. Nishino, T.; Kotera, M.; Inayoshi, N.; Miki, N.; Nakamae, K.Polymer 2000, 41, 6913. https://doi.org/10.1016/S0032-3861(00)00002-1
  20. Miwa, T.; Okabe, Y.; Ishida, M. Polymer 1997, 38(19), 4945. https://doi.org/10.1016/S0032-3861(96)01087-7
  21. Nabet, A.; Auger, M.; Pezolet, M. Appl. Spectrosc. 2000, 54(7),948. https://doi.org/10.1366/0003702001950661
  22. Elmore, D. L.; Dluhy, R. A. Appl. Spectrosc. 2000, 54(7), 956. https://doi.org/10.1366/0003702001950670
  23. Ren, Y.; Murakami, T.; Nishioka, T.; Nakashima, K.; Noda, I.;Ozaki, Y. Macromolecules 1999, 32(19), 6307. https://doi.org/10.1021/ma990072e
  24. Nakano, T.; Shimada, S.; Saitoh, R.; Noda, I. Appl. Spectrosc.1993, 47(9), 1337. https://doi.org/10.1366/0003702934067595
  25. Ebihara, K.; Takahashi, H.; Noda, I. Appl. Spectrosc. 1993, 47(9),1343. https://doi.org/10.1366/0003702934067405
  26. Ren, Y.; Murakami, T.; Nishioka, T.; Nakashima, K.; Noda, I.;Ozaki, Y. J. Phys. Chem. B 2000, 104(4), 679. https://doi.org/10.1021/jp9904217
  27. Kimura, F.; Komatsu, M.; Kimura, T. Appl. Spectrosc. 2000,54(7), 974. https://doi.org/10.1366/0003702001950706
  28. Lachenal, G.; Buchet, R.; Ren, Y.; Ozaki, Y. In Two-dimensionalCorrelation Spectroscopy; Ozaki, Y., Noda, I., Eds.; AmericanInstitute of Physics: Melville, New York, 1999; p 223.
  29. Noda, I. Appl. Spectrosc. 1993, 47(9), 1329. https://doi.org/10.1366/0003702934067694
  30. Noda, I.; Dowrey, A. E.; Marcott, C.; Story, G. M. Forcal Point2000, 54(7), 236A.
  31. Ren, Y.; Murakami, T.; Nishioka, T.; Nakashima, K.; Noda, I.;Ozaki, Y. J. Phys. Chem. B 1999, 103(31), 6475. https://doi.org/10.1021/jp990893l
  32. Pryde, C. A. J. Polym. Sci., Part A, Polym. Chem. 1993, 31, 1045. https://doi.org/10.1002/pola.1993.080310427

Cited by

  1. On the Use of Band-Target Entropy Minimization to Simplify the Interpretation of Two-Dimensional Correlation Spectroscopy vol.60, pp.3, 2006, https://doi.org/10.1366/000370206776342562
  2. Investigation on cyclization process of co-polyimides containing 2-(4-aminophenyl)-5-aminobenzimidazole units vol.26, pp.5, 2014, https://doi.org/10.1177/0954008314520790
  3. Measurement of the methemoglobin concentration using Raman spectroscopy vol.42, pp.1, 2014, https://doi.org/10.3109/21691401.2013.775577
  4. Two-Dimensional Fourier Transform Infrared (FT-IR) Correlation Spectroscopy Study of the Imidization Reaction from Polyamic Acid to Polyimide vol.68, pp.6, 2014, https://doi.org/10.1366/13-07283
  5. High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios vol.31, pp.29, 2015, https://doi.org/10.1021/acs.langmuir.5b01875
  6. Monitor Polyimide Production from Diamine and Dianhydride Reactions Using a Combination of In Situ Infrared and Raman Spectroscopy vol.71, pp.9, 2017, https://doi.org/10.1177/0003702817700427
  7. Degradation of Polyimide Film by Corona Aging under Bipolar Pulse Voltage vol.181-182, pp.1662-9779, 2011, https://doi.org/10.4028/www.scientific.net/SSP.181-182.316
  8. The use of post-mortem Raman spectroscopy in explaining friction and wear behaviour of sintered polyimide at high temperature vol.12, pp.3, 2006, https://doi.org/10.1002/tt.21
  9. Thermal transitions in polyimide transfer under sliding against steel, investigated by Raman spectroscopy and thermal analysis vol.101, pp.3, 2006, https://doi.org/10.1002/app.22395
  10. Friction and Wear Mechanisms of Sintered and Thermoplastic Polyimides under Adhesive Sliding vol.292, pp.5, 2007, https://doi.org/10.1002/mame.200600400
  11. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  12. Two-dimensional correlation analysis study of the curing process of phenylethynyl end-capped imide model compounds vol.60, pp.None, 2003, https://doi.org/10.1016/j.vibspec.2011.10.014
  13. Imidization induced structural changes of 6FDA-ODA poly(amic acid) by two-dimensional (2D) infrared correlation spectroscopy vol.1069, pp.None, 2014, https://doi.org/10.1016/j.molstruc.2014.02.012
  14. Physical chemistry insights into surface charge phenomena during frictional coupling in triboelectric X-ray sources vol.7, pp.25, 2003, https://doi.org/10.1039/c9tc02050k
  15. Fabrication and Thermal Dissipation Properties of Carbon Nanofibers Derived from Electrospun Poly(Amic Acid) Carboxylate Salt Nanofibers vol.305, pp.1, 2003, https://doi.org/10.1002/mame.201900519