DOI QR코드

DOI QR Code

Kinetic Spectrophotometric Determination of Trace Amounts of Sulfide

  • Barzegar, Mohsen (Department of Food Science and Technology, Tarbiat Modarres University) ;
  • Jabbari, Ali (Department of Chemistry, K. N. Toosi University) ;
  • Esmaeili, Majid (Department of Chemistry, Razi University)
  • Published : 2003.09.20

Abstract

A method for the determination of trace amount of sulfide based on the addition reaction of sulfide with methyl green at pH 7.5 and $25{\circ}C$ is described. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the dyestuff at 637 nm by the initial rate and fixed time method. The calibration graph is linear in the range 30-1200 ppb. The theoretical limit of detection was 0.014 ppm. Seven replicate analysis of a sample solution containing 0.70 ppm sulfide gave a relative standard deviation of 1.5%. The interfering effects of various ions on sulfide determination have been reported and procedures for removal of interference have been described. The proposed method was applied successfully to the determination of sulfide in tap and wastewater samples.

Keywords

References

  1. Puacz, W.; Szahun, W.; Linke, K. Analyst 1995, 120, 939. https://doi.org/10.1039/an9952000939
  2. Patnaik, P. A. Comprehensive Guide to the Hazardous Propertiesof Chemical Substances, 2nd ed.; Wiley: New York, 1999.
  3. Ebdon, L.; Hill, S. J.; Jameel, M.; Corns, W. T.; Stockwell, P. B.Analyst 1997, 122, 689. https://doi.org/10.1039/a700407i
  4. Kirk, R. E.; Othmer, D. F. Encyclopedia of Chemical Technology,3nd ed.; Wiley: New York, 1981; vol. 17.
  5. Eaton, A. D.; Clesceri, L. S.; Greenberg, A. E. Standard Methodsfor the Examination of Water and Wastewater, 19nd ed.; AmericanPublic Health Association: Washington, 1995.
  6. Liu, C. H.; Shen, S. Anal. Chem. 1964, 36, 1652. https://doi.org/10.1021/ac60214a052
  7. Lambert, J. L.; Manzo, D. T. Anal. Chim. Acta 1969, 48, 185. https://doi.org/10.1016/S0003-2670(01)85257-0
  8. Roman Ceba, M.; Vinagre Java, F.; Munoz Leyva, J. A. Analyst1982, 107, 781. https://doi.org/10.1039/an9820700781
  9. Kurzawa, J. Anal. Chim. Acta 1985, 173, 343. https://doi.org/10.1016/S0003-2670(00)84975-2
  10. Canterford, D. R. Anal. Chem. 1975, 47, 88. https://doi.org/10.1021/ac60351a046
  11. Casella, I. G.; Guascito, M. R.; Desimoni, E. Anal. Chim. Acta2000, 409, 27. https://doi.org/10.1016/S0003-2670(99)00769-2
  12. Steinmann, P.; Shotyk, W. J. Chromatogr. A 1995, 706, 287. https://doi.org/10.1016/0021-9673(95)00195-S
  13. Tang, D.; Santschi, P. D. J. Chromatogr. A 2000, 883, 305. https://doi.org/10.1016/S0021-9673(00)00381-2
  14. Radford-Knoery, J.; Cutter, G. A. Anal. Chem. 1993, 65, 976. https://doi.org/10.1021/ac00056a005
  15. Wood, C. F.; Marr, I. L. Analyst 1988, 113, 1635. https://doi.org/10.1039/an9881301635
  16. Koh, T.; Miura, Y.; Yamamuro, N.; Takaki, T. Analyst 1990, 115,1133. https://doi.org/10.1039/an9901501133
  17. Barzegar, M.; Rahmani, A.; Jabbari, A.; Mousavi, M. F.Pharmazie 2003, 58, 114.
  18. Jabbari, A.; Barzegar, M.; Rahmani, A.; Mousavi, M. F. Indian J.Chem. 2002, 33A, 2303.
  19. Barzegar, M.; Mousavi, M. F.; Nemati, A. Microchem. J. 2000, 65,159. https://doi.org/10.1016/S0026-265X(00)00049-7
  20. Bendito, D. P.; Silva, M. Kinetic Methods in Analytical Chemistry;Horwood: Chichesters, 1988.
  21. Yatsimirski, K. B. Kinetic Methods of Analysis; Pergamon:Oxford, 1966.
  22. Han, K.; Koch, W. F. Anal. Chem. 1987, 59, 1016. https://doi.org/10.1021/ac00134a019
  23. Lei, W.; Dasgupta, P. K. Anal. Chim. Acta 1989, 226, 165. https://doi.org/10.1016/S0003-2670(00)80915-0
  24. Ensafi, A. A. Anal. Lett. 1992, 25, 1525. https://doi.org/10.1080/00032719208017134
  25. Jeffery, G. H.; Bassett, J.; Mendham, J.; Denney, R. C. Vogel'sTextbook of Quantitative Chemical Analysis, 5nd ed.; John Wiley& Sons: New York, 1989; p 398.
  26. Hseu, T. M.; Rechnitz, G. A. Anal. Chem. 1968, 40, 1055.
  27. Cheng, K. L.; Uendo, K.; Imamura, T. Handbook of OrganicAnalytical Reagents; CRC Press Inc.: 1982; p 462.
  28. Miller, J. N.; Miller, J. C. Statistics and Chemometrics forAnalytical Chemistry; Pearson Education Limited: England, 2000.

Cited by

  1. A comparison between determination of trace amounts of sulfide in the presence and absence of micelle particles in natural waters (Qazvin, Iran): a kinetic spectrophotometric approach vol.187, pp.5, 2015, https://doi.org/10.1007/s10661-015-4478-6
  2. A durable solid contact sulfide sensor based on a ceric acrylohydrazide ionophore attached to polyacrylamide with a nanomolar detection limit vol.7, pp.3, 2015, https://doi.org/10.1039/C4AY02093F
  3. Simultaneous Kinetic Spectrophotometric Determination of Sulfite and Sulfide Using Partial Least Squares (PLS) Regression vol.27, pp.6, 2003, https://doi.org/10.5012/bkcs.2006.27.6.863