Synthesis of Novel Quinolinecarboxamide Derivatives with Estrogenic Activity

${ }^{*}$ Dept. of Bioscience \& Biotechnologv/Institute of Bioscience, Sejong University, Seoul 1+3-747, Korea
*Chehigen Inc., 305-B. Chungmugvan, Sejong (/nversity, Seoul $H+3-7+7$, Korea
\$/DR Tech., Inc., Research center B-I, Kwacheon Officetel $5^{\text {th }}$ Fl., Byohang-dong, Kwacheon-shi, Kyonggi-do +27-() 40 , Korea Received Januay 29, 2003

Kcy Words : Estrogen, Quinolinecarboxamide derivatives, Virtual screening, Functional group, Fstrogen receptor (FR)

Even though estrogens have a well-established role in the growth of hormone-dependant tumors by the estrogen receptor (ER)-dependant mitogenic effeet in cells containing $E R,{ }^{1}$ a member of the nuelear receptor superfamily, ${ }^{2}$ they exert numbers of lavorable activities in women. From a therapentical point of view, estrogen and its derivatives are well known not only as oral contraceptives, but also as a major component in homone replacement therapy (IIRT) required for bone loss prevention and for the control of cardiovascular diseases in postmenopausal women. ${ }^{3}$

The mosi widely used estrogens are 17β-estradiol ${ }^{4}$ and ethynylestradiol, ${ }^{5}$ a synthetic steroidal compound. These estrogen agonists have been used for postmenopausal
women required for IIRT. I[owever, it has been known that long-term usage of estrogen causes high incidence of breast cancer, ${ }^{6}$ which leads to development of antiestrogen such as tamoxifen, the lirst selective ER modulator (SERM).? Recently, raloxifene as a sccond SERM was developed to alleviate menopausal symptoms without risk of breast cancer. ${ }^{8}$ Alterwards. the more eflective SERMs are being developed and tested that act as antiestrogens on breast and endometrium while having estrogenic effeets on bones, the lipid profile and the central nervous system. "-11

In this point of view to develop antiestrogens, we used virtual sereening system based on the structure of ER. From the initial screening, we identified compound 4 that has nonsteroidal quinoline structure. More compounds were synthesized from the leader compound 4 and tested for estrogenic activity using $\mathrm{ER} \alpha$ and $\mathrm{ER} \beta$.

Results and Discussion

Synthesis of quinolinecarboxamide derivatives. Application of such multi-component condensation approach based Doebner reation ${ }^{12}$ for the synthesis of a clinically useful

Scheme 1

[^0]phamacophore, 2-(t-hỵdroxyphenyl)quinoline-t-carboxylic acid 1 is shown in scheme l.

The quinolinecarboxy lic acid 1 was obtamed using the condensation of annline and pyruvic acid with +-hydroxy benzaldehyde in EtOH under reflux. ${ }^{13}$ and coupled with + -amino-l-benzy lpiperidine using $\mathrm{EDCl} / \mathrm{DMAP}$ as reagent. ${ }^{14}$ to give quinolinecarboxamide 3 in 76% yield. Following to the same method. propoxy qumolenecarboxamude 4 was obtamed from proposy quinolinecarboxylic acid 2 in 70% y ield

The synthesis of target compound $6-8$ was prepared by O alkylation of the bromo-substitued function groups with quinolinecarboxamide 3 m the presence of anhydrous potassium carbonate.

1-Boc-ammopropoxy qumolinecarboxamide 5 was carried out the O-alky lation of quinolinecarboxamide $\mathbf{3}$ with -Boc-3-bromopropoxyamine using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in refluxing acetonitrile. ${ }^{15}$ followed by the treatment with 2 M HCl etherate ${ }^{16}$ generating aminopropoxy quinolinecarboxamide salt 6 in 93 $\%$ overall yield. It should be noted that the solubility of quinolinecarboxamude 3 was transformated from organic solubility to the enhanced aqueous solubility for the pharmacological assay.

Figure 1. Listrogenic elleet of sunthetic compounds. NIII3T3 cells were cotransfected with 3XFRF-tk- β-gal reporter gente and F.R α (\wedge) or $\operatorname{FR} \beta$ (B) expression vector in pSG5, and treated with $1 \mu \mathrm{M}$ E 2 or synthetic compounds using Lipotectamine PLUS reagent. Estrogenic efloct was delemnined by transeriptional activitics coupled with FR, shown by β-gal activity, and expressed as a relative activity compared with that of the 1)MSO control (average of 3 independent assays \pm SD).

Aiming to improve the binding activity of 4 . further work was in progress involving structural modifications of quinolinecarboxamide. We expected that the activity of compound 7. 8 would be also affected by the size changes in the quinolinecarboxamide basic side chan.
ln order to introduce isobutyl or propylnyl group in 4 '-OH position, these same conditions applied to 5 gave 77% and 36%. respectively: of the corresponding quinolinecarboxanude 7.8 to compare their size effect.

Estrogen agonist test. Compound 4 was identified from virtual screening for estrogen antagonist. More derivatives were synthesized using compound 4 as a leader. To determine whether our synthesized compounds act as estrogen agomst or antagonst, we performed transcription assay ${ }^{1-}$ in which NIH3T3 cells were transiently transfected with 3 XERE-tk- β-gal reporter plasmid. and ER α or ER β expression vector. As a positive control, 17β-estradiol (E_{2}) was used in DMSO. As expected, $1 \mu \mathrm{M} \mathrm{E}_{2}$ activated the transcriptional activities of both ER α and ER β. Compounds 1. 4. 5. and 8 were active, whereas 2. 3, 6, and 7 were

Figure 2. F.C C_{00} of synthetic compound 1 and 8 . Transtections were conducted as described by increasing concentrations of 17β cstradiol (L 2) (-) compound 1 ($\mathbf{\square}$) or compound 8 ($\mathbf{4}$) Irom 0.01 to 100600 p . $\mathrm{EC} \mathrm{c}_{0}$ value. the concentration activating ER by 50%, was deternined tor $F . R \alpha(\Lambda)$ and $F . R \beta(B)$.
inactive for both $\mathrm{ER} \alpha$ and $\mathrm{ER} \beta$ (Figure 1)
Although compound 4 was virtually screened as an antagonist. it acted as an agonist in our assay system. Of active compounds. 1 and 8 were selected for further dosedependent assays to determine EC_{50} value, the concentration activating ER by 50% (Figure 2). When compared to EC_{50} of $\mathrm{E} 2(0.6 p \mathrm{M}$ for $\mathrm{ER} a$ and $2.5 p \mathrm{M}$ for $\mathrm{ER} \beta$), those of compound 1 were 500 and $1.000 p \mathrm{M}$ for $\mathrm{ER} \alpha$ and $\mathrm{ER} \beta$. respectively. $\mathrm{EC}_{5(1}$ values of compound 8 were 40 and 100 $p \mathrm{M}$ for $\mathrm{ER} \alpha$ and $\mathrm{ER} \beta$. respectively. Therefore, compound 1 is 833.3 and 12.5 times less active than E2 and compound $\mathbf{8}$ for ER α. respectively. For ER β. compound 1 is 400 and 10 times less active than E2 and compound 8 . respectively: These data indicate that compound 1 and 8 are about two times more active to ER α than ER β likewise E2. Furthermore, compound $\mathbf{8}$ is about 10 times more active than compound 1 to both ERs. As mentioned, compound \downarrow. a leader for compound 1 and 8 , was designed as an antiestrogen. However, no antagonist effect was found in our assays (data not shown). suggesting that more works should be followed to design antiestrogen.

Throughout our works, we found that non-steroidal quinoline stmicture could be estrogen agonist. These results were unexpected as virtual screening was conducted to identify estrogen antagonists. Although the reason for the unexpected results is not clarified yet. our screened compound 4 may not possess rigid. bulky. and extended structure in vivo that is required for preventing coactivator from associating with ER for the enhanced transcriptional activity: Therefore. our data may be important and better be considered for virtual screening of real antagonists. Our data also indicate that instead of antagonist. compound 8 can be used to design more estrogenic compounds as a second leader.

Experimental Section

All commercially available reagents and solvents were used without further purification. All reactions were conducted under an Ar atmosphere. except for those reactions utilizing water as a solvent. They were monitored by TLC (Merck Kieselgel 60, F254). All the products prepared were purified by flash column chromatography on silica gel 60 (Merck. 230-400 mesh). Melting points were determined with a Büchi 510 hot stage apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{1 .} \mathrm{C}$ NMR spectra were recorded on a JEOL JLY/ EX-400 using CDCl_{3} as the solvent. All chemical shifts (δ) are quoted in ppm downfield from TMS and coupling constants (J) are given in Hz . Mass spectra were measured on a Agilent $1100 \mathrm{LC} / \mathrm{MSD}$ (API-ES) mass spectrometer.
2-(4-Hydroxyphenyl)-4-quinolinecarboxylic acid (1). A solution of aniline ($9.30 \mathrm{~g}, 0.10 \mathrm{~mol}$) in EtOH (30 mL) was added to a solution of py ruvic acid (13.19 g .0 .15 mol) and 4 -hydroxybenzaldehyde (12.20 g .0 .10 mol) in EtOH (80 mL). and the mixture was heated under reflux for 3 h and allowed to cool overnight. The resulting solid was collected by filtration washed sequentially with cold EtOH and benzene. and dried to give $1(13.51 \mathrm{~g} .51 \%)$ as a light yellow powder.
$\mathrm{mp}=>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 9.76$ (brs. 1 H). $8.71(\mathrm{~d}, 1 \mathrm{H}, J=8.30) .8 .37(\mathrm{~s} .1 \mathrm{H}) .8 .13(\mathrm{~d} .2 \mathrm{H}, J=$ $8.79) .8 .09(\mathrm{~d}, 1 \mathrm{H}, J=8.30), 7.76(\mathrm{dd}, \mathrm{lH} . J=7.81,7.32)$, 7.65 (dd, 1H. $J=8.30,6.84) \cdot 6.95(\mathrm{~d}, 2 \mathrm{H}, J=8.79) .{ }^{1.3} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 167.56, ~ 159.24$. 155.65 . 148.46. 136.61. 129.42. 129.31, 128.83, 128.42. 126.55. 125.29. 123.08. 118.72. 115.58. 115.53. MS: $m z(\%)=265$ (27. M), $20+(100)$.

2-(4-Propoxyphenyl)-4-quinolinecarboxylic acid (2). Yield: $3.90 \mathrm{~g}(65 \%)$ as a light yellow powder. $\mathrm{mp}=19+-198$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz DMSO- d_{6}): $\delta 8.80$ (d. IH. $J=$ 8.30). $8.41(\mathrm{~s}, 1 \mathrm{H}) .8 .18(\mathrm{~d}, 2 \mathrm{H}, J=8.79) .8 .1+(\mathrm{d}, 1 \mathrm{H} . J=$ $8.30) .7 .7+(\mathrm{t}, 1 \mathrm{H} . J=7.32) .7 .57(\mathrm{t}, 1 \mathrm{H} . J=7.32), 7.0+(\mathrm{d}, 2 \mathrm{H}$, $J=8.79), 4.01(\mathrm{dd}, 2 \mathrm{H}, J=6.84 .0 .49), 1.85(\mathrm{~m}, 2 \mathrm{H}) .1 .07(\mathrm{t}$. $3 \mathrm{H} . J=7.32$) ${ }^{1.3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 167.89$. 160.17. 155.63. 148.62, 136.29, 130.50. 129.34. 129.19. $128.24,126.57,125.30,123.36,119.25,114.32 .69 .07 .22 .03$. $10.08 . \mathrm{MS}: m z(\%)=307\left(18 . \mathrm{M}^{\prime}\right) .262(68), 204(100), 128(35)$.
N4-(1-Benzyl-t-piperidyl)-2-(+-hydroxyphenyl)-4-quinolinecarboxamide (3). To a solution of EDCI (0.43 g .2 .26 mmol) in dry DMF (5 mL) was added quinolinecarboxylic acid ($0.20 \mathrm{~g}, 0.75 \mathrm{mmol}$) in dry DMF (5 mL). The solution was stirred at room temperature for 30 min . To this mixture were added 4-amino-l-benzylpiperidine (0.77 mL .3 .77 mmol) in dry DMF (2 mL) and DMAP (cat.). stirred at room temperature for 16 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ (100 mL), extracted with EtOAc ($20 \mathrm{~mL} \times 2$). The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{1}\right)$. and evaporated. The residue was purified by column chronatography ($10 \% \mathrm{MeOH}: \mathrm{EtOAc}$) to give 3 ($0.25 \mathrm{~g}, 76 \%$) as a white powder. $\mathrm{mp}=222-226{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$. CDCl_{3}): $\delta 8.16(\mathrm{~d} .1 \mathrm{H}, J=8.79), 8.13(\mathrm{~d}, 1 \mathrm{H} . J=8.79) .8 .08$ (d. $2 \mathrm{H}, J=8.79$). $7.83(\mathrm{~s}, 1 \mathrm{H}) .7 .74(\mathrm{t}, 1 \mathrm{H}, J=7.32) .7 .54(\mathrm{t}$. 1H. $J=7.32$), $7.27(\mathrm{~m} .5 \mathrm{H}), 6.98(\mathrm{~d} .2 \mathrm{H}, J=8.79), 5.93(\mathrm{~d}$. $1 \mathrm{H} . j=7.6+\mathrm{NH}) .4 .13(\mathrm{~m} .1 \mathrm{H}) .3 .55(\mathrm{~s} .1 \mathrm{H}) .2 .91(\mathrm{~m} .2 \mathrm{H})$. 2.25 (m. 2H). 2.15 (m. 2H). 1.65 (m. 2H). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.08,16+.83,157.3+$. 150.57, $1+4.70$. 140.03. 134.2t. 130.31, 129.78. 129.13. 128.30. 128.15. 126.94. 126.76. 125.53. 123.41. 115.86. 113.99. 113.87. $62.96,52.26,47.53 .32 .20 .22 .52 . \mathrm{MS}: m z(\%)=437(28$. M) , 420 (31), 218 (52), 204 (100). $17+(+4$). 128 (40).

N+(1-Benzyl-4-piperidyl)-2-(4-piopoxyphenyl)-4-quinolinecarboxamide (4). Yield: $0.26 \mathrm{~g}(70 \%)$ as a white powder. $\mathrm{mp}=162-164^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta 8.06$ (d. 1H. $J=8.30$). 7.99 (d. $2 \mathrm{H} . J=8.79$). 7.93 (d. $1 \mathrm{H} . J=8.30$). $7.65(\mathrm{t} .1 \mathrm{H}, J=7.32) .7 .61(\mathrm{~s} .1 \mathrm{H}) .7 .39(\mathrm{t} .1 \mathrm{H}, J=7.32)$. $7.33(\mathrm{~m} .+\mathrm{H}) .7 .28(\mathrm{~m} . \mathrm{IH}) .6 .97(\mathrm{~d} .2 \mathrm{H} . J=8.79) .6 .4+(\mathrm{d}$. $1 \mathrm{H} . J=7.81 . \mathrm{NH}) .4 .07(\mathrm{~m} .1 \mathrm{H}) .3 .97(\mathrm{t} .2 \mathrm{H} . J=6.84) .3 .52$ (s. 2H). $2.89(\mathrm{~m} .2 \mathrm{H}) .2 .18(\mathrm{~m} .2 \mathrm{H}) .2 .10(\mathrm{~m} .2 \mathrm{H}) .1 .85(\mathrm{~m}$. $2 \mathrm{H}) .1 .66(\mathrm{~m}, 2 \mathrm{H}) .1 .07$ (t. 3H. $J=7.32$). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.04$. 160.63, 156.14. 148.37. 142.76. 138.33, 130.84. 129.91, 129.57, 129.02. 128.75, 128.22. 127.04 126.69. 124.73. 122.81, 115.78, 11+.69. 69.57.62.96, 52.26 $+7.53,32.20 .22 .52,10.50 . \mathrm{MS}: m z(\%)=479\left(39 . \mathrm{M}^{\prime}\right),+36$ (21). $420(43) .218(63), 20+(100), 17+(40), 128$ (38).

N4-(1-Benzyl-4-piperidyl)-2-[4-(3-aminopiopoxy)phenyl]4 -quinolinecarboxamide hydmehloride (6). To a solution
of 1 M NaOH ($20.10 \mathrm{~mL}, 20.10 \mathrm{mmol}$) in tert-butyl alcohol (6 mL) was added 3-bromopropy lamine hỵdrobromide (2.00 g. 9.14 mmol) and di-tert-butylcarbonate (2.19 g .10 .05 munol), the reaction mixture was stirred for 12 h at room temperature. The reaction mixture was washed with 0.1 V HCl and $5 \% \mathrm{NaHCO}_{3}$. Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacto to give A -Boc-3bromopropy lamine ($1.40 \mathrm{~g} .64 \%$) as a oil.
A solution of x -Boc-3-bromopropylamine $(0.14 \mathrm{~g}, 0.32$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added to a mixture of $3(0.14$ g. 0.32 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.14 \mathrm{~g} .0 .96 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(20 \mathrm{~mL})$. and the misture was heated under reflux for 12 h . The inorganic material was filtered off and the solvent was evaporated in vacuo. The crude was extracted with EtOAc $\left(20 \mathrm{~mL} \times 2\right.$). washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and Brine. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give $5(0.17 \mathrm{~g}, 89 \%)$ as a white powder.

A solution of $5(0.1+\mathrm{g} .0 .2+\mathrm{mmol})$ in dry THF (10 mL) was cooled to $-20^{\circ} \mathrm{C}$ and stirred for 30 min . Etherate HCl (1 l) was added dropwise to the reaction mixture under $\mathrm{pH}=1$. The precipitate was collected by suction filtration, washed with ether ($5 \mathrm{~mL} \times 2$) and dried in desiccator to give $6(0.12 \mathrm{~g} .96 \%)$ as a light yellow solid. $\mathrm{mp}=174-179^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- σ_{6}): $\delta 8.4+(\mathrm{d} .1 \mathrm{H}, ~ j=8.30) .8 .+1$ $(\mathrm{s} .1 \mathrm{H}) .8 .36(\mathrm{~d}, 1 \mathrm{H} . J=8.30) .8 .26(\mathrm{~d} .2 \mathrm{H} . J=8.79), 8.15(\mathrm{t}$. $1 \mathrm{H} . J=7.81) .7 .93(\mathrm{t} .1 \mathrm{H} . J=7.81) .7 .60(\mathrm{~m} .2 \mathrm{H}) .7 .51(\mathrm{~m}$. $3 \mathrm{H}) .7 .32(\mathrm{~d} .2 \mathrm{H}, J=8.79), 4.3+(\mathrm{ml} .1 \mathrm{H}), 4.30(\mathrm{~m}, 2 \mathrm{H}) .3 .61$ (m. 2 H). $3.30(\mathrm{~s} .2 \mathrm{H}) .3 .28(\mathrm{~m} .2 \mathrm{H}) .3 .21(\mathrm{~mm} .2 \mathrm{H}) .2 .40(\mathrm{~m}$. $2 \mathrm{H}) .2 .24$ (m. 2 H) , 2.07 (m. 2 H). ${ }^{1.3} \mathrm{C}$ NMR (100 MHz . DMSO- d_{6}): δ 166.39. $16+.65 .156 .45 . \quad 151.42$. 140.64. 136.05. 132.97. 132.76. 132.54. 132.41. 131.30. 131.23., 131.03. 130.50. 127.67. 125.29. 124.60. 122.15. 121.33. 120.70. 117.02, 66.93. 61.59, 52.70, +6.81. 38.39, 29.82. $28.24 .24 .22 . \mathrm{MS}: m z(\%)=531(69 . M) .420(5+) .218$ $(+1) .20+(100) .17+(36) .128(21)$.

N4-(1-Benzyl-4-piperidyl)-2-(4-isobutoxyphenyl)-4-quinolinecarboxamide (7). A solution of 1-bromo-2-methylpropane (0.07 g .0 .50 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added to a mixture of $3(0.20 \mathrm{~g} .0 .46 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.19 \mathrm{~g}$. $1.37 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, and the mixture was heated under reflux for 12 h . The inorganic material was filtered off and the solvent was exaporated in wacho. The cnude was extracted with $\mathrm{EtOAc}\left(20 \mathrm{~mL} \times 2\right.$), washed with $\mathrm{H}_{2} \mathrm{O}(100$ mL) and Brine. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacto to give $7(0.17 \mathrm{~g} .77 \%)$ as a white powder $\mathrm{mp}=112-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~d}$. $1 \mathrm{H}, J=8.30$). 7.99 (d. $2 \mathrm{H}, J=8.79$). 7.93 (d. $1 \mathrm{H}, J=8.30$), 7.65 (t. 1H. $J=7.32$). 7.62 (s. 1H). 7.39 (t. 1H. $J=7.32$). $7.33(\mathrm{~m} .4 \mathrm{H}) .7 .28(\mathrm{~m} .1 \mathrm{H}) .6 .97(\mathrm{~d} .2 \mathrm{H} . J=8.79) .6 .48(\mathrm{~d}$, $1 \mathrm{H}, J=8.30 . \mathrm{NH}),+.09(\mathrm{~m} .1 \mathrm{H}) .3 .77(\mathrm{~d} .2 \mathrm{H} . J=6.35) .3 .52$ $(\mathrm{s} .3 \mathrm{H}) .2 .89(\mathrm{~m} .2 \mathrm{H}) .2 .23(\mathrm{~m} .3 \mathrm{H}) .2 .10(\mathrm{~m} .2 \mathrm{H}) .1 .68(\mathrm{~m}$. 2H). 1.06 (d. $6 \mathrm{H} . J=6.35$). ${ }^{1.3} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$): δ 167.05. 160.76. 156.13, 148.35. 142.75. 138.31, 130.79. 129.89. 129.55. 129.02, 128.72. 128.20. 127.03, 126.66. 124.73. 122.80, 115.78, 114.70, 62.94, 60.34. 52.25, 47.52, 32.16. 28.24.19.24.14.13. MS: $m z(\%)=493\left(47 . \mathrm{M}^{\prime}\right), 420$
(50). $218(38) .204(100), 17+(40), 128(29)$

N+-(1-Benzyl-d-piperidyl)-2-[t-(2-propyinyloxy)phenyl]-t-quinolinecarboxamide (8). Yield: 0.80 g (36%) as a white powder. $\mathrm{mp}=104-106^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$. $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.06(\mathrm{~d} .1 \mathrm{H} . J=8.79) .8 .02(\mathrm{~d} .2 \mathrm{H}, J=8.30)$. $7.86(\mathrm{~s} .1 \mathrm{H}) .7 .68(\mathrm{t} .1 \mathrm{H} . J=7.32), 7.50(\mathrm{t} .1 \mathrm{H}, J=7.32)$, $7.18(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d} .2 \mathrm{H} . J=8.79), 4.73(\mathrm{~s}$. $2 \mathrm{H}) .3 .98(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~m} .2 \mathrm{H})$, 2.03 (m. 2H). 1.65 (m, 4H). ${ }^{1.3} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CD}_{3} \mathrm{OD}$): $\delta 169.53,160.77$. 158.07. 149.63, 143.05, 133.25. 131.47. 130.46. 130.29. 130.22, 130.10, 129.28. 128.15. 128.07. 127.62. 126.02. 124.58, 117.87, 116.33. 79.55. 77.08, 60.51, $56.73,+6.98,+4.23,+40+1,29 .+7,20.85, \mathrm{MS}: m z(\%)=475$ ($16, \mathrm{M}$) . 420 (63). $218(+4), 20+(100), 174(48), 128(36)$.

Acknowledgement. This work was supported by a grant from the International Mobile Telecommuncation 2000 R\&D Project (01-PJll-PG9-01BT07-0002). Ministry of Information \& Communication. Republic of Korea.

References

1. Dickinson. R. B.: McManaway. M. E.: Lippman. M. E. Science 1986, 232. 1540
2. Tsai, M. J.: OMalles: B. W. Ammil. Rev: Biochem. 1994. 63. 451.
3. Sun, J.: Meyers. M. J.: Fink, B. F.: Rajendran, R.: Kataenellenbogen. J. A.: Kalzenellenbogen. B. S. Endocrinology 1999. 1+0. 800.
4. Wiese. T. E.: Polin. L. A.: Palomino. E.: Brooks. S. C. J. Med (hem. 1997. 10. 3659.
5. I.i, J. J.: Ilou. X.: Bentel, I.: Yazlovitskava. F. M.: I.i. S. A. Carmogenesis 1998.19.471.
6. I.ippman, M. Г.. Bolan, G. Fatume 1975, 256. 592.
7. Jordan. V. C. Fur. J ('ancer 1976. /2. 419
8. Jordan. V. C.: Morrow. M. Bre .Jed. J. 1999. 319. 331.
9. Munster. P. N.: Buzdar. A.: Dhingra. K.: Enas. N.: Ni. L.: Major. M.: Melemed, A.: Scidman. A.: Booser, D.: Theriault, R.: Norton, I... Iludis. C.J. Chin. Oncol. 2001. 19. 2002.
10. I.abric, F.: J.abric, C.: Belanger. A.: Simard. J.: Gauthier. S.: I uuThe. V.: Merand. Y:: Giguere. V.: Candas. B.: Luo. S.: Martel. C.: Singh. S. M.: Fournier. M.: Coquet. A.: Richard. V.: Charbonneau. R.: Charpenet. Gi: Tremblay. A.: Tremblay. Gi.: Cusan. L.: Veilleux. R. J. StervidBiochem. A/ol. Biol. 1999. 69. 51.
11. Ke. II. 7.: Qi, H.: Chidsev-Frink, K. I..: Crantord, D. T.: Thompson. D. D. J. Bone Miber: Res. 2001. 16. 765.
12. Doebner. O. Bere 1883. 16. 2357.
13. Atwell. G. J.: Baguley. B. C.: Denny. W. A. ./. Wed. ('hem. 1989. 32.396
14. (a) Dhaon. M. K.: Olsen. R. K.: Ramasams: K. J. Org. Chem. 1982, 47. 1962. (b) Desai. M. C.: Stcphens Stramiello. I.. M. Fetrahectron Letl. 1993, 3f. 7685. (c) Ahaji. K.: Kurivama. N.: Kiso. Y. Tetrahedroh T.ett 1994. 35. 3315. (d) Norman. B. H.: Hemscheidt. T.: Schultz. R. M.: Andis. S. L. J. Org. Chem. 1998. 63. 5288.
15. Saari, W. S.: Schwering, I. F.., Isle, P. A.: Smith. S. I.; Fingellardt.「. I..J. A/ed. Chem. 1990, 33.97
16. (a) Fletcher, S. R.: Burkamp. F.: Blurtom, P.: Cheng. S. K. F.: Clarkson. R.: O'Connor. D.: Spinks. D.: Tudge. M.: van Niel. M. B.: Patel. S.: Chapman. K.: Marwood. R.: Shepheard. S.: Bentley. G.: Cook. G. P.: Bristoww. L. J.: Castro. J. L.: Hutson. P. H.: Mael cod. A. M. J. Med. (hem. 2002. 45, 492. (b) Salvatorc. R. N.: Yoon, C. If.: Jung. K. W. Tetrohedron 2001, 57. 7785
17. Um, S. J.: Kim, F. I.: Jwang, F. S.: Kim, S. I.: Namkonng. S. F.; Park. J. S. Iht. J. Cancer 2000. \$5. 416.

[^0]: ${ }^{*}$ Co-corresponding authors. Hong-Sig Sin (Tel: +82-2-465-1691: Fax: +82-2-465-1690) E-mail: shsdoáhanmail.net). Si-Ho Park (Tel: 182-2-465-1691: Fax: $182-2-465-1690$: t-mail: sho-parkichanmail.net)

