DOI QR코드

DOI QR Code

Description of Temperature Dependence of Critical Micelle Concentration

  • Kim, Hong-Un (Department of Chemical Engineering, Chung-Ang University) ;
  • Lim, Kyung-Hee (Department of Chemical Engineering, Chung-Ang University)
  • Published : 2003.10.20

Abstract

A new equation has been derived on the basis of ${\delta}G^o$ = -RT lnK, linear behavior of the enthalpy of micellization with temperature, and the Gibbs-Helmholtz relation. It describes correctly the dependence of critical micelle concentration $(X_{CMC})$ on temperature and has yielded excellent fitting results for various surfactant systems. The new equation results in the linear behavior of the entropy of micellization with temperature and accounts for the compensation phenomena observed for the micellization in aqueous solutions, along with the linear dependence of the enthalpy of micellization on temperature. These results imply that the new equation of $X_{CMC}(T)$ accounts for the temperature dependence of CMC correctly.

Keywords

References

  1. Miller, D. D.; Magid, L. J.; Evans, D. F. J. Phys. Chem. 1990, 94,5921. https://doi.org/10.1021/j100378a058
  2. Becher, P. In Nonionic Surfactants; Schick, M. J., Ed.; MarcelDekker: New York, 1967; Chapter 5.
  3. Flockhart, B. D. J. Colloid Interface Sci. 1961, 16, 484. https://doi.org/10.1016/0095-8522(61)90026-5
  4. Stead, J. A.; Taylor, H. J. J. Colloid Interface Sci. 1969, 30, 482. https://doi.org/10.1016/0021-9797(69)90417-2
  5. Blandamer, M. J.; Cullis, P. M.; Soldi, L. G.; Engberts, J. B. F. N.;Kacperrska, A.; Van Os, N. M.; Subha, M. C. S. Adv. ColloidInterface Sci. 1995, 58, 171. https://doi.org/10.1016/0001-8686(95)00252-L
  6. Shinoda, K.; Kobayashi, M.; Yamaguchi, N. J. Phys. Chem. 1987, 91, 5292. https://doi.org/10.1021/j100304a031
  7. Okawauchi, M.; Gagio, M.; Ikawa, Y.; Sugihara, G.; Murata, Y.;Tanaka, M. Bull. Chem. Soc. Jpn. 1987, 60, 2718.
  8. Chen, L.-J.; Lin, S.-Y.; Huang, C.-C.; Chen, E.-M. Colloid Surf. A1998, 135, 175. https://doi.org/10.1016/S0927-7757(97)00238-0
  9. Zielinski, R. J. Colloid Interface Sci. 2001, 235, 201. https://doi.org/10.1006/jcis.2000.7364
  10. Kang, K.-H.; Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2001, 189,113. https://doi.org/10.1016/S0927-7757(01)00577-5
  11. Kresheck, G. C.; Hargraves, W. A. J. Colloid Interface Sci. 1974,48, 481. https://doi.org/10.1016/0021-9797(74)90193-3
  12. Tomasic, V.; Chittofrati, A.; Kallay, N. Colloid Surf. A 1995, 104,95. https://doi.org/10.1016/0927-7757(95)03260-K
  13. Kiraly, A.; Dekany, I. J. Colloid Interface Sci. 2002, 242, 214. https://doi.org/10.1006/jcis.2001.7777
  14. Paula, S.; Sus, W.; Tuchtenhagen, J.; Blume, A. J. Phys. Chem.1995, 99, 11742. https://doi.org/10.1021/j100030a019
  15. Muller, N. Langmuir 1993, 9, 96. https://doi.org/10.1021/la00025a022
  16. Singh, H. N.; Saleem, S. M.; Singh, R. P. J. Phys. Chem. 1980, 84,2191. https://doi.org/10.1021/j100454a016
  17. Gilli, P.; Ferretti, V.; Gilli, G.; Borea, P. A. J. Phys. Chem. 1993,98, 1515.
  18. Madan, B.; Lee, B. Biophys. Chem. 1994, 51, 279. https://doi.org/10.1016/0301-4622(94)00049-2
  19. Lumry, R.; Rajender, S. Biopolymers 1970, 9, 1125. https://doi.org/10.1002/bip.1970.360091002
  20. Jolicoeur, C.; Philip, R. P. Can. J. Chem. 1974, 52, 1834. https://doi.org/10.1139/v74-262
  21. Krishnan, V. C.; Friedman, L. H. J. Solution Chem. 1974, 2, 37. https://doi.org/10.1007/BF00645870
  22. Sugihara, G.; Hisatomi, M. J. Colloid Interface Sci. 1999, 219,31. https://doi.org/10.1006/jcis.1999.6378
  23. Kim, H.-U.; Lim, K.-H. manuscript in preparation, 2003.
  24. Tanford, C. Hydrophobic Effects: Formation of Micelles andBiological Membranes; John Wiley and Sons. Inc: New York,1980.
  25. Phillips, J. N. Trans. Faraday Soc. 1955, 151, 561.
  26. Kim, H. U. Ph. D. Dissertation; Chung-Ang University: Seoul,Korea, 2003.
  27. Kim, H.-U.; Lim, K.-H. submitted to Colloid Surf. A, 2003.
  28. Moroi, Y. Micelles: Theoretical and Applied Aspects; Plenum:New York, 1992.
  29. Sugihara, G.; Arakawa, Y.; Tanaka, K.; Lee, S.; Moroi, Y. J.Colloid Interface Sci. 1995, 170, 399. https://doi.org/10.1006/jcis.1995.1118
  30. Muller, N. In Micellization, Solubilization, and Microemulsions;Mittal, K. L., Ed.; Plenum: New York, 1977; Vol. 1, pp 229-239.
  31. Holtzer, A.; Holtzer, M. F. J. Phys. Chem. 1974, 78, 1442.
  32. Mosquera, V.; del Rip, J. M.; Attwood, D.; Garcia, M.; Jones, M.N.; Prieto, G.; Suarez, M. J.; Sarmiento, F. J. Colloid Interface Sci.1998, 206, 66. https://doi.org/10.1006/jcis.1998.5708
  33. Yoshida, N.; Matsuoka, K.; Moroi, Y. J. Colloid Interface Sci.1997, 187, 388. https://doi.org/10.1006/jcis.1996.4691
  34. La Mesa, C. J. Phys. Chem. 1990, 94, 323. https://doi.org/10.1021/j100364a054
  35. Castedo, A.; Del Castillo, J. L.; Suarez-Filloy, M. J.; Rodriguez, J.R. J. Colloid Interface Sci. 1997, 196, 148. https://doi.org/10.1006/jcis.1997.5201
  36. Lee, D. J. Colloid Polym. Sci. 1995, 273, 539. https://doi.org/10.1007/BF00658683
  37. Moroi, Y.; Nishikino, N.; Uehara, H.; Matuura, R. J. ColloidInterface Sci. 1975, 50, 254. https://doi.org/10.1016/0021-9797(75)90228-3
  38. Ruso, J. M.; Taboada, P.; Mosquera, V.; Sarmiento, F. J. ColloidInterface Sci. 1999, 214, 292. https://doi.org/10.1006/jcis.1999.6198
  39. Taboada, P.; Attwood, D.; Garcia, M.; Jones, M. N.; Ruso, J. M.;Mosquera, V.; Sarmiento, F. J. Colloid Interface Sci. 2000, 221,242. https://doi.org/10.1006/jcis.1999.6586
  40. Attwood, D.; Boitard, E.; Dubes, J.-P.; Tachoire, H. J. ColloidInterface Sci. 2000, 227, 356. https://doi.org/10.1006/jcis.2000.6908
  41. Kim, H.-U.; Lim, K.-H., manuscript in preparation, 2003.

Cited by

  1. Fluctuations Near the Critical Micelle Concentration. I. Premicellar Aggregation, Relaxation Rate, and Isentropic Compressibility vol.117, pp.14, 2013, https://doi.org/10.1021/jp4011185
  2. High polymer/surfactant ratio in the seeded semicontinuous heterogeneous polymerization of vinyl acetate vol.53, pp.9, 2013, https://doi.org/10.1002/pen.23453
  3. Micellisation thermodynamics of sodium lauroylsarcosinate in water–alcohol binary mixtures vol.52, pp.2, 2014, https://doi.org/10.1080/00319104.2013.832249
  4. Thermodynamics of Micelle Formation of Gemini Surfactants Hexylene-1,6-bis(dimethyloctylammonium bromide) and Dodecylene-1,12-bis(dimethyloctylammonium bromide) by Electric Conductance Mesurements vol.59, pp.12, 2014, https://doi.org/10.1021/je500804j
  5. Aggregation Behavior and Micellar Properties of Sodium Salts of Naphthenic Acid Mixtures vol.18, pp.1, 2015, https://doi.org/10.1007/s11743-014-1596-z
  6. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement vol.18, pp.9, 2016, https://doi.org/10.1007/s11051-016-3583-y
  7. A Study on the Optimization of Physical and Chemical Parameters for the Precipitate of Sodium Alkylsulfate with Cetylpyridinium Chloride vol.25, pp.2, 2003, https://doi.org/10.5012/bkcs.2004.25.2.280
  8. Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Gemini Surfactant and Sodium Lauryl Ether Sulfate vol.26, pp.1, 2003, https://doi.org/10.5012/bkcs.2005.26.1.107
  9. Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model vol.30, pp.9, 2009, https://doi.org/10.5012/bkcs.2009.30.9.2001
  10. Tuning of physico-chemical characteristics of charged micelles by controlling head group interactions via hydrophobically and sterically modified counter ions vol.4, pp.61, 2014, https://doi.org/10.1039/c4ra03937h
  11. Thermodynamic and FTIR studies of the interactions between sodium dodecyl sulphate and strong acids - atypical conductivity pattern vol.52, pp.3, 2003, https://doi.org/10.1080/00319104.2013.842473
  12. Micellisation and thermodynamic properties of sodium dodecyl sulphate in water-1,2-alkanediol co-solvents: chain length effect vol.53, pp.3, 2003, https://doi.org/10.1080/00319104.2014.978501
  13. Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self‐Assembly with SDS Micellization vol.127, pp.47, 2003, https://doi.org/10.1002/ange.201506545
  14. Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self‐Assembly with SDS Micellization vol.54, pp.47, 2003, https://doi.org/10.1002/anie.201506545
  15. The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties vol.26, pp.12, 2003, https://doi.org/10.3390/molecules26123773