Facile Synthesis of 1-Aryl-1,2-ethanediols via the Reduction of \boldsymbol{N}-Substituted Isatins

Yun Mi Chung, Jeong Mi Kim, and Jae Nyoung Kim*
Deparment of Chemistry and Institute of Basic Science, Chomam Vational University, Gwangiu 500-757, Korea Received October 30, 2002

Key Words : Isatins. Sodium borohỵdride. I-Aryl-1.2-ethanediol. Dihydrodioxindole

1-Aryl-1.2-ethanediol derivatives are important synthetic intermediates in organic synthesis. in particular for the preparation of biologically active compounds. ${ }^{1}$ Synthesis of these compounds. especially in their optically active form. has been studied extensively: : Dihydroxylation of olefins ${ }^{-a}$ ozonolysis of alkenyl stannanes followed by reduction, ${ }^{, b}$ hydrosilylation of arylacetylenes followed by oxidation. ${ }^{-0}$ reduction of α-lyydroxy ketones. ${ }^{2 d}$ and many other methods have been used :-

Recently, we examined the reaction of N-substituted isatin derivatives with various nucleophiles such as alcohols or amines in the presence of sodium borohydride. ${ }^{3}$ In the reaction. we could obtain mandelic esters or mandelic amides as the major products with 1.3 equivalents of NaBH_{4} at room temperature. ${ }^{3}$ As a continuous work, we thought that reduction of N-substituted isatins with electron-withdrawing group at the nitrogen atom in alcoholic solvent using excess amounts of NaBH_{4} might give synthetically useful 1-aryl-1.2-ethanediols in a one-pot reaction by adopting appropriate reaction conditions.

We examined the synthesis of 1-(2-tosylamidophenyl)-1.2-ethanediol (3a) from N-tosylisatin (1a) with 4.0 equivalents of NaBH_{4}. However. we could obtain the desired product 3 a in 27% yield (entry 1 in Table 1). In addition. we could isolate the cyclic diol compound 2 a in 65% yield. This ty'pe of compound was known in the literature. ${ }^{+}$According to Merour et al.. depending on the conditions. 2a could exist as its chain-form III (vide infra). We thought the reaction mechanism for the formation of $2 \mathbf{a}$ and 3 a as shown in Scheme 1. (1) Ring opening reaction of 1a with ethanol gave
I. ${ }^{3}$ (2) Fast reduction of ketone functional group afforded II. ${ }^{3}$ (3) Somewhat slow reduction of ester to aldehyde formed III. (4) The intermediate III could exist as its ring-form 2a or reduced further to diol $\mathbf{3 a}$. The intermediate II and ringform product 2 a could also be generated wia the N-tosyl-3.3dihydrodioxindole derivative $\mathbf{I V}$.

In order to increase the yield of 3a we added catalytic amount of acetic acid to the reaction mixture and used excess amounts of sodium borohydride. As expected the amount of 3a was increased. However, cyclic diol 2 a was

Table 1. Borohydride reduction of V -tosylisatin (1a)

Entry	Conditions	Products (\% yield)	
		2a	3a
1	NaBH_{4} (4.0 equiv)	65 (20\% de ${ }^{\text {P }}$	27
	EtoH, rt, 4 h		
2	NaBH_{4} (80 equiv)	13	68
	EtOH, rt, 6 days		
	AcOH (cat)		
3	NaBH_{4} (4.0 equiv)	0	99
	EtOH, $40-50^{\circ} \mathrm{C}, 3 \mathrm{~h}$		
4	$n-\mathrm{Bu}_{4} \mathrm{NBH}_{4}$ (1.0 equiv)	54	trace
	$\mathrm{EtOH},-10^{\circ} \mathrm{C}, 2 \mathrm{~h}$		
5	$n-\mathrm{Bu}_{4} \mathrm{NBH}_{4}$ (4.0 equiv)	0	81
	Etoh, rt, 1 lh		
6	$\mathrm{NaBH}_{4}(4.0$ equiv)	$49\left(20 \%\right.$ de ${ }^{p}$	trace
	THF, rt, 1 h		

${ }^{a}$ Thoms diol is the major ${ }^{-1}$ and the ratio of cistroms can be changed depending on time via the chain-form III.

Scheme 1

Table 2. Synthesis of diol derivatives 3a-e and 2a-c
Entry Substrate
${ }^{a} 20 \%$ de (trans diol is the major). ${ }^{b} 60 \%$ de (trans diol is the major). ${ }^{\text {c }} 33 \%$ de (cis diol is the major).
formed together (entry 2). After some trials. we found the best conditions for the formation of 3a: treatment of 1a with NaBH_{4} at elevated temperature (entry $3,40-50^{\circ} \mathrm{C}$). The use of more reactive tetra-butylammonium borohydride could reduce the reaction time (entry 5). With the optimized conditions in hand for the synthesis of 1.2 -diol derivative 3 a . we synthesized some diols 3b-e as shown in Table 2

For N-benzoylisatin (1d) and 5 -bromo- N -benzoylisatin (1e) desired diol derivatives 3 d and 3 e were obtained in short time at room temperature. For the preparation of cyclic diol derivatives 2a-c. the use of THF as solvent is recommended (entry 6 in Table 1 and entries $6-8$ in Table 2). The use of ethanol in these cases produced mixtures of products (see entry 1 in Table 1). Although the yields were low, we could obtain the cyclic diols as the major products in THF The corresponding N-benzoyl derivative $2 d$ could not be obtained even in THF.
We are currently studying the equilibrium between the chain-form and the ring-form. Controlled reduction of N -
substituted isatins to 3 -hydroxyisatins ${ }^{5}$ is also under study.

Experimental Section

All materials and solvents were of reagent grade as received from conmercial sources. Isatin derivatives $1 \mathbf{a}-\mathrm{e}$ were prepared as previously reported. ${ }^{3}$

Typical procedure for the synthesis of 3a: A stirred solution of N-tosylisatin (1a, $602 \mathrm{mg}, 2.0 \mathrm{mmol}$). sodium borohydride (305 mg .8 .0 mmol) in ethanol (5 mL) was heated to $40-50^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was filtered through Celite pad and washed with ether. After removal of solvent and column chromatographic purification (hexane/ ethyl acetate, $1: 2$) analytically pure product 3a was obtained as a white solid, 615 mg (99%): mp $140-142^{\circ} \mathrm{C}$: IR (KBr) 3491. 3340, 3095. 1322, $1153 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO-d d_{6}) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}) .3 .46-3.55(\mathrm{~m} .2 \mathrm{H}), 3.75(\mathrm{br} \mathrm{s}$. $\mathrm{lH}) .4 .72-4.77(\mathrm{~m}, \mathrm{IH}) .4 .85$ (br s, lH), $7.00-7.72(\mathrm{~m}, 8 \mathrm{H})$, 9.26 (br s, lH): ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right) \delta 21.52$, $66.25,74.38,121.40,124.37 .127 .13 .128 .06,128.39$, 129.58, 130.60. 136.17, 137.02, 143.58.

The following compounds were synthesized analogously.
3b: white solid, mp $70-72{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 3294,1670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$) $\delta 2.06(\mathrm{~s} .3 \mathrm{H}) .3 .40$ (br s. 1 H), 3.58-3.75 (m. 2 H). 4.30 (brs. IH). 4.73-4.78 (m. IH). $7.04-7.27$ (m. 3 H), $7.82(\mathrm{~d} . J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{br} \mathrm{s} 1 \mathrm{H}$.$) : { }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 23.36 .64 .90 .73 .22$. 122.79, 123.98. 126.81. 127.61, 129.44, $135.25,168.50$; Mass (70 eV) $m z$ (rel. intensity) 43 (23), 94 (16). $122(100), 146(16), 165(10), 195\left(\mathrm{M}^{+}, 11\right)$.

3c: oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{2}\right) \delta 1.14$ (t. $\left.J=7.8 \mathrm{~Hz}, 3 \mathrm{H}\right) .2 .27$ (q. $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$). $3.54-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.69(\mathrm{~m} .2 \mathrm{H})$, 4.58 (br s, 1H). 4.69 (br d, $J=5.4 \mathrm{~Hz} .1 \mathrm{H}$), $7.02-7.27$ (m, $3 \mathrm{H}), 7.83(\mathrm{~d} . J=8.1 \mathrm{~Hz}, \mathrm{lH}), 9.21(\mathrm{~s} . \mathrm{lH}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 9.76 .30 .96,65.75 .75 .02,123.32,124.54,127.93,128.83$. 129.17, 136.81. 172.73.

3d: white solid, mp $128-130{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO-d ${ }_{6}$) $\delta 3.64-3.72(\mathrm{~m}, \mathrm{lH}), 3.79-3.87(\mathrm{~m}, \mathrm{lH}), 4.52-4.57$ $(\mathrm{m} . \mathrm{lH}), 4.87-4.92(\mathrm{~m} . \mathrm{lH}), 5.74(\mathrm{~d} . J=3.3 \mathrm{~Hz}, \mathrm{lH}) .7 .08-$ $8.30(\mathrm{~m} .9 \mathrm{H}) .10 .62(\mathrm{~s} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}^{2}-\mathrm{d}_{6}\right)$ $\delta 64.81,74.53,121.86,123.46 .126 .10 .127 .03,127.71$. 127.73, 128.11. 130.88, 133.45, 136.06. 164.66.

3e: white solid. mp $158-160^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-\right.$ $\left.\mathrm{d}_{6}\right) \delta 3.66-3.76(\mathrm{~m}, 2 \mathrm{H}) .3 .84-3.90(\mathrm{~m} .1 \mathrm{H}) .4 .84-4.90(\mathrm{~m}$. $1 \mathrm{H}) .5 .18(\mathrm{~d} . J=3.2 \mathrm{~Hz} .1 \mathrm{H}) .7 .29-7.96(\mathrm{~m} .7 \mathrm{H}) .8 .31(\mathrm{~d} . J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}) .10 .45(\mathrm{br} \mathrm{s} 1 \mathrm{H}$.$) : { }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO$\left.\mathrm{d}_{6}\right) \delta 65.99,74.99 .116 .59,124.00,127.23,128.74,130.71$. 131.20. 131.83. 134.67. 136.78. 165.15. one carbon is overlapped.

2a: oil: ${ }^{l} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta 2.31$ (s. 1.8 H . trans). 2.35 (s. $1.2 \mathrm{H} . c i s$). 4.88 (s. 0.6 H. trans). 4.98 (d. $J=6.3 \mathrm{~Hz}$. $0.4 \mathrm{H}, ~ c i s) .5 .63$ (s. $0.6 \mathrm{H}, \operatorname{trons}$). 5.71 (d. $J=6.3 \mathrm{~Hz} .0 .4 \mathrm{H}$. cis), $7.00-7.79(\mathrm{~m} .8 \mathrm{H}$, trans + cis $):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.54$. 21.55. 70.95. 76.94. 84.72. 93.28. 114.08. 114.51. 124.27. 124.40. 125.60, 126.17. 127.22. 127.26, 129.87. 129.90. 129.95. 130.04, 130.62. 131.01. 134.83, 135.68. 139.08. 140.54. 144.50. 144.65: Mass (70 eV) $m \mathrm{z}$ (rel. intensity) 91 (61). 119 (34), 146 (25), 209 (35), 274 (100), $305\left(\mathrm{M}^{+}, 15\right)$.

2b: oil; IR (KBr) $3432.1655 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}+$ $\mathrm{D}_{2} \mathrm{O}$) $\delta 2.24$ (s. 2.4 H. trans), 2.25 ($\mathrm{s}, 0.6 \mathrm{H}$, cis). 4.68 (s . 0.8 H. trans $), 5.10(\mathrm{~d}, J=6.1 \mathrm{~Hz} .0 .2 \mathrm{H} . \operatorname{cis}) .5 .41(\mathrm{~s} .0 .8 \mathrm{H}$. trans), 5.59 (d. $J=6.1 \mathrm{~Hz}, 0.2 \mathrm{H}$. cis), $7.07-7.94$ (m. 4 H . trans + cis) ; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}+\mathrm{D}_{3} \mathrm{O}$, trans isomer) δ $24.12,77.51,91.42,118.01 .125 .92$. 127.65, 131.24, 132.71. $143.07,172.56$; Mass (70 eV) mz (rel. intensity) 43 (25). 92 (22), 120 (63), 146 (19), 162 (100). 193 ($\mathrm{M}^{+} .7$).

2c: mp $126-128^{\circ} \mathrm{C}$; IR (KBr) 3490. 3448. 3380. 1638 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}^{2}-\mathrm{d}_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 1.12-1.28(\mathrm{~m}$. $3 \mathrm{H}), 2.46-2.84(\mathrm{~m} .2 \mathrm{H}) .4 .85(\mathrm{~s}, 0.35 \mathrm{H}, \mathrm{cis}) .5 .19(\mathrm{~d} . J=6.5$ $\mathrm{Hz}, 0.65 \mathrm{H}, \operatorname{tr}$ (ms) $), 5.49$ (s. $0.35 \mathrm{H} . \operatorname{cis}), 5.60$ (d. $J=6.5 \mathrm{~Hz}$. 0.65 H, trans $), 7.08-8.16(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO-d ${ }_{6}$) $\delta 8.90$ (2C), 27.95. 28.33, 70.83. 77.57, 82.92. $90.64,116.60 .117 .04,123.69,123.83,124.87,125.96$, 129.33. 129.71. 131.33 (2C), 140.95. 142.75. 173.84, 173.88; Mass (70 eV) $m z$ (rel. intensity) 57 (15). 92 (18). 120 (79). $176(100), 207\left(\mathrm{M}^{+} .8\right)$.

Acknowledgment. This work was supported by the grant (R05-2000-000-00074-0) from the Basic Research Program of the Korea Science \& Engineering Foundation.

References

1. (a) Xia, J; Huang. X.: Sreekumar, R.; Walker. J. W. Bioorg Med. Chem Lett. 1997. 7. 1243. (b) Kelly. T. R.: Kaul. P. N. J. Org Chen. 1983. 48. 2775. (c) Still. W. C.: McDonald III. T. H. Tetrahedron Lett. 1980. 21. 1031.
2. (a) Kolb. H. C.: VanNieuwenhze, M. S.: Sharpless, K. B. Chem. Rev. 1994. 94. 2483. (b) Gomez, A. M. Company, M. D.; Valverde. S., Lopez, J. C. Org Lett. 2002, 4. 383 . (c) Shimada. T: Mukaide. K.: Shinohara. A.: Han. T. W.: Hayashi. T. J. Am. Chem. Soc. 2002. 124. 1584. (d) Wei. Z.-L.: Lin. G.-Q.: Li. Z.-Y. Bioorg. Med. Chem. 2000. 8. 1129 . and further references cited therein. (e) Cho, B. T.; Chun. Y. S. J. Org Chem. 1998. 63. 5280. (f) Santaniello, E.; Ferraboschi. P.: Grisenti, P.; Manzocchi. A. Chem. Rev. 1992, 92. 1071. (g) Sibi, M. P.; Sharma, R. Symett 1992. 497.
3. Chung. Y. M.: Gong. J. H.: Kim. J. N. Bull Korean Chem. Soc. 2002. 23. 1363. Synthesis of the starting materials 1a-d was mentioned also.
4. (a) Desarbre. E.: Savelon, L.: Cornec. O; Merour, J. Y. Terrahedron 1996. 52, 2983. (b) Kawasaki, T.; Ohtsuka, H.: Chien, C.S.: Omata. M.: Sakamoto, M. Chem. Phanm. Buhl. 1987, $35,1339$. and further references on the ring-chain tautomerism cited therein.
5. (a) Manzilis. L.: Garaliene. V: Stankevicius. A.: Riselis. S. Khim. Form. Zh. 1985. 19. 960. (b) Hata. H.: Shimizu. S.: Hattori. S.: Yamada. H. J. Org. Chem. 1990. 55. 4377. (c) Carpentier. J.-F.: Mortreux. A. Terahedron: Aşmmetry 1997. 8. 1083.
