Efficient Transdermal Penetration and Improved Stability of L-Ascorbic Acid Encapsulated in an Inorganic Nanocapsule

  • Yang, Jae-Hun (National Nanohybrid Materials Laboratory, School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Lee, Sun-Young (Nanohybrid Co. Ltd., Biotechnology Incubating Center, Seoul National University) ;
  • Han, Yang-Su (Nanohybrid Co. Ltd., Biotechnology Incubating Center, Seoul National University) ;
  • Park, Kyoung-Chan (Department of Dermatology, College of Medicine, Seoul National University) ;
  • Choy, Jin-Ho (National Nanohybrid Materials Laboratory, School of Chemistry & Molecular Engineering, Seoul National University)
  • Published : 2003.04.20


Encapsulation of L-ascorbic acid (vitamin C) within a bio-compatible layered inorganic material was achieved by coprecipitation reaction, in which the layered inorganic lattice and its intercalate of vitamin C are simultaneously formed. The nano-meter sized powders of vitamin C intercalate thus prepared was again encapsulated with silica nano-sol to form a nanoporous shell structure. This ternary nanohybrid of vitamin Clayered inorganic core-$SiO_2$ shell exhibited an enhanced storage stability and a sustained releasing of vitamin C. Furthermore, the nano-encapsulation of vitamin C with inorganic mineral was very helpful in delivering vitamin C molecules into skin through stratum corneum, facilitating transdermal penetration of vitamin C in topical application.


  1. Machlin, L. J. Handbook of Vitamins, 2nd Ed.; Marcel Dekker, Inc.: 1991.
  2. Doba, T.; Burton, G. W.; Ingold, K. U. Biochim. Biophys. Acta 1985, 835, 298.
  3. Bossi, A.; Piletsky, S. A.; Piletska, E. V.; Righetti, P. G.; Turner, A. P. F. Anal Chem. 2000, 72, 4296.
  4. Yamamoto, I.; Tai, A.; Fujinami, Y.; Sasaki, K.; Okazaki, S. J. Med. Chem. 2002, 45, 462.
  5. Tsuchiya, H.; Bates, C. J. J. Nurt. Biochem. 1998, 9, 402.
  6. Horino, Y.; Takahashi, S.; Miura, T.; Takahashi, Y. Life Science 2002, 71, 3031.
  7. Gallarate, M.; Carlotti, M. E.; Trotta, M.; Bovo, S. Int. J. Pharm. 1999, 188, 233.
  8. Austria, R.; Semenzato, A.; Bettero, A. J. Pharm. Biomed. Anal. 1997, 15, 795.
  9. Spiclin, P.; Gasperlin, M.; Kmetec, V. Int. J. Pharm. 2001, 222, 271.
  10. Semenzato, A.; Austria, R.; Dall'Aglio, C.; Bettero, A. J. Chromatogr. A 1995, 705, 385.
  11. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J. Angew. Chem. Int. Ed. 2000, 39(22), 4042.
  12. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J.; Portier, J. J. Am. Chem. Soc. 1999, 121, 1399.
  13. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J. J. Mater. Chem. 2001, 11(6), 1671.
  14. Choy, J. H.; Park, J. S.; Kwak, S. Y.; Jeong, Y. J.; Han, Y. S. Mol Cryst. & Liq. Cryst. 2000, 341, 425.
  15. Hwang, S. H.; Han, Y. S.; Choy, J. H. Bull. Korean Chem. Soc. 2001, 22, 1019.
  16. Riley, P. A. Cell. Mol. Biol. 1999, 45, 951.
  17. Han, W. S.; Yoo, J. Y.; Youn, S. W.; Kim, D. S.; Park, K. C.; Kim, S. Y.; Kim, K. H. J. Dermatol. Sci. 2002, 30, 10.
  18. Kubo, I.; Kinst-Hori, I. J. Agric. Food Chem. 1999, 47, 4121.
  19. Jimenez, M.; Chazarra, S.; Escribano, J.; Cabanes, J.; Garcia-Carmona, F. J. Agric. Food Chem. 2001, 49, 4060.
  20. Tachibana, Y.; Kikuzaki, H.; Lajis, N. H.; Nakatani, N. J. Agric. Food Chem. 2001, 49, 5589.
  21. Kim, D. O.; Lee, K. W.; Lee, H. J.; Lee, C. Y. J. Agric. Food Chem. 2002, 50, 3713.
  22. Sawai, Y.; Moon, J. H. J. Agric. Food Chem. 2000, 48, 6247.
  23. Simonsen, L.; Petersen, M. B.; Groth, L. Eur. J. Pharm. Sci. 2002, 17, 95.
  24. Wissing, S. A.; Muller, R. H. J. Control. Release 2002, 81, 225.
  25. Youenang Piemi, M. P.; De Luca, M.; Grossiord, J. J.; Seiller, M.; Marty, J. P. Int. J. Pharm. 1998, 171, 207.
  26. Oil adsorption capacity was measured by KS (Korean Industrial Standard) method.

Cited by

  1. Literature Alerts vol.20, pp.6, 2003,
  2. A Lattice-Engineering Route to Heterostructured Functional Nanohybrids vol.6, pp.2, 2010,
  3. Hydroxy double salts as versatile storage and delivery matrices vol.21, pp.6, 2011,
  4. Stability, transdermal penetration, and cutaneous effects of ascorbic acid and its derivatives vol.11, pp.4, 2012,
  5. Intercalation and Controlled Release of Bioactive Ions Using a Hydroxy Double Salt vol.51, pp.7, 2012,
  6. Coadsorption of ascorbic acid and α-tocopherol antioxidants on partially trimethylsilylated silica surface vol.49, pp.4, 2013,
  7. Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support vol.9, pp.2, 2013,
  8. Comprehensive characterization of polylactide-layered double hydroxides nanocomposites as packaging materials vol.22, pp.7, 2015,
  9. Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications vol.51, pp.15, 2015,
  10. New inorganic-based nanohybrids of layered zinc hydroxide/Parkinson’s disease drug and its chitosan biopolymer nanocarriers with controlled release rate vol.86, pp.1-2, 2016,
  11. on Skin Inflammation vol.29, pp.5, 2017,
  12. New formulation of vitamin C encapsulation by nanoliposomes: production and evaluation of particle size, stability and control release pp.2092-6456, 2018,
  13. Layered nanomaterials for green materials vol.19, pp.17, 2009,
  14. An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres vol.20, pp.33, 2009,
  15. Enhanced Antioxidant Activity under Biomimetic Settings of Ascorbic Acid Included in Halloysite Nanotubes vol.8, pp.2, 2019,