DOI QR코드

DOI QR Code

(Pyridine)(tetrahydroborato)zinc Complex, [Zn(BH4)2(py)], as a New Stable, Efficient and Chemoselective Reducing Agent for Reduction of Carbonyl Compounds

  • Zeynizadeh, Behzad (Department of Chemistry, Faculty of Sciences, Urmia University) ;
  • Faraji, Fariba (Department of Chemistry, Faculty of Sciences, Urmia University)
  • Published : 2003.04.20

Abstract

(Pyridine)(tetrahydroborato)zinc complex, $[Zn(BH_4)_2(py)]$, as a stable white solid, was prepared quantitatively by complexation of an equimolar amount of zinc tetrahydroborate and pyridine at room temperature. This reagent can easily reduce variety of carbonyl compounds such as aldehydes, ketones, acyloins, α-diketones and a, β-unsaturated carbonyl compounds to their corresponding alcohols in good to excellent yields. Reduction reactions were performed in ether or THF at room temperature or under reflux conditions. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing agent.

Keywords

References

  1. Seyden-Penne, J. Reductions by the Alumino and Borohydridesin Organic Synthesis, 2nd Ed.; Wiley-VCH: 1997.
  2. Hudlicky, M. Reductions in Organic Chemistry; Ellis Horwood Ltd.: Chichester, 1984.
  3. Hajos, A. Complex Hydrides and Related Reducing Agents in Organic Chemistry; Elsevier: Amsterdam, 1979.
  4. House, H. O. Modern Synthetic Reactions, 2nd Ed.;Benjamine: Menlo Park, CA, 1972.
  5. Forest, W. Newer Methods of Preparative Organic Chemistry; Verlag Chemie, Gmbh, Aca. Press: 1968; Vol. IV.
  6. Firouzabadi, H.; Zeynizadeh, B. Iranian J. Sci & Tech., Trans. A 1995, 19, 103.
  7. Firouzabadi, H.; Zeynizadeh, B. Bull. Chem. Soc. Jpn. 1997, 70, 155. https://doi.org/10.1246/bcsj.70.155
  8. Firouzabadi, H. The Alembic 1998, 58.
  9. Ranu, B. C. Synlett 1993, 885
  10. Narasimhan, S.; Balakumar, A. Aldrichimica Acta 1998, 31, 19.
  11. Kotsuki, H.; Ushio, Y.; Yoshimura, N.; Ochi, M. Bull. Chem. Soc. Jpn. 1988, 61, 2684. https://doi.org/10.1246/bcsj.61.2684
  12. Kotsuki, H.; Ushio, Y.; Yoshimura, N.; Ochi, M. J. Org. Chem. 1987, 52, 2594. https://doi.org/10.1021/jo00388a049
  13. Ranu, B. C.; Das, A. R. J. Chem. Soc. Perkin Trans. 1 1992, 1561.
  14. Tamami, B.; Lakouraj, M. M. Synth. Commun. 1995, 25, 3089. https://doi.org/10.1080/00397919508011442
  15. Firouzabadi, H.; Adibi, M.; Zeynizadeh, B. Synth. Commun. 1998, 28, 1257. https://doi.org/10.1080/00397919808005968
  16. Firouzabadi, H.; Adibi, M.; Ghadami, M. Phosphorus, Sulfur, Silicon Relat. Elem. 1998, 142, 191. https://doi.org/10.1080/10426509808029675
  17. Ranu, B. C.; Chakraborty, R. Tetrahedron Lett. 1990, 31, 7663. https://doi.org/10.1016/S0040-4039(00)97326-X
  18. Sarkar, D. C.; Das, A. R.; Ranu, B. C. J. Org. Chem. 1990, 55, 5799. https://doi.org/10.1021/jo00309a028
  19. Firouzabadi, H.; Tamami, B.; Goudarzian, N. Synth. Commun.1991, 21, 2275. https://doi.org/10.1080/00397919108021586
  20. Firouzabadi, H.; Adibi, M. Synth. Commun. 1996, 26, 2429. https://doi.org/10.1080/00397919608004555
  21. Firouzabadi, H.; Adibi, M. Phosphorus, Sulfur, Silicon Relat. Elem. 1998, 142, 125. https://doi.org/10.1080/10426509808029672
  22. Firouzabadi, H.; Afsharifar, G. R. Synth. Commun. 1992, 22, 497. https://doi.org/10.1080/00397919208019248
  23. Firouzabadi, H.; Afsharifar, G. R. Bull. Chem. Soc. Jpn. 1995, 68, 2595. https://doi.org/10.1246/bcsj.68.2595
  24. Raber, D. J.; Guida, W. C. J. Org. Chem. 1976, 41, 690. https://doi.org/10.1021/jo00866a022
  25. Ward, D. E.; Rhee, C. K. Synth. Commun. 1988, 18, 1927 https://doi.org/10.1080/00397918808068259
  26. Ranu, B. C.; Chakraborty, R. Tetrahedron Lett. 1990, 31, 7663. https://doi.org/10.1016/S0040-4039(00)97326-X
  27. Sarkar, D. C.; Das, A. R.; Ranu, B. C. J. Org. Chem. 1990, 55, 5799. https://doi.org/10.1021/jo00309a028
  28. Kim, S.; Kim, Y. J.; Oh, C. H.; Ahn, K. H. Bull. Korean Chem. Soc. 1984, 5, 202.
  29. Firouzabadi, H.; Tamami, B.; Goudarzian, N. Synth. Commun. 1991, 21, 2275. https://doi.org/10.1080/00397919108021586
  30. Firouzabadi, H.; Afsharifar, G. R. Synth. Commun. 1992, 22, 497. https://doi.org/10.1080/00397919208019248
  31. Nutaitis, C. F.; Gribble, G. W. Tetrahedron Lett. 1983, 24, 4287. https://doi.org/10.1016/S0040-4039(00)88322-7
  32. Johnson, M. R.; Rickborn, B. J. Org. Chem. 1970, 35, 1041. https://doi.org/10.1021/jo00829a039
  33. Varma, R. S.; Kabalka, G. W. Synth. Commun. 1985, 15, 985. https://doi.org/10.1080/00397918508076830
  34. Nutaitis, C. F.; Bernardo, J. E. J. Org. Chem. 1989, 54, 5629. https://doi.org/10.1021/jo00284a046
  35. Cha, J. S.; Kim, E. J.; Kwon, O. O. Bull. Korean Chem. Soc. 1994, 15, 1033.
  36. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Bull. Korean Chem. Soc. 1995, 16, 1009.
  37. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Org. Prep. Proced. Int. 1996, 28, 355. https://doi.org/10.1080/00304949609356544
  38. Cha, J. S.; Kwon, O. O.; Kwon, S. Y.; Kim, J. M.; Seo, W. W.; Chang, S. W.Bull. Korean Chem. Soc. 1996, 17, 221.
  39. Cha, J. S.; Kim, E. J.; Kwon, O. O.; Kim, J. M. Bull. Korean Chem. Soc. 1996, 17, 50.
  40. Cha, J. S.; Kwon, O. O.; Kim, J. M. Bull. Korean Chem. Soc. 1996, 17, 725.
  41. Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1975, 40, 1864. https://doi.org/10.1021/jo00900a051
  42. Corey, E. J.; Becker, K. B.; Varma, R. K. J. Am. Chem. Soc. 1972, 94, 8616 https://doi.org/10.1021/ja00779a074
  43. Fortunato, J. M.; Ganem, B. J. Org. Chem. 1976, 41, 2194. https://doi.org/10.1021/jo00874a028
  44. Nutaitis, C. F.; Bernardo, J. E. J. Org. Chem. 1989, 54, 5629. https://doi.org/10.1021/jo00284a046
  45. Kim, S.; Moon, Y. C.; Ahn, K. H. J. Org. Chem. 1982, 47, 3311 https://doi.org/10.1021/jo00138a021
  46. Fuller, J. C.; Stangeland, E. L.; Goralski, C. T.; Singaram, B. Tetrahedron Lett. 1993, 34, 257 https://doi.org/10.1016/S0040-4039(00)60561-0
  47. Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226 https://doi.org/10.1021/ja00475a040
  48. Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454. https://doi.org/10.1021/ja00408a029
  49. Fujii, H.; Oshima, K.; Utimoto, K. Chem. Lett. 1991, 1847.
  50. Hutchins, R. O.; Kandasamy, D. J. Org. Chem. 1975, 40, 2530. https://doi.org/10.1021/jo00905a024
  51. Johnson, M. R.; Rickborn, B. J. Org. Chem. 1970, 35, 1041. https://doi.org/10.1021/jo00829a039
  52. Ranu, B. C.; Das, A. R. J. Org. Chem. 1991, 56, 4796 https://doi.org/10.1021/jo00015a042
  53. Kim, S.; Oh, C. H.; Ko, J. S.; Ahn, K. H.; Kim, Y. J. J. Org. Chem. 1985, 50, 1927. https://doi.org/10.1021/jo00211a028
  54. Ravikumar, K. S.; Baskaran, S.; Chandrasekaran, S. J. Org. Chem. 1993, 58, 5981 https://doi.org/10.1021/jo00074a026
  55. Firouzabadi, H.; Zeynizadeh, B. Bull. Chem. Soc. Jpn. 1997, 70, 155. https://doi.org/10.1246/bcsj.70.155
  56. Tamami, B.; Lakouraj, M. M. Synth. Commun. 1995, 25, 3089. https://doi.org/10.1080/00397919508011442
  57. Firouzabadi, H.; Adibi, M.; Ghadami, M. Phosphorus, Sulfur, Silicon Relat. Elem. 1998, 142, 191. https://doi.org/10.1080/10426509808029675
  58. Firouzabadi, H.; Adibi, M. Synth. Commun. 1996, 26, 2429. https://doi.org/10.1080/00397919608004555
  59. Firouzabadi, H.; Afsharifar, G. R. Synth. Commun. 1992, 22, 497. https://doi.org/10.1080/00397919208019248
  60. Firouzabadi, H.; Tamami, B.; Goudarzian, N. Synth. Commun. 1991, 21, 2275. https://doi.org/10.1080/00397919108021586
  61. Sandle, A. R.; Jagadale, M. H.; Mane, R. B.; Salunkhe, M. M. TetrahedronLett. 1984, 25, 3501. https://doi.org/10.1016/S0040-4039(01)91059-7
  62. Kreiser, W. Ann. Chem. 1971, 745, 164. https://doi.org/10.1002/jlac.19717450120
  63. Pechmann, V. H.; Dahl, F. Chem. Ber. 1890, 23, 2421. https://doi.org/10.1002/cber.189002302119
  64. Ho, T.-L.; Olah, G. A. Synthesis 1976, 815.
  65. Mori, T.; Nakahara, T.; Nozaki, H. Can. J. Chem. 1969, 47, 3266. https://doi.org/10.1139/v69-540
  66. Mayer, R.; Hiller, G.; Nitzschke, M.; Jentzsch, J. Angew. Chem.1963, 75, 1011. https://doi.org/10.1002/ange.19630752103
  67. Rubin, M. B.; Ben-Bassat, J. M. Tetrahedron Lett. 1971, 3403.
  68. Imuta, M.; Ziffer, H. J. Org. Chem. 1978, 43, 3530. https://doi.org/10.1021/jo00412a024
  69. Blomquist, A. T.; Goldstein, A. Org. Syn. Coll. Vol. 4, 1963, 216.
  70. Guette, J. P.; Spassky, N.; Boucherot, D. Bull. Chem. Soc. Fr. 1972, 4217.
  71. Gensler, W. J.; Johnson, F.; Sloan, A. D. B. J. Am. Chem. Soc. 1960, 82, 6074. https://doi.org/10.1021/ja01508a026
  72. Crabbe, P.; Garcia, G. A.; Rius, C. J. Chem. Soc., Perkin Trans. 1 1973, 810. https://doi.org/10.1039/p19730000810

Cited by

  1. /Charcoal: A New Synthetic Method for Mild and Convenient Reduction of Nitroarenes vol.36, pp.18, 2006, https://doi.org/10.1080/00397910600764709
  2. O System vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3323
  3. System vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3448
  4. First Report for the Efficient Reduction of Oximes to Amines with Zinc Borohydride in the form of (Pyridine)(tetrahydroborato)zinc Complex vol.52, pp.1, 2005, https://doi.org/10.1002/jccs.200500016
  5. under Microwave Irradiation vol.52, pp.6, 2013, https://doi.org/10.1002/jccs.200500169
  6. /DOWEX(R)50WX4: A Convenient Reducing System for Fast and Efficient Reduction of Carbonyl Compounds to Their Corresponding Alcohols vol.60, pp.6, 2013, https://doi.org/10.1002/jccs.201300014
  7. Process modeling of reduction and acetylation reactions by spectrophotometric and chemometrics methods vol.11, pp.1, 2014, https://doi.org/10.1007/s13738-013-0284-7
  8. Zinc hydridotriphenylborates supported by a neutral macrocyclic polyamine vol.46, pp.19, 2017, https://doi.org/10.1039/C7DT01094J
  9. vol.78, pp.2, 2005, https://doi.org/10.1246/bcsj.78.307
  10. vol.2009, pp.21, 2009, https://doi.org/10.1002/ejoc.200900352
  11. A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5 vol.24, pp.11, 2003, https://doi.org/10.5012/bkcs.2003.24.11.1664
  12. (Pyridine)(tetrahydroborato)zinc Complex, [Zn(BH4)2(py)], as a New Stable, Efficient and Chemoselective Reducing Agent for Reduction of Carbonyl Compounds. vol.34, pp.36, 2003, https://doi.org/10.1002/chin.200336049
  13. (Pyridine)(tetrahydroborato)zinc Complex Mediated Acetylation of Amines with Ethyl Acetate vol.51, pp.4, 2003, https://doi.org/10.1002/jccs.200400121
  14. Titanyl Acetylacetonate as an Efficient Catalyst for Regioselective 1,2-Reduction of α,β-Unsaturated Carbonyl Compounds and Conversion of α-Diketones & Acyloins to Vicinal Diols w vol.52, pp.3, 2003, https://doi.org/10.1002/jccs.200500076
  15. Reductive Acetylation of Carbonyl Compounds to Acetates with Pyridine Zinc Borohydride vol.29, pp.1, 2003, https://doi.org/10.5012/bkcs.2008.29.1.076
  16. Synthesis of (±)‐Merrilactone A and (±)‐Anislactone A vol.122, pp.48, 2003, https://doi.org/10.1002/ange.201005156
  17. Synthesis of (±)‐Merrilactone A and (±)‐Anislactone A vol.49, pp.48, 2010, https://doi.org/10.1002/anie.201005156
  18. Wet SiO2 As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH3CN under Solvent-Free and Acid-Free Conditions vol.31, pp.10, 2003, https://doi.org/10.5012/bkcs.2010.31.10.2961