OF THE

KOREAN CHEMICAL SOCIETY

Communications

Synthesis and Structure of Tetrahomodioxa p-Phenylcalix[4](aza)biscrowns

Kwanghyun No* and Jeong Hyeon Lee
Department of Chemistry, Sookmyung Homen's Lnwersity, Seoul 1+0-742, Korea
Recened December 9, 2002

Key Words : Homooxacalix[4]arene, Calixazacrown, Conformation

Calixarenes have been intense interest as complexation hosts for ions and molecules. ${ }^{1.3}$ Tetrahomodioxacalix[4]arenes which contain two extra oxygen atoms in the macrocyclic ring, however. have been rarely studied due to their synthetic difficulty. ${ }^{4.8}$ Previously, we reported that C -1,2-alternate N, N-diethyltetrahomodioxacalix[4]arene tetraamide showed Pb^{2+} ion selectivity. ${ }^{\text {tid }}$ In the case of monoalkyl amide. hovever. the conformation changes to 1.3 -alternate conformation because of the strong hydrogen bonding. reflecting weak extractability for metal cations. ${ }^{9}$
Calix[4]crown ethers in which the proper-sized crown
rings are incorporated into the calix[4]arene framework have been also attracted as a specific metal-selective extractant. ${ }^{11}$ 1.3-Altennate calix-bis-crowns have particularly interesting molecular features including the cation $-\pi$ interaction as well as the electrostatic interaction in cation complexation. ${ }^{12}$ The family of calix[4](aza)crowns refer to molecules combining calix[4]arene elements and aza-crown units in their framework. They are constructed with aza-ethylene chains attached to the phenolic oxygen atoms of the calix via acetamido functions, which may serve as linking functions and also as chelating groups. The first 1,3-calix[4](aza)crowns were

2

$4(n-1) \cdot 5(n-2)$

Scheme 1
prepared by reaction of either calix dimethyl ester or calix diacid chloride with the appropriate diamine, $\mathrm{NH}_{2}-\mathrm{R}_{-} \mathrm{NH}_{2}$. and were shown to complex divalent and trivalent metal cations using FAB-mass spectrometry. ${ }^{13}$ After pioneering study of Rheinhoudt. Bitter and Vicens research groups reported the synthesis and complexation studies of p-tert-butylcalix[4](aza)crown derivatives. ${ }^{1+}$ However. crown or azacrown derivatives of homooxacalix[4]arene were not reported yet.
In a continuation of the homooxacalixarene. we synthesized tetrahomodioxa- p-phenylcalix[4$]$ (aza)biscrowns of which conformations are 1.3- and C-1,2-altemate. The synthetic route for homooxacalix[4](aza)biscrowns is depicted in Scheme. Reaction of $\mathbf{2}^{10}$ having a C-1,2 altennate conformation with ethylenediamine and dialkylenetriamine in absolute ethanol and toluene gave 3. 4 and 5. respectively. Judging from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. 3 was found in the 1.3 -altenate conformation and 4 and 5 in the C-1.2alternate conformation. respectively.
In the ${ }^{\mathrm{l}} \mathrm{H}$ NMR spectrum of $3 .^{15}$ the dimethylenoxy protons of the $\mathrm{ArCH}_{2} \mathrm{OCH}_{2} \mathrm{Ar}$ bridge showed AB doublets at 4.28 and $4.13(\Delta v=60 \mathrm{~Hz})$ with a geminal coupling constant of 14.1 Hz . In addition. a singlet peak for the methylene protons of $\mathrm{ArCH}_{2} \mathrm{Ar}$ appeared at 4.06 . The ${ }^{13} \mathrm{C}$ NMR spectrum showed one peak at 68.93 ppin for the $\mathrm{ArCH}_{2} \mathrm{O}$ of bridge methyleneoxy carbons and one peak at 37.85 ppm for the $\mathrm{ArCH}_{\beth} \mathrm{Ar}$ bridge carbons implying that two adjacent benzene rings are in an anti orientation. These NMR data confirms that $\mathbf{3}$ is in 1,3-alternate conformation.

For $4,{ }^{16}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. the dimethylenoxy protons of the $\mathrm{ArCH}_{2} \mathrm{OCH}_{2} \mathrm{Ar}$ bridge showed AB doublets at 4.38 and $3.80(\Delta v=232 \mathrm{~Hz})$ with a geminal coupling constant of 14.0 Hz . In addition, a doublet peaks for the metlyylene protons of $\mathrm{ArCH}_{2} \mathrm{Ar}$ appeared at 4.52 and 3.58 ($\Delta v=376 \mathrm{~Hz}$) with a geminal coupling constant of 13.2 Hz . The ${ }^{13} \mathrm{C}$ NMR spectrum showed one peak at 73.59 ppn for the $\mathrm{ArCH}_{3} \mathrm{O}$ of bridge methyleneoxy carbons and one peak at 30.17 ppm for the $\mathrm{ArCH}_{2} \mathrm{Ar}$ bridge carbons implying that two adjacent benzene rings are in an $s m$ orientation. So, it is in the C-1.2-alternate conformation. The NMR spectral data of 5^{17} were similar with the those of compound 4 . the protons of the $\mathrm{ArCH}_{2} \mathrm{OCH}_{2} \mathrm{Ar}$ and $\mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}$ bridge showed AB doublets. The ${ }^{13} \mathrm{C}$ NMR spectrum showed one peak at 73.66 ppm for the $\mathrm{ArCH}_{3} \mathrm{O}$ bridge methyleneony carbons and one peak at 31.42 ppm for the $\mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}$ bridge carbons which is also indicating that two adjacent benzene rings are in a sun orientation (C-1.2-alternate conformation).
Further works on complexation experiments with 3,4 and 5 as ligand are in progress.

Acknowledgment. This Research was supported by the Sooknyung Women's University Research Grants 2002.

References

1. Gutsche. C. D. Calixarenes Revisitect. Royal Society of

Chemistry: Cambridge. 1998.
2. Calixarenes: A Tersatile Class of Macrocychic Compounds: Vicens. T.: Böhmer. V.. Eds.: Kluwer: Dordrecht. 1991.
3. Böhmer. V.Angens Chemt. Int. Ed. Engl. 1995. 34. 713.
4. Gutsche. C. D.: Dhawan. B.: No, K. H.; Muthukrishnan, R J. Am. Chem. Soc. 1981, 103. 3782.
5. Dhawan, B.: Gutsche. C. D. J. Org. Chem. 1983, 48, 1536.
6. Asfari. Z.: Harrowfield. J. M.: Ogden. M. I.: Vicens. J.: White. A. H. Anger: Chem. Im. Ed Engt 1991. 30.854.
7. Marcos. P. M.: Ascenso. J. R.: Lamartine. R.: Pereira. T .L. C. Tetrahedron 1997.53, 11791.
8. Felix. S.; Ascenso. J. R.: Lamartine, R.: Pereira, J. L. C. Syn. Comman. 1998. 28, 1793.
9. No. K.: Lee. T. H.: Yang. S. H.: Kim. M. T.: Kim. T. S. J. Org. Chem. 2002. 67.3165.
10. No. K.: Kim. T. S.: Shon. O. J.: Yang. S. H.: Suh. I. H.: Kim. J. G.: Bartsch. R. A.: Kim, J. Y. J. Org. Chem. 2001, 66. 5976.
11. Casnati. A.: Pochini, A.; Ungaro, R.; Ugozzoli, F.; Amaud-Neu, F.: Fanni. S.; Schwing. M.-J.; Egberink. R. J. M.; de Jong. F.; Reinhoudt. D. N. J. Am. Chem. Soc. 1995. 117.2767.
12. (a) Thuéry. P.: Nierlich. M.: Lamare. V:: Dozol. J.-F.: Astari. Z.: Vicens. J. J. hncl. Phen. 2000. 36. 375 . (b) Kim. J. S.: Pang. J. H.: Yu. I. Y;; Lee, W. K.: Suh, I. H.: Kim. J. K.; Cho, M. H.; Kim, E. T.: Ra. D. Y. J. Chem. Soc. Perkin Troms. 2 1999, 837. (c) Astari. Z.: Weiss. J.: Pappalardo. S.: Vicens. J. Pure Appl. Chem. 1993. 65.585.
13. Ostaszewski. R.: Stevens. I. W.: Verboom. W.: Reinhoudt. D. N. Recl Thav Chim. Pows-Bas 1991. 110. 294.
14. (a) Oueslati. I.; Abidi. R.; Thuéry. P;' Nierlich, M.: Asfari. Z; Harrowtield, J.: Vicens. J. Terahedron Lett. 2000. 41. 8253. (b) Bitter. I.: Grum, A.; Toth, G.; Balazs, B.: Toke, L. Tetrahedron 1997. 53. 9799. (c) Bitter. I.: Grun. A.: Toth. G.: Balazs. B.: Horvath. G.: Toke. L. Tetrahedron 1998. 5t. 3857.
15. 3. $63^{\circ} \mathrm{O} \mathrm{mp} 282{ }^{\circ} \mathrm{C}$ (decompose). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 87.41-7.34 (m. 24, ArH). 7.29-7.25 (m. 4. ArH), 5.89 (br. d, 4. NH. $J=5.5$ $\mathrm{Hz}) .4 .81\left(\mathrm{~d}, 4.0 \mathrm{OCH} \mathrm{C}_{2} \mathrm{CO}, J=12.9 \mathrm{~Hz}\right), 4.33\left(\mathrm{~d} .4 .0 \mathrm{OCH}_{2} \mathrm{CO}, J=\right.$ $12.9 \mathrm{~Hz}), 4.28\left(\mathrm{~d}, 4 . \mathrm{ArCH}_{2} \mathrm{O}, J=14.1 \mathrm{~Hz}\right) .4 .13(\mathrm{~d} .4, \mathrm{ArCH}, \mathrm{O} . J$ $=14.1 \mathrm{~Hz}$). 4.06 (s. $4 . \mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}$). 3.18 (br. q. $4 . \mathrm{NC} H_{2} . J=6.3 \mathrm{~Hz}$). 2.30 (br: q. 4. $\mathrm{NCH}_{2} . J=6.3 \mathrm{~Hz}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 167.89$ $(C=O)$. 152.57. 139.61. 138.92. 133.55. 130.82. 129.25. 128.97. $127.98,127.15,126.48(\mathrm{Ar}) .69 .18\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 68.93\left(\mathrm{ArCH}_{2} \mathrm{O}\right)$. $39.05\left(\mathrm{NCH}_{2}\right), 37.85\left(\mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}\right)$. Anal. Calcd. For $\mathrm{C}_{66} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{~N}_{4}$: C. $74.14: \mathrm{H}, 566$. Found: $\mathrm{C}, 74.41 ; \mathrm{H}$. 5.48.
16. $4.55^{\circ} \% \mathrm{mp} 290{ }^{\circ} \mathrm{C}$ (decompose): ${ }^{\mathrm{H}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.60$ (d. 8. $\mathrm{Ar} H . J=7.7 \mathrm{~Hz}) .7 .53(\mathrm{br} . \mathrm{s} .8 . \mathrm{Ar} H) .7 .47(\mathrm{t} .8 . \mathrm{Ar} H . J=7.7 \mathrm{~Hz})$. 7.38 (t. 4. ArH. $J=7.4 \mathrm{~Hz}$). 6.84 (br. $6 . \mathrm{NH}$). 4.94 (d. 4.0 OCH CO. $J=11.0 \mathrm{~Hz}) .4 .52\left(\mathrm{~d}, 2 . \operatorname{ArCH} H_{2} \mathrm{Ar} . J=13.2 \mathrm{~Hz}\right), 4.38(\mathrm{~d} .4$. $\left.\mathrm{ArCH} \mathrm{H}_{2} \mathrm{O} . J=14.0 \mathrm{~Hz}\right), 4.23\left(\mathrm{~d} .4, \mathrm{OCH} \mathrm{H}_{2} \mathrm{CO} . J=11.0 \mathrm{~Hz}\right), 3.80(\mathrm{~d}$. 4. $\mathrm{ArCH}, \mathrm{O} . J=14.0 \mathrm{~Hz}$), 3.58 (d. 2. $\mathrm{ArCH}_{2} \mathrm{Ar}_{2} J=13.2 \mathrm{~Hz}$), 2.90 (br. m. 4. NCH_{2}). 2.45 (br. m. 4. NCH). 2.23 (br. m. 4. NCH). 2.19 (br. m. 4. NCH_{2}). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 167.51(\mathrm{C}=0)$. 154.30. 139.62. 138.03. 134.91. 130.27. 129.79. 129.64. 128.96. 127.66, $127.05(\mathrm{Ar}), 73.59(\mathrm{ArCH} \mathrm{O}) .67 .77\left(\mathrm{O}_{\mathrm{C}}^{2} \mathrm{H}_{2} \mathrm{CO}\right) .45 .94$. $37.75\left(\mathrm{NCH}_{2}\right) .30 .17\left(\mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}\right)$. Anal. Calcd. For $\mathrm{C}_{76} \mathrm{H}_{70} \mathrm{O}_{10} \mathrm{~N}_{6}$: C. $72.77: \mathrm{H}, 6.11$. Found: $\mathrm{C}, 72.51 ; \mathrm{H} .6 .08$.
17. 5. $46 \% \mathrm{~m}: \mathrm{mp} 274{ }^{\circ} \mathrm{C}$ (decompose): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.51-7.29$ $(\mathrm{mm} .34 . \mathrm{Ar} H . \& \mathrm{NH}) .4 .88\left(\mathrm{~d} .2 . \mathrm{ArCH}_{2} \mathrm{Ar} . J=14.6 \mathrm{~Hz}\right) .4 .60(\mathrm{~s} .8$. $\mathrm{OCH}_{2} \mathrm{CO}$). 4.06 (br. d. $4 . \mathrm{ArCH} H_{2} \mathrm{O} . J=12.0 \mathrm{~Hz}$). 3.79 (d. 4. $\left.\mathrm{ArCH}_{2} \mathrm{O} . j=12.0 \mathrm{~Hz}\right) .3 .51\left(\mathrm{~d}, 2, \mathrm{ArCH}_{2} \mathrm{Ar}_{3}, J=14.6 \mathrm{~Hz}\right) .3 .18$ (br. $4, \mathrm{NCH}$) , 3.07 (br. $4, \mathrm{NCH}$) , 2.26 (br, $4, \mathrm{NCH}$). 2.22 (br. 4. $\mathrm{NCH}) .1 .38\left(\mathrm{br}, 8 . \mathrm{CH}_{2}\right){ }^{15} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.27(\mathrm{C}=\mathrm{O})$. 154.92. 139.64. 137.58. 134.64. 130.44. 130.08. 129.18. 128.95. 127.82. 126.94 (Ar). $73.66\left(\mathrm{ArCH}_{2} \mathrm{O}\right) .68 .10\left(\mathrm{OCH}_{2} \mathrm{CO}\right) .45 .48$. $36.12\left(\mathrm{NCH}_{2}\right) .31 .42$ (ArCH2Ar). $28.71\left(\mathrm{CH}_{2}\right)$. Anal. Calcd. For $\mathrm{C}_{74} \mathrm{H}_{73} \mathrm{O}_{16} \mathrm{~N}_{6}: \mathrm{C} .73 .37 ; \mathrm{H}, 6.49$. Found: C. $73.11 ; \mathrm{H} .6 .28$.

