# KOREAN CHEMICAL SOCIETY 

## Communications

# Synthesis and Characterization of an Eight-Coordinated $\left[\mathrm{Ho}_{\mathbf{h}} \mathrm{hfa}_{2}\right.$ (triglyme) $]\left[\mathrm{Ho}(\mathrm{hfa})_{4}\right]$ Holmium Complex 

Seong-Joo Kang* and Sang Kwon Lee<br>Deparment of Chemishy Edwation, Korea \ational Linversity of Education, Cheongwom, Chunghuk 363-791. Kovea Received Februay 11, 2003

Key Words: Holmium, Hexalluoropentanedione, Metal $\beta$-diketonates

In the carly 1950s. deposition by chemical reaction of gas phase precursors was mostly a laboratory curiosity with few applications. Of particular interest was the process for the refining transition metals by displacement of thier precursors. ${ }^{1}$

$$
\begin{array}{ll}
\mathrm{Ti}(\mathrm{~s})+2 \mathrm{I}_{-}(\mathrm{g}) \rightarrow \operatorname{Til}_{4}(\mathrm{~g}) & \left(200^{\circ} \mathrm{C}\right) \\
\mathrm{TiI}_{\cdot}(\mathrm{g}) \rightarrow \mathrm{Ti}(\mathrm{~s})+4 \mathrm{I}(\mathrm{~g}) & \left(1+00^{\circ} \mathrm{C}\right)
\end{array}
$$

Today the technique for the deposition of thin film of metals is an indispensable tool in microclectronics processing. ${ }^{-}$ Essential to the technique is volatile precursors that do not decompose during vaporization. In addition. precursors should be non-hoxic and nonpyrophoric. casy to handle and pure. Metal $\beta$-diketonates meet most of these criteria. being relatively stable when vaporized. non-pyriphoric and casy to handle. ${ }^{\text {i }}$ Recently. the lanthanide $\beta$-diketonates have been extensively studied as precursors for the growth of superconducting thin film by $\mathrm{CVD}{ }^{+}$Most of the tanthanide $\beta$ diketonates precursors are molecular speices having polyether ligands. ${ }^{5-3}$ In this work we report the preparation and characterization of the holmium salt having high volatility: $\left\lceil\mathrm{Ho}(\mathrm{hfa})_{2}(\right.$ (riglyme $) ~\left\lceil\mathrm{Ho}(\mathrm{hfa})_{\boldsymbol{\prime}}\right]$.
The holmium salt. $\left[\mathrm{Ho}(\mathrm{hfa})_{2}(\right.$ (triglyme $)\left[\left[\mathrm{Ho}(\mathrm{lffa})_{1}\right]\right.$. was quantiatively symbesized from the reaction of $\mathrm{Ho}(\mathrm{hfa})_{3}-$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and $\left[\mathrm{Ho}(\mathrm{hfa})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]($ triglyme $)$ in benzenc. ${ }^{8}$ The driving force for the synthesis of $[\mathrm{Ho}$ (hfa)_(triglyme)] $\left\lceil\mathrm{Ho}(\mathrm{hfa})_{\mathrm{I}} \boldsymbol{l}\right.$ is mainly the poor solubility of the product in benene and the replacement of four water molecules bound
*omesponding author. e-mail: sikangiothnue.ac.kr
to Holmium metal by one triglyme is surely favorable from the cntropy point of vicw. Furthermore. [Ho(hfa)z(triglyme)] $\left[\mathrm{Ho}\left(\mathrm{h}\lceil\mathrm{a})_{1}\right]\right.$ in $95 \%$ of cllyl alcohol at room iemperalure slowly decomposes by disproportionation to the $\mathrm{Ho}(\mathrm{hfa})_{3}-$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and $\left[\mathrm{Ho}(\mathrm{hfa})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (triglyme). This shows that the intercomersion is reversible.

$$
\begin{gathered}
\mathrm{Ho}(\mathrm{hfa})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+\left[\mathrm{Ho}(\mathrm{hfa})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\text { triglyme }) \hookleftarrow \\
{\left[\mathrm{Ho}(\mathrm{hfa})_{2}(\text { trigly me })\right]\left[\mathrm{Ho}(\mathrm{hfa})_{4}\right]+4 \mathrm{H}_{2} \mathrm{O}}
\end{gathered}
$$

The sublimation of the solid $\left[\mathrm{Ho}(\mathrm{hfa})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot$ triglyme at $80^{\circ} \mathrm{C}$ also produced the [Ho(hfa) (triglyme)] $\mathrm{Ho}(\mathrm{hfa})_{4}$ ] salt. We are not sure that this is only the product but major product. This $\left[\mathrm{Ho}(\mathrm{lfa})_{2}(\right.$ triglyme $\left.)\right]\left[\mathrm{Ho}(\mathrm{hfa})_{4}\right]$ compound was reversibly interconverted to $\left[\mathrm{Ho}(\mathrm{hfa})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (triglyme) in the presence of triglyme and water.

$$
\begin{gathered}
{\left[\mathrm{Ho}(\mathrm{hfa})_{2}(\text { triglyme })^{2}\left[\mathrm{Ho}(\mathrm{hfa})_{4}\right]+\text { triglyme }+4 \mathrm{H}_{2} \mathrm{O} \rightarrow\right.} \\
2\left[\mathrm { Ho } \left(\mathrm{~h}\left)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\text { triglyme })\right.\right.
\end{gathered}
$$

The molecular structure of $\left[\mathrm{Ho}(\mathrm{hfa})_{2}(\right.$ (triglyme $\left.)\right]\left[\mathrm{Ho}(\mathrm{hfa})_{1}\right]$ reveals that one of the holmium atom is exclusisely coordinated to four hfa ligands in an antisquareprismatic arrangement. Whilst the other is encapsulated by hfa and triglyme ligands. ${ }^{9}$

The structure of the $\left\lceil\mathrm{Ho}^{(h f a}\right)_{2}$ (trigly me) $\boldsymbol{\text { cation consists of }}$ two hfa ligands one above and one below the planar holmium-coordinating triglyme. The two $\mathrm{O}-\mathrm{Ho}-\mathrm{O}$ planes of the hef clielate rings intersect at an angle of $9.1^{\circ}$. So that the hifa oxygens are coordinated in an almost planar confi-

 ellipsoidal at $50 \%$ level. The $\mathrm{CF}_{3}$ groups and hydrogen atoms are omitted for clarity
guration. The two $\mathrm{HoO}_{4}$ planes $\boldsymbol{\mathrm { Ho }}(1)-\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}(3)-\mathrm{O}(4)$ and $\mathrm{Ho}(1)-\mathrm{O}(5)-\mathrm{O}(6)-\mathrm{O}(7)-\mathrm{O}(8)]$ intersect at an angle of $85.2^{\circ}$. Triglyme ligand is a linear polyether. not cyclic. Two hifa ligands lean toward the open site of the triglyme ligand mainly due to the steric unclouding. The $\mathrm{Ho}-\mathrm{O}$ (of hefa) bond distances [2.30 to 2.32 A$]$ are shorter than the $\mathrm{Ho}-\mathrm{O}$ (or (riglyme) bond distances [2.35 to 2.37 A$]$. The metal center of the $\left[\mathrm{Ho}\left(\mathrm{h}[\mathrm{a})_{\mathrm{A}}\right]\right.$ anion is sumrounded by the four hifa ligands 10 form an almost spherical molecule. The average $\mathrm{Ho}-\mathrm{O}$ (or bfa) distance of the $\left[\mathrm{Ho}(\mathrm{lfa})_{1}\right]$ anion is $2.33[2] \mathrm{A}$ and the average $\mathrm{O}-\mathrm{Ho}-\mathrm{O}$ angle of the same hfa ligand is $73.4^{\circ}$. The crystal structure of $\mathrm{CsY}(\mathrm{hfa})_{4}$ had been published. The average $\mathrm{Y}-\mathrm{O}$ (of hfa) distance of the [Y(hfa) $]$ anion is 2.32 A and the average $\mathrm{O}-\mathrm{Y}-\mathrm{O}$ angle of the same hfa ligand is $73.5^{\circ}$. Amospleric pressure thernal gravimetric analysis reveals that sublimation process takes place in the 150-260 ${ }^{\circ} \mathrm{C}$ temperature range. ${ }^{1 i}$ Over $99 \%$ of the material is vaporived learing about $1 \%$ residuc. In general. ionic salts show the high melting point and low volatility. Howerer. Ho(hfa) ( friglyme) $[$ Ho(hfa) $\|$ shows relatively low melting point and bigh volatility. The DTA curve shows a meling point endothernal at $180^{\circ} \mathrm{C}$ which is consistent with melting point measurement ( $176-179^{\circ} \mathrm{C}$ ). In $\mid \mathrm{Ho}(\mathrm{hfa})_{2}\left(\right.$ triglyme) $\left.\mid \boldsymbol{H o}(\mathrm{lffa})_{4}\right\rceil$. the predominant peak observed is $\left[\mathrm{Ho}(\mathrm{lffa})_{2}(\right.$ triglyme $\left.)\right]$ at $\mathrm{m} / \mathrm{x} 757$.

Supporting Information Available. Crystallograplic data for the structure reported here have been deposited with the Cambridge Crystallographic Data Centre (Deposition No. CCDC-205686). The data can be obtained frec of charge wia wnu:codc.com.ac.uk conts retriewing.htm/ (or from the CCDC. 12 Union Road. Cambridge CB2 1EZ. UK: fax: $+4+$ 1223336033 : c-mail (depositáacctc.cam.ac uk).

## References

1. Blocher. J. M. (hem. Iap. Deposition 1997. 3. 161.
2. Luten. H. A.: Rees Jr. W. S.: Goedken. V. L. (hem. Tap.

Deposition 1996, 2. 149
3. (a) Van Hemert. R. L.: Spendlove. L. B.: Sievers. R. E. $J$ Electrochem. Soc 1965. 1/2. 1123. (b) Chattoraj. S. C.: Cupah. A. G.: Sievers. R. E.J. Ihorg. Fucl. (Them. 1966. 28. 1937. (c) Marks. T. J. Jume fppl. Chem. 1995, 67. 313.
4. Ushida, T.: I Iigashiyama, K.: I Irabayashi. I. Appl. Surf. Sci. 1994. 7980.287
5. (a) Kang. S.-J.: Jung. Y. S.: Suh. 1.-H. Bull. Korean (hem. Soc. 1999. 20.95. (b) Kang. S.-J.: Jung. Y. S.: Sohn. Y. S. Bhfl. Koreaff (Them. Soc. 1997. 18. 266. (c) Malandrino. G.: Licata. R.: Castelli. F.: Fragala. I. I..: Benclli. C. Inorg. (hem. 1995. 34. 623.3. (d) Malandrino. G.: Frassica. A.: Fragala, I. I. Chem. Iap. Deposition 1997, 3. 306. (c) Baxter. I.: Drake, S. R.: Hursthouse, M. B.: Malik. K. M. A.: McAleese. J.: Otway. D. J.: Plakatouras. J. C. Thoyg (hem. 1995. 34. 1384.
6. (a) Bums. J. H.: Danford. M. D. Fhorg. (hem. 1969. 8. 1780. (b) I.ippard, S. I.: Cotton, F. A.: I cgrdius, P. J. Am. Chem. Soc. 1966. 88.5930
7. Abbreviations used in this paper include: IIfa, hexatluoropentanedione: haf anion of Hhat triglyme. triethylene glycol dimethyl ether.
8. To a Schlenk flask containing $\mathrm{Ho}(\mathrm{ha})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)=(0.036 \mathrm{~g} .0 .044$ $\mathrm{mmol})$ and $\left[\mathrm{IO}(\mathrm{hfa})_{3}\left(\mathrm{I}_{2} \mathrm{O}\right)_{2}\right]$ triglvane ( $0.0+4 \mathrm{~g} .0 .044$ mmol) was added 10 mI . of benzene. The resulting mixture was retlused for 0.5 h . Upon stirting the precipitates were tormed. The ivory precipitates were collected on a suction irit and washed with benzene. Yield: $0.07 \mathrm{~g} .91^{\circ}$. Slow exaporization of the product in 1: 10 solution of methyl alcohol: tolutne gate white-vellow crystals suitable for X-ray erystallographys. mp: $172{ }^{\circ} \mathrm{C}$. IR ( KBr . $\mathrm{cm}^{\prime}$ ): 3140 (w). 2960 (w), 1650 (s). 1560 (s). 15.30 (s). $1508(s)$ 1480 (m). 1460 (m), 1440 (w). 1430 (w). $1260(\mathrm{~s}) .1210(\mathrm{~s}) .1140$ (s). 1090 (m). $1080(\mathrm{~m}) .1060(\mathrm{~m}) .1025$ (w). 1012 (w). 1000 (w). 940 (w). 880 (w). 840 (w).
9. Crystal data for $\mid \mathrm{Ho}\left(\right.$ háa) $($ triglyme $) \| \mathrm{Ho}(\mathrm{ha})_{4} \mid$ : orthorhombic Fdd2. $a-38.439(3), b-41.206(3), c-15.596(2) A, V-24704(4) \wedge^{3}$ The structure was solved by a heavy atom method and retined to R1-0.061 and wR2-0.147 against 5018 observed [ $[2 \sigma(I)]$ rellections.
10. Experiment was perlormed on a SETARAM TGA-92 instrument. which simultaneously carried out thermograwimetry (GGA) and differential thenmal amalysis (DTA). The measurement was performed in alumina crucibles under an atmosphere of tlowing dry nitroger, using heating rates of $5^{\circ} \mathrm{C}$ :min. from ambient temperature up to $500^{\circ} \mathrm{C}$

