Heterocyclization Reaction of 4-(2-Methylaziridin-1-yl)-3-ureidobenzotrifluorides under Appel's Conditions

Hyun In Cho and Kee-Jung Lee ${ }^{\circ}$
Deparment of Chemical Engineering, Hanvang Cniversity, Seoul 133-791, Korea Recenved October 28, 2002

Abstract

The reaction of 4 -(2-methylaziridin-1-yl)-3-ureidobenzotrifluorides \downarrow with triphenylphosphine, carbon tetrachloride, and triethylamine (Appel's condition) led to the corresponding carbodiinudes $\mathbf{5}$. which undervent intramolecular cycloaddition reaction with aziridine under the reaction condition to give the benzinudazolefused heterocycles. 2.3-dilydro-1 H-imidazo[1.2-a]benzimidazoles 8 and 12.13 -dihydro- $5 H$-benzimidazo[2.3- b] [1,3]benzodiazepines 9 .

Key Words : Heterocyclization Urea. Aziridine, Carbodiimide. Appel's conditions

Introduction

2.3-Dihydroimidazo[1.2-a] benzimidazole derivatives have been shown to exhibit antilypertensive ${ }^{1}$ antihistamine. ${ }^{-}$ antidiabetic. ${ }^{3}$ and antiarrhythmic ${ }^{3}$ activities and this justifies contimuous efforts in developing more general and versatile synthetic methodologies to this class of compounds. Usually they are prepared by the intramolecular substitution reaction of suitable functionalized benzimidazoles having amine moieties. ${ }^{\text {. }}$
We have recently reported a new synthesis of 5.6 -dihydro7 H -imidazo[1.2-b][1.2.4]triazoles.5 2.3-dihydro- 1 H -imidazo[$2^{\prime} .3^{\prime}: 2.3$]midazo $\left[4.5-b\right.$]pyridines ${ }^{6}$ and 12.13 -dihydro- 5 H -1.3-benzodiazepino[$2^{\prime} .3^{\prime}: 2.3$]imidazo $[4.5-b]$ pyridines ${ }^{6}$ involving intramolecular cycloaddition reaction of aziridine and carbodiimide ${ }^{7}$ obtained from the corresponding ureas using Appel's dehydration condition ${ }^{8}$ as shown in Scheme 1 and Scheme 2. The present paper describes the synthesis of related heterocycles. 2.3 -dihỵdro- 1 H -imidazo[1.2-c] benzimidazoles 8 and hitherto unknown 12.13-dihydro- 5 H -

Scheme 2
benzimidazo[2.3-b][1.3]benzodiazepines 9 by the similar manner (Scheme 3).

Results and Discussion

The four-step synthetic approach to 8 and 9 required linking an aziridine moiety to a phenyl ring followed by reduction of the nitro group. urea formation and cyclization under Appel's condition to the benzimidazole-fused heterocylces 8 and 9 as shown in Scheme 3. Thus. 4-chloro-3nitrobenzotrifluoride (1) was reacted with 2-methylaziridine in the presence of triethylamine in tetrahydrofuran at $60^{\circ} \mathrm{C}$ for 48 h to give 4-(2-methylaziridin-1-yl)-3-nitrobenzotrifluoride (2) in 93% yield. Reduction of the nitro group of 2 with 5% palladium on charcoal in hydrazine hydrate at room temperature for 2 h afforded aniline $3 \mathrm{in} 91 \%$ yield. Treatment of the aniline 3 with isocyanates in dichloromethane at room temperature gave the ureas + in $86-91 \%$ yields. Reaction of ureas 4 with tripheny lphosphine, carbon tetrachloride, and triethylamine in refluxing dichloromethane for $2-24 \mathrm{~h}$ afforded 2.3-dilydro- 1 H -imidazo[1.2-a]benzimidazoles 8 ($54-78 \%$) as a major product and 12.13dihy dro- 5 H -benzimidazo[2.3-b][1.3]benzodiazepines 9 (4$8 \%$) as a minor one. In the case of N-methyl urea +e . a single product $8 \mathbf{e}(74 \%)$ was isolated as a HCl salt.

A suitable mechanism for the formation of 8 and 9 is depicted in Scheme 3. Although the isolation of carbodiimides 5 was unsuccessful under the reaction conditions. an intramolecular cycloaddition reaction of aziridinyl carbodiimides 5 may give the zwitterionic aziridinium ions 6 followed by aziridine ring opening to afford the resonancestabilized zwitterionic intermediates $7 \mathrm{a}-\mathrm{b}$ and subsequent ring closure to give $\mathbf{8}$ and $\mathbf{9}$ after rearomatization. Presumably the low yields of the minor products 9 might be explained by the small contribution of resonance form 7 b due to the loss of resonance energy of benzene ring.

The structures 8 and 9 were assigned on the basis of spectroscopic data. Compound 8a. for instance, had the molecular formula of $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3}$. as indicated by mass spectra ($\mathrm{M}^{+} 317$) as a base peak. In the ${ }^{l} \mathrm{H}$ NMR spectrum of

Scheme 3

8a. the signals from the two C 3 hydrogens appear as two doublet of doublets at $4.26(J=15.6$ and 7.3 Hz$)$ and 4.36 $\mathrm{ppm}(J=15.6$ and 4.5 Hz$)$. which arise as a result of coupling of the nonequivalent geminal hydrogens with one another and of each of them with the C2 hydrogen. The signal corresponding to the C 2 hydrogen appears as a complex multiplet at 4.48 ppm . which arises from coupling with the C3 hydrogen atoms and the C2 methyl group. The ${ }^{13} \mathrm{C}$ NMR showed fifteen absorption peaks and its infrared spectrum showed no absorption in the region near $3400 \mathrm{~cm}^{-1}$. Compound $9 \mathbf{a}$ had the molecular formula of $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3}$. as indicated by mass spectra ($\mathrm{M}^{-} 317$) as a base peak again. Comparison of the ${ }^{l} \mathrm{H}$ NMR signals for the $\mathrm{CH}_{2}(\delta 4.03$. dd. $J=9.5$ and 5.8 Hz and $\delta 4.60$. dd. $J=9.5$ and 8.9 Hz) and $\mathrm{CH}(\delta 4.76 . \mathrm{m})$ groups with those of $8 \mathbf{a}$ showed different coupling constant (15.6 vs 9.5). Unfortunately, no N-H proton was observed distinctly. The ${ }^{13} \mathrm{C}$ NMR exhibited seventeen absorption peaks including peak at $\delta=133.0$ assignable to the bridged carbon (Cl3a). and its infrared
spectrum showed absorption for NH band ($3409 \mathrm{~cm}^{-1}$).
In conclusion. using 4-(2 -methylaziridin-1-yl)-3-ureidobenzotrifluoride 4 in the new synthesis of benzimidazolefused heterocycles via intramolecular cycloaddition reaction under Appel's conditions was achieved again.

Experimental Section

All reagents and solvents were reagent grade or were purified by standard methods before use and the reactions were routinely carried out under an inert atmosphere. Silica gel 60 ($70-230$ mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical thin layer chromatography (tlc) was performed on silica gel with fluorescent indicator coated on aluminium sheets. Melting points were taken using an Electrothermal melting point apparatus and are uncorrected. Microanalyses were obtained using a Carlo Erba EA 1180 element analyzer. Mass spectra were obtained using a ThermoQuest Polaris Q mass spectro-
meter operating at 70 eV . Infrared spectra were recorded on a Nicolet Magna 550 FTIR spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Gemini 300 spectrometer using deuterochloroform. All chemical shifts are reported in parts per million (δ) relative to tetramethylsilane.

4-Chloro-3-nitrobenzotrifluoride and 2-methylaziridine were purchased from Aldrich Chemical Company.

4-(2-Methylaziridin-1-yl)-3-nitrobenzotrifluoride (2).
To a solution of 2 -methlaziridine (3.71 g .65 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(10.1 \mathrm{~g} .100 \mathrm{mmol})$ in 60 mL of THF was added $4-$ chloro-3-nitrobenzotrifluoride (1.9 .02 g .40 mmol) and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h . The solvent was removed on a rotavapor and the residue was partitioned between water (20 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}$). The organic layer was removed after drying over MgSO_{4} and the residue was crystallized with hexane to give $9.16 \mathrm{~g}(93 \%)$ of $2 . \mathrm{mp}$ $65^{\circ} \mathrm{C}: \operatorname{IR}(\mathrm{KBr}) 1634,1565,1534,1328,1277,1153,1126$. $912.846 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\delta 1.45(\mathrm{~d} .3 \mathrm{H} . J=5.5 \mathrm{~Hz}) .2 .25(\mathrm{~d}$. $1 \mathrm{H} . J=6.1 \mathrm{~Hz}) .2 .32(\mathrm{~d} .1 \mathrm{H}, J=3.7 \mathrm{~Hz}) .2 .50(\mathrm{~m} .1 \mathrm{H}) .7 .21$ (d. $1 \mathrm{H} . J=8.5 \mathrm{~Hz}$). 7.68 (d. $1 \mathrm{H} . J=8.5 \mathrm{~Hz}$). $8.22(\mathrm{~s} .1 \mathrm{H})$: MS (mz. \%) 246 (M $\mathrm{M}^{-}, 7$). 174 (17). 145 (25). 127 (11). 105 (100).

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}:$ C. 48.79: H. 3.68: N. 11.38. Found: C. 48.51 : H. 3.55 : N. 11.20.

3-Amino-4-(2-methylaziridin-1-yl)benzotrifluoride (3).
To a stirred solution of $2(2.95 \mathrm{~g} .12 \mathrm{mmol})$ and 5% palladium on charcoal (0.50 g .2 .4 mmol) in 40 mL of MeOH was added 98% hydrazine monohydrate (2.0 g. 40 mmol) in 10 mL of MeOH dropwise manner over 1 h at r.t. The misture was stirred for additional 1 h at r.t., and filtered over celite. The filtrate was evaporated in vacuo and the residue was partitioned between water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$. The organic layer was removed after drying over MgSO_{4} and the residue was crystallized with hexane to give $2.36 \mathrm{~g}(91 \%)$ of $3 . \mathrm{mp} 124-125^{\circ} \mathrm{C}$: IR (KBr) $3285,3149$. 1619. 1495, 1436. 1405. 1335. 1277. 1203. 1161. 1110 . 1075. 1013. 889. 823. 792, 722. $702 \mathrm{~cm}^{-1}$: ${ }^{l} \mathrm{H}$ NMR $\delta 1.40$ (d. $3 \mathrm{H} . J=4.2 \mathrm{~Hz}) .2 .08-2.12(\mathrm{~m} .3 \mathrm{H}) .5 .52(\mathrm{~s} .2 \mathrm{H}) .6 .81(\mathrm{~d}$. $1 \mathrm{H} . J=8.2 \mathrm{~Hz}) .7 .10(\mathrm{~d} .1 \mathrm{H} . J=7.0 \mathrm{~Hz}) .7 .43(\mathrm{~s} .1 \mathrm{H}) . \mathrm{MS}$ (mz. \%) $216\left(\mathrm{M}^{+} .22\right) .201(15) .187(100), 167(28)$.
Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2}:$ C. 55.55 ; H. 5.13 : N. 12.96 . Found: C. 55.33: H. 4.88: N, 12.67.
4-(2-Methylaziridin-1-yl)-3-ureidobenzotrifluoride + . General Procedure: To a stirred solution of $3(2.16 \mathrm{~g} .10$ mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added the isocyanate (9.5 mmol) in 10 mL of $\mathrm{CH}_{3} \mathrm{Cl}_{2}$ dropwise manner at r.t. After stirring for 2 h at ambient temperature. the solvent was removed on a rotavapor. The residue was crystallized from hexane to give 4.

The yield. physical and spectral data of 4 are as follows:
4a: 90% mp $160-161^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\delta 1.22$ (d. $1 \mathrm{H} . ~ J=5.2$ Hz). 2.06 (d. $1 \mathrm{H}, J=3.7 \mathrm{~Hz}$). $2.10(\mathrm{~d} .1 \mathrm{H}, J=6.1 \mathrm{~Hz}) .2 .23$ $(\mathrm{m} .1 \mathrm{H}) .6 .89(\mathrm{~d} .1 \mathrm{H} . J=8.2 \mathrm{~Hz}) .7 .13-7.34(\mathrm{~m} .6 \mathrm{H}) .7 .68(\mathrm{~s}$. $1 \mathrm{H}) .7 .80(\mathrm{~s} .1 \mathrm{H}) .8 .29(\mathrm{~s} .1 \mathrm{H})$.
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}:$ C. 60.88: H. 4.81: N. 12.53. Found: C. 60.55 : H. 4.75 : N. 12.30.

4b: 86\%. mp 138-139 ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\delta 1.39$ (d. $3 \mathrm{H} . J=5.5$
$\mathrm{Hz}) .2 .21$ (d. $1 \mathrm{H} . J=3.4 \mathrm{~Hz}$). $2.39(\mathrm{~m} .2 \mathrm{H}) .6 .97$ (d. $1 \mathrm{H} . J=$ $8.5 \mathrm{~Hz}) .7 .26-7.47(\mathrm{~m} .5 \mathrm{H}) .7 .74(\mathrm{~s} .1 \mathrm{H}) .8 .21(\mathrm{~s} .1 \mathrm{H}) .9 .53$ (s. 1H).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}$: C. 55.22 : H. 4.09 : N. 11.36. Found: C. $55.11:$ H. 3.82: N. 11.05.
tc: 88% mp $139-140^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\delta 1.40$ (d. $3 \mathrm{H}, J=5.2$ Hz). $2.22(\mathrm{~s} .1 \mathrm{H}) .2 .40(\mathrm{~m}, 2 \mathrm{H}) .6 .95-7.16(\mathrm{~m} .4 \mathrm{H}) .7 .41-$ $7.44(\mathrm{~m} .1 \mathrm{H}) .7 .74(\mathrm{~s} .1 \mathrm{H}) .8 .19-8.24(\mathrm{~m} .1 \mathrm{H}) .8 .46(\mathrm{~s} .1 \mathrm{H})$, $9.60(\mathrm{~s} .1 \mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}$: C. 57.79: H. 4.28: N , 11.89. Found: C. 57.68: H. 4.07: N, 11.67.

4d: 90% mp $145-146^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\delta 1.41$ (d. $3 \mathrm{H} . J=5.9$ $\mathrm{Hz}) .2 .22(\mathrm{~d} .1 \mathrm{H} . J=3.4 \mathrm{~Hz}) .2 .38(\mathrm{~m} .2 \mathrm{H}) .3 .80(\mathrm{~s} .3 \mathrm{H})$. $6.87-7.01(\mathrm{~m} .3 \mathrm{H}) .7 .40-7.46(\mathrm{~m} .3 \mathrm{H}) .7 .78(\mathrm{~s} .1 \mathrm{H}) .8 .10(\mathrm{~s}$. $1 \mathrm{H}) .9 .24$ (s. 1H).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$: C. 59.17: H. 4.97: N , 11.50. Found: C. $58.81:$ H. 4.71 : N. 11. 22.
te: 91% mp $138-139^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\delta 1.35$ (d. $3 \mathrm{H} . J=4.9$ $\mathrm{Hz}) .2 .13(\mathrm{~d} .1 \mathrm{H} . J=3.7 \mathrm{~Hz}) .2 .28-2.35(\mathrm{~m} .2 \mathrm{H}) .2 .89(\mathrm{~d}$. $3 \mathrm{H} . J=4.9 \mathrm{~Hz}) .6 .12(\mathrm{br} \mathrm{s} .1 \mathrm{H}) .6 .92(\mathrm{~d} .1 \mathrm{H} . J=8.2 \mathrm{~Hz})$. $7.38(\mathrm{~d} .1 \mathrm{H} . J=8.5 \mathrm{~Hz}) .7 .64(\mathrm{~s} .1 \mathrm{H}) .9 .12(\mathrm{~s} .1 \mathrm{H})$.
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}$: C. 52.75: H. 5.16: N, 15.38. Found: C. 52.60: H. 4.97: N. 15.05.

2,3-Dihydro-1 H -imidazo [1,2-a]benzimidazoles 8 and 12,13-Dihydro-5H-benzimidazo $[2,3-b][1,3]$ benzodiazepine
9. General Procedure: To a stirred solution of the appropriate urea $4(2 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Pl}_{3} \mathrm{P}$ $(1.80 \mathrm{~g} .6 .8 \mathrm{mmol}), \mathrm{CCl}_{4}(1.4 \mathrm{~mL} .14 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.9$ mL .6 .8 mmol). The mixture was heated to reflux temperature for $2-24 \mathrm{~h}$. After cooling to room temperature the reaction mixture was partitioned between water (20 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The solvent was removed after drying over MgSO_{4} and the residue was chromatographed on silica gel colunn. eluted with hexane-EtOAc $4: 1$ to give the products 8 and 9.

The reaction time. yield. phsical and spectral data of $\mathbf{8}$ and 9 are as follows:

8a: 24 h. 70% mp $148-150^{\circ} \mathrm{C}$: IR (KBr) 1611. 1561. 1530. 1499, 1440, 1374, 1320. 1242. 1161, 1110 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 1.66(\mathrm{~d} .3 \mathrm{H}, J=6.4 \mathrm{~Hz}) .4 .26(\mathrm{dd} .1 \mathrm{H} . J=15.6$ and 7.3 Hz). 4.33 (dd. $1 \mathrm{H}, J=15.6$ and 4.5 Hz). $4.48(\mathrm{~m} .1 \mathrm{H})$, $7.04-7.54(\mathrm{~m} .7 \mathrm{H}) .7 .84(\mathrm{~s} .1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 22.6 .50 .9 .56 .2$. 107.4. 114.7. 117.9. 118.8. 124.3. 124.7. 124.8. (d, $J_{\mathrm{CF}}=262$ Hz). 129.2. 136.0. 139.2, 141.7. 151.5: MS (mz. \%) 317 ($\mathrm{M}^{-}, 100$). 316 (35). 302 (80). 276 (20). 117 (16).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3}: \mathrm{C} .64 .35: \mathrm{H}, 4.45: \mathrm{N} .13 .24$. Found: C. 64.10: H. 4.31: N. 13.02.

9a: 24 h. 6% mp $166-168^{\circ} \mathrm{C}$: IR (KBr) 3409. 1697. 1634. 1561. 1495. 1436. 1320. $1114 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\delta 1.68$ (d. 3 H , $J=6.1 \mathrm{~Hz}) .4 .03$ (dd. $1 \mathrm{H} . J=9.5$ and 5.8 Hz$) .4 .60(\mathrm{dd} .1 \mathrm{H}$. $J=9.5$ and 8.9 Hz$) .4 .76(\mathrm{~m}, 1 \mathrm{H}) .7 .04-7.44(\mathrm{~m} .4 \mathrm{H}) .7 .68-$ 7.71 (m. 2H). 7.81 (s. 1H): ${ }^{13} \mathrm{C}$ NMR δ 19.8. 48.7. 58.6. 107.2. 114.8. 115.4. 115.7. 117.6. 122.1. 123.9. 125.0 (d. J_{CF} $=272 \mathrm{~Hz})$. 129.2. 129.4. 133.0 (C13a), 139.5. 148.0. 157.3: $\mathrm{MS}(m z \%) 317$ (M-100). 302 (95). 276 (15). 213 (10).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3}: \mathrm{C} .64 .35: \mathrm{H} .4 .45: \mathrm{N} .13 .24$. Found: C. 64.16: H. 4.09: N. 13.39.

8b: 24 h. 54%. mp $155-156^{\circ} \mathrm{C}$: IR (KBr) 1607. 1549. 1526. 1487. 1444, 1413. 1328, 1254, 1168. 1126. $1056 \mathrm{~cm}^{-1}$: ${ }^{l} \mathrm{H}$ NMR $\delta 1.69$ (d. $3 \mathrm{H} . J=6.7 \mathrm{~Hz}$). 4.26 (dd. $1 \mathrm{H} . J=15.9$ and 7.6 Hz$) .4 .36(\mathrm{dd} .1 \mathrm{H} . J=15.9$ and 3.9 Hz$) .4 .50(\mathrm{~m}$. 1H). 7.14-7.51 (m, 6H). 7.83 (s. 1H): ${ }^{13} \mathrm{C}$ NMR $\delta 22.8 .51 .1$. $56.5,107.7 .114 .9 .118 .1 .120 .2 .124 .5 .124 .8\left(\mathrm{~d} . J_{\mathrm{CF}}=272\right.$ $\mathrm{Hz}) .125 .0,128.0,129.2,136.0,138.0,151.2$: MS ($m z . \%$) 353 (37). 351 (M ${ }^{-} .100$). 338 (15), 336 (51). 301 (18). 275 (50), 226 (15), 151 (26).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{3}$: C. 58.05 : H. 3.73: N. 11.95. Found: C. 57.75 : H. 3.49: N. 11.71.

9b: $24 \mathrm{~h} .8 \%$ mp 168-171 ${ }^{\circ} \mathrm{C}$: IR (KBr) 3405. 1708. 1615. 1553. 1495, 1324. $1165,1118 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta 1.62$ (d. 3 H . $J=6.4 \mathrm{~Hz}) .4 .11(\mathrm{dd} .1 \mathrm{H} . J=7.9$ and 5.9 Hz$) .4 .27(\mathrm{dd} .1 \mathrm{H}$. $J=7.9$ and 5.5 Hz$) .4 .44(\mathrm{~m} .1 \mathrm{H}), 6.99-7.67(\mathrm{~m} .6 \mathrm{H}):^{13} \mathrm{C}$ NMR δ 19.8. 48.8. 58.6. 107.4. 115.1. 116.6. 117.9. 118.4. $124.9\left(\mathrm{~d} . J_{\mathrm{CF}}=272 \mathrm{~Hz}\right), 127.0,127.5,129.2 .133 .0 .136 .8$ (C13a) 138.1, 147.6. 147.8: MS (mz. \%) 353 (32). 351 (M^{+}. 100). 338 (16). 336 (52). 301 (16). 275 (39). 151 (19).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{3}$: C. $58.05: \mathrm{H} .3 .73: \mathrm{N}$. 11.95. Found: C. 57.79: H. 3.50: N. 11.68.

8c: $5 \mathrm{~h} .77 \% \mathrm{mp} 125-127^{\circ} \mathrm{C}$: IR (KBr) 1619. 1553. 1518. 1452. 1382. 1328. 1250. 1168. 1133. $1052 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR δ $1.70(\mathrm{~d} .3 \mathrm{H} . J=6.7 \mathrm{~Hz}) .4 .31(\mathrm{dd} .1 \mathrm{H} . J=15.8$ and 7.9 Hz$)$. 4.36 (dd. $1 \mathrm{H} . J=15.8$ and 4.3 Hz). $4.50(\mathrm{~mm} .1 \mathrm{H}), 7.00-7.43$ (m. 5 H). $7.87(\mathrm{~s} .1 \mathrm{H}) .8 .37(\mathrm{~m} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 22.6 .51 .0$. 56.1, 107.7. 114.8. 117.9. 119.4, 119.9. 122.8. 124.3. 124.6. 124.8. (d. $J_{\mathrm{CF}}=272 \mathrm{~Hz}$). 127.6. 130.2. 135.9. 141.5. 152.4 $\left(\mathrm{d} . J_{C F}=247 \mathrm{~Hz}\right) \mathrm{MS}(m z . \%) 335\left(\mathrm{M}^{+} .100\right) .320(58) .294$ (15), 226 (14).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{~N}_{3}$: C. 60.90: H. 3.91: N. 12.53 . Found: C. 60.72: H. 3.78: N. 12.35
9c: $5 \mathrm{~h} .4 \%$. oil: IR (KBr) 3378. 1728, 1642. 1557. 1499. 1332. 1157. $1114 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\delta 1.41$ (d. $3 \mathrm{H} . J=6.4 \mathrm{~Hz}$). $3.90(\mathrm{dd} .1 \mathrm{H} . J=9.5$ and 5.7 Hz$) .4 .42(\mathrm{dd} .1 \mathrm{H} . J=9.5$ and 8.5 Hz) $.5 .11(\mathrm{~m} .1 \mathrm{H}) .7 .01-7.47(\mathrm{~m}, 5 \mathrm{H}) .7 .71(\mathrm{~s} .1 \mathrm{H}) .^{13} \mathrm{C}$ NMR δ 19.3. 47.9. 61.5. 107.3, 111.2. 114.6. 116.7. 117.5. 119.7. 123.7 (d. $J_{\mathrm{CF}}=272 \mathrm{~Hz}$). 125.1. 126.5. 127.2. 134.1 (C13a). 147.6. 156.2 (d. $J_{\mathrm{CF}}=248 \mathrm{~Hz}$). 159.3: MS (mz. \%) 335 (M', 100). 320 (50). 316 (15). 294 (11). 226 (13).
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{~N}_{3}$: C. 60.90: H. 3.91: N. 12.53 . Found: C. 60.63: H. 3.75: N, 12.20.
8d: $24 \mathrm{~h} .78 \%$. mp $157-158^{\circ} \mathrm{C}$: IR (KBr) 1615. 1561. 1510. 1444. 1374, 1332. 1238, 1161, 1114. 1065. $1040 \mathrm{~cm}^{-1}$: ${ }^{l} \mathrm{H}$ NMR $\delta 1.67(\mathrm{~d} .3 \mathrm{H} . J=6.7 \mathrm{~Hz}) .3 .81(\mathrm{~s} .3 \mathrm{H}) .4 .26(\mathrm{dd}$. $1 \mathrm{H} . J=15.9$ and 7.6 Hz). $4.32(\mathrm{dd} .1 \mathrm{H} . J=15.9$ and 3.7 Hz$)$. $4.50(\mathrm{~m} .1 \mathrm{H}) .6 .91-6.94(\mathrm{~m} .2 \mathrm{H}) .7 .12-7.15(\mathrm{~m} .1 \mathrm{H}) .7 .36-$
$7.45(\mathrm{~m} .3 \mathrm{H}) .7 .81(\mathrm{~s} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\delta 22.7 .50 .8 .55 .5$. 55.9. 107.4. 114.5, 117.6, 121.8, 124.2, 124.7, 124.9 (d. J_{CF} $=271 \mathrm{~Hz}), 132.3 .136 .3,141.8 .152 .7,156.1: \mathrm{MS}(\mathrm{mz}, \%)$ $347\left(\mathrm{M}^{+} .100\right) .332(59) .147(35)$.
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}$: C. 62.24: H. 4.64: N. 12.10. Found: C. 61.93: H. 4.78: N. 11.88.

9d: $24 \mathrm{~h}, 8 \%$, oil: IR (KBr) 3400, 1700, 1634. 1561. 1514 . 1433. 1316. 1242. 1153. 1114. $1044 \mathrm{~cm}^{-1}$. ${ }^{l} \mathrm{H}$ NMR $\delta 1.53$ (d. $3 \mathrm{H} . J=6.1 \mathrm{~Hz}$). 3.81 (s. 3 H). 3.90 (dd. $1 \mathrm{H} . J=9.5$ and $4.9 \mathrm{~Hz}) .4 .40(\mathrm{dd} .1 \mathrm{H} . J=9.2$ and 8.8 Hz$) .4 .98(\mathrm{~m} .1 \mathrm{H})$. $6.96-7.33$ (m. 3H). $7.54-7.61(\mathrm{~m}, 2 \mathrm{H}) .7 .74(\mathrm{~s} .1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 19.3,47.6 .55 .6 .59 .9,107.0$. 114.7. 117.4. 119.7. 120.6. 123.7. 124.1. 125.1 (d. $J_{\mathrm{CF}}=272 \mathrm{~Hz}$). 131.3. 134.0. 1369 (Cl3a). 147.8. 155.9. 158.8: MS (mz. \%) 347 (M^{-}. 100), 332 (60), 281 (35), 207 (40). 147 (35).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}$: C. 62.24: H. 4.64: N. 12.10. Found: C. 61.91 : H. 4.40: N. 11.75

8 e (HCl salt): $2 \mathrm{~h} .74 \%$ mp $129-130^{\circ} \mathrm{C}$. IR (KBr) 3196. 1631. 1607, 1588, 1448. 1413, 1378, 1316. 1285, 1141. 1110. 1048. $873.803 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 1.61$ (d. $3 \mathrm{H} . J=6.7$ Hz). 3.16 (s. $3 \mathrm{H} . J=4.9 \mathrm{~Hz}$). $4.14(\mathrm{~m} .2 \mathrm{H}) .4 .40(\mathrm{~m}, \mathrm{lH})$. 4.64 (br s. 1 H). 7.06 (d. $1 \mathrm{H} . J=8.2 \mathrm{~Hz}$). 7.32 (d. $1 \mathrm{H} . J=8.2$ $\mathrm{Hz}) .7 .75$ (s. 1 H): ${ }^{13} \mathrm{C}$ NMR $\delta 22.7,30.1$. 50.6. 55.5. 107.0. 113.8. 117.0. 124.1, 124.9 (d. $\left.J_{\mathrm{CF}}=271 \mathrm{~Hz}\right)$. 136.9. 142.2. 156.4: MS (mzz \%) 293 (26). 291 ($\mathrm{M}^{+}, 79$). 256 (100). 228 (29). 215 (42), 187 (41).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClF}_{2} \mathrm{~N}_{3}$: C. 49.41: H. 4.49: N. 14.41. Found: C. 49.11: H. 4.28: N. 14.14.

Acknowledgment. This work was supported by Korea Research Foundation Grant (KRF-2001-015-DP0335).

References

1. Jen. T.: Bender. P.: Van Hoeven. H.: Dienel. B.: Love. B. J. Med. Chent. 1973, 16, 407.
2. Spasov, A. A.; Chernikov, M. V.: Anisimova. V. A.; Kuzmenko. T. A.; Osipova, M. M Khim. -Farm. Zh. 2000. 3t. 48, Chem. Absir. 2001. 134. 216795.
3. Anisimova. V. A.: Levchenko. M. V: Kovalev. G. V: Spasov. A. A.: Dudchenko. G. P: Tsibanev. A. V: Aleksandrova. E. A. Khim. -Fam. Zh. 1988. 22, 1212; Chem. Abstr. 1989, 110, 51270
4. North. R. J.; Day, A. R. J. Heteroctcl. Chem. 1969. 6. 655 and references cited therein.
5. Lee. K.-J.: Kang. S.-U. Tetrahedron Lett. 1995. 36. 2815.
6. Lee. K.-J.: Lim. T.-S. J. Heterocycl. Chem. 2002. 39.975.
7. Intermolecular cycloaddition reaction of aziridine with carbodiimide: see. Baeg, J.-O.: Alper. H. J. Org. Chem. 1992, 57.157.
8. Appel. R.: Kleinstück, R.; Ziehn, K. D. Chen. Ber. 1971, 10t. 1335.
