Synthesis of Unusual Rhenium Complexes with Schiff Bases

Jung Young Kim, Yong Jun Ji, Hyun-Joon Ha, and Hee K. Chae
Deparment of Chemishy, Hanhow University of Foreign Studies, Hongin 49-791, Korea Received December 28, 2002

Key Words: I'hosphine oxide. Rhenium. Schiff base

Schiff bases offer a versatile and flexible series of ligands capable to bind with various metal ions to give compleses with suitable properties for theoretical and/or practical applications. Since Wilkinson published Schiff-base complexes in 1979. a large number of polydentate Schiff-base compounds have been structurally characterized and extensively explored for the developinent of technetium and renium chemistry with radiophammaceutical applications. ${ }^{-}$Rescarch has been focused on the chemistry of (O.N.S)-tetradendate. at first. and later tridentate or bidentate Schiff-base complexes of Re and Tc .

Schiff bases generated by condensing 2-aminophenol with salicylaldelsede could act as a model of multidentate ligands towards rhenium and technetium cores. ${ }^{3}$ Especially. 2(salicylidencamino)bentencthiol (SNO. S-phsalH ${ }_{2}$) is not the stable form of this noncoordinated molecule. white 2-(2lịdroxyphentli)phenol (ONO. ()-phsalH2) is stable. ${ }^{-1} \mathrm{At}$ room temperature the S -phsalH ${ }_{2}$ Schiff base comerts to 2 -(2-hydroxyphenyl)benzencthia\%oline (hbiH) by an intramolecular ring closing reaction. which also comerts to 2-(2lydroxyphenvl)benenethiazole (hbt) by an oxidatise photochemical aromatization reaction as illustrated in Figure 1. Several oxometal complexes of s-plsalH ${ }_{2} / \mathrm{hb}_{2} \mathrm{H} / \mathrm{hbt}$ have extensively been studied ${ }^{1.5}$ In the case of $2-(2-p y r i d y l)-$ benzolhiazoline. similar tautomerization of the ligand has been reported but only one tautomer exists in the solid statc. ${ }^{45}$ Howerer. attempt to isolate these Schiff base rheniun and technetium complexes with both of the tautomer S ,plisalH2/hbıH/hbi ligands have been unsuccessful. Here. we demonstrate reactions of these [SNO] and [ONO] Schiff
bases with $\operatorname{Re}(V)$ ions and interactions among the S phsalH $H_{y} / \mathrm{hbtH} / \mathrm{hbt}$ ring tautomers. The erystal structures of the $\mathrm{Re}(\mathrm{O})\left(\mathrm{S}_{-}\right.$-phsal)(hb1) and $\mathrm{ReCl}_{2}\left(()\right.$-phsal) $\left(\mathrm{OPPl}_{3}\right)$ are described. respectively.

The [SNO] complex $\left[\mathrm{RcO}\left(\eta^{3}-S-\right.\right.$-phsal $)\left(\eta^{2}-h b t\right)$ (1) and the [ONO] complex $\left[\mathrm{ReCl}_{2}\left(\mathrm{OPPl}_{3}\right)\left(\eta^{3}-()\right.\right.$-phsal $\left.)\right]$ (2) were oblained from reaction of $\left[\mathrm{B} \neq \mathrm{Et}_{3} \mathrm{~N}\right]\left(\mathrm{RcOCl}_{4}\right)$ with . S'phsalH ${ }_{2}$ at room temperature and $t-\mathrm{RcOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ with O-phsalH ${ }_{2}$ on heating. respectively. These complexes were characterized by elemental analyses. spectroscopic methods and X-ray crystallography.

The crystallographic analysis of $\mathbf{1}$ shows the presence of a neutral oxorhenium(V) comples in which the overall geometry around the central rhenium atom is best described as a distorted octahedron: the $\mathrm{S} . \mathrm{N}$ and O atoms of the tridentate [SNO] ligand form in a mer-coordination. and the O and N atoms of the hbt ligand bind bidentately as depieted in Figure 2. The $\mathrm{Rc}=\mathrm{O}$. Rc-S. Re-O and $\mathrm{Rc}-\mathrm{N}$ bond lengths are in the ranges observed for analogous compounds. The Re-S(1) bond distance of 2.311 (2) A is longer than those of $\mathrm{Rc}-\mathrm{O}(1)(2.075(6) \mathrm{A})$ and $\mathrm{Rc}-\mathrm{N}(1)(2.082(6) \mathrm{A})$ on the equitorial planc. and that of $\mathrm{Re}-\mathrm{O}(2)(1.96 .3(6) \mathrm{A})$ on the axial position. showing that the structural trans influence of the oxo group is not transmitted to oxygen atom. The most striking feature of the crystal structure of $\mathbf{1}$ is the bidentate binding of the libt rather than the tridentate one of Hhbt. This is clealy seen from the formation of the thiazole: whe difference of the distance between $\mathrm{C}(1+)$ and $N(2): 1.318(11) \AA$ ws. $1.333(9)$ A for $\mathrm{C}(1)-\mathrm{N}(1)$ single bond of the s-phsal ligand. The $\mathrm{C}=\mathrm{N}$ distances of hbt

Figure 1. Schematic diagram of tautomerization between $2(2$-hydroxyphengl)henzenethol (S-phsalHz) and $2(2$-hydroxyphenvl) benzenethiazoline (hbtH), and conversion to 2(2-lydroxy phenyl) benzentethiazole (hat)

Figure 2. ORTEP drawing of $\left[\operatorname{ReO}\left(\eta^{3}-S-p h s a l\right)\left(h^{2}-h b t\right)(1)\right.$. Selected bond lengths (λ) and angles (${ }^{\prime \prime}$): $\operatorname{Re}(1)-O(1), 2.075(6) ; \operatorname{Re}(1)-O(2)$, $1.963(6)$: $\mathrm{Re}(1)-\mathrm{O}(3) .1 .677(6): \mathrm{Re}(1)-\mathrm{N}(1), 2.082(6)$: $\mathrm{Re}(1)-\mathrm{N}(2), 2.160(7)$: $\mathrm{Re}(1)-\mathrm{S}(1), 2.311(2): \mathrm{N}(1)-\mathrm{C}(1), 1.333(9): \mathrm{N}(2)-\mathrm{C}(14)$, $1.318(11): \mathrm{N}(1)-\mathrm{Re}(1)-\mathrm{N}(2), 166.7(3): O(1)-\mathrm{Re}(1)-\mathrm{S}(1), 170.56(17) . O(2)-\mathrm{Re}(1)-\mathrm{O}(3), 166.8(2)$

 $1.987(3): \operatorname{Re}(1)-O(3), 2.027(3): \operatorname{Re}(1)-N(1), 2.063(4): \operatorname{Re}(1)-\mathrm{Cl}(1), 2.3362(11): \operatorname{Re}(1)-\mathrm{Cl}(2), 2.3542(10): \mathrm{N}(1)-\mathrm{C}(1), 1.281(6): \mathrm{N}(1)-\operatorname{Re}(1)-$ $O(3), 166.7(3): O(1)-\operatorname{Re}(1)-O(2), 172.54(1.3), \mathrm{Cl}(1)-\operatorname{Re}(1)-\mathrm{Cl}(2), 177.69(4)$
have been reported: $1.332(10) \mathrm{A}$ for $\left[\mathrm{TcOCl}_{3}(\mathrm{hbt})\right]^{-}$.ll The average angle around $\mathrm{C}(14)$ is $120.0(4)^{\circ}$. that means sp^{2} hy brid.

The X-ray stnicture of $\mathbf{2}$ is shown in Figure 3. The rhenium is six-coordinate in a distorted octahedral coordination sphere: the Cl_{2} fragment is in trans arrangement and the O_{3} fragment is in a meridional coordination. The O and N atoms of the O-phsal ligand bind tridentately, and the distance between $\mathrm{C}(1)$ and $\mathrm{N}(1)$ of the ligand is $1.281(6) \mathrm{A}$. which means a $\mathrm{C}=\mathrm{N}$ bond. The feature of this structure is
based on the formation of triphenylphosphine oxide. and therefore the oxidation state of the rhenium is $+\downarrow$. In most of reactions of trichlorobis(triphenylphosphine)oxorhenium (V) the rhenium-oxygygen double bond is untouchable and remains. Limited studies have been available regarding rhenimm(IV) complexes with triphenylphosphine oxide. ${ }^{\text {. }}$ The nitrogen atom lies trans to OPPh_{3} oxygen and the value of $2.063(+)$ A for the $\mathrm{Re}-\mathrm{N}$ bond is found in the range $2.030(5)-2.091(6) \mathrm{A}$ for the other phosphine oxide Re complexes. ${ }^{\text {c }}$ This structural trans effect is not so strong
compared to that of $\operatorname{Re}(\mathrm{III})-\mathrm{PPh}_{3}$ due to weak back-bonding ability of $\operatorname{Re}(\mathrm{lV})$ to OPPh_{3}.

Acknowledgement. We acknowledge financial support by a grant from the Korean Research Foundation (KRF-99-0 42 -$000079-03004$) and are also grateful to Dr. J. Kim and Prof. O. M. Yaghi at the University of Michigan for using X-ray facilities.

References and Notes

1. Middleton. A. R.: Masters. A. F.: Wilkinson. Gi. J. (hem. Soc., Dalfon Tfans. 1979. 542.
2. For representative reviews: (a) Jurisson. S. S.: Lydon. J. D. (hem. Kin: 1999, 99, 2205. (b) Dilworth. J. R.: Parrott. S. J. Chem. Soc. Ken: 1998, 27, 43.
3. (a) Mevellec, F:: Roucoux. A.: Noiret, N: Patin, II. J. Chem. Soc:. Dalfon Troms. 2001. 3603. (b) Shuter E.: Hoveyda. H. IR.: Kammaratne. V.: Retlig. S. J.: Orvig. C. Jhofg. (hem. 1996. 35. 368. (c) Ballo1. S.: Noirel. N. J. Orgohomet. (hem. 2002. 664. 208.
4. (a) Fulop, F.: Mattinen, J.: Piblaja, K. Fetrohedron 1990. $46,6545$. (b) Duatti, A.: Marehi. A.: Rossi. R.: Magon. J.: Deutsch. Г.:. Berolasi. V.: Bellucci. F. Inofg. (hem. 1988. 27. 4208. (c) Tisuto. F:: Relosco. F.: Mazci. U.: Bandoli. Gi.: Nicoloini. M. J (hem. Soc. Daltom Trums 1987. 1693.
5. (a) 7hang. C.: Guzei, I. A.: Гspenson, J. II. Inomg. Chem. 2001. 40, 2437. (b) Femia, F. J:: Chen, X: Babich, J. W.: 7ubicta, J. Inolg. Chim. Acta 2000, 300-302, 517.
6. The $|S N O|$ complex | ReO $\left(n^{3}-S\right.$-phsal $)\left(\eta^{2}-h b 1\right)$ (I) was prepared from addition of the mixture of $\left|\mathrm{BzEl}_{3} \mathrm{~N}\right|\left(\mathrm{ReOCl}_{4}\right)(0.20 \mathrm{~g} .0 .37$ mmol) in 30 mL of chlorotom and 3 mL of methanol to vellow solution of S-phsall $1_{2}(69 \mathrm{mg} .0 .30 \mathrm{mmol})$ in 10 mJ . of chloroform at room temperature. Atter reerstallization of the erude from acetonitrile, brown erystals of complex 1 were obtained with $80^{\circ}{ }_{0}$ vield based on thenium. On the other hand. a solution of t -
 mmol) in $50 \mathrm{~mL}^{\circ} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was retlused for 1 h . and the solvent of the resulting red misture was removed to red-bronn powder: Atter reerrstallization of the powder from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane, the [ONO] complex [$\mathrm{ReCl}_{2}\left(\mathrm{OPPh}_{3}\right)\left(\mathrm{P}^{3}-O\right.$-phsal $)$] (2) was obtaited it 80° o vield.
7. Brown plate crystals of I were analyzed at $273 \perp 1 \mathrm{~K}$: orthorhombic. space group P hod with $a-13.1266(8) A . b-16.6892$ (10) A. $c-23.4392(14) A . a-90^{\prime \prime} . b-90^{\prime \prime} . g-90^{\prime \prime} . I^{\prime}-5134.9(5)$ $\Lambda^{3}, Z-8, d_{\text {tadal }}-1.803 \mathrm{~g} \mathrm{~cm}^{3} \cdot \mu_{u}(\mathrm{Mo} \mathrm{K} \alpha)-4.932 \mathrm{~mm}^{-1}$. goodness of tit on $F^{2}-0.887, R-0.0510$ and $R_{u r}-0.1262$. ${ }^{1} \mathrm{H}-$ NMR in DMSO- d $_{6}: \delta 6.2$ (m. III, ph). 6.3 (m, IHI. ph), $6.6(\mathrm{~m}$. 1H. ph). 7.0 (m. 1H. ph). 7.1-7.4 (m. $5 \mathrm{H} . \mathrm{ph}$). $7.6-7.9$ (m. $5 \mathrm{H} . \mathrm{ph}$). 8.4 (m. 1H. ph $) .8 .6(\mathrm{~m} .1 \mathrm{H} . \mathrm{ph})$ and 9.7 (m. $1 \mathrm{H} .-\mathrm{CH}-\mathrm{N}-$). F"I-IR (KBr pellet. cm^{-1}): 955 (Re-O). $1608(\mathrm{C}-\mathrm{N})$. Anal. Calcd. For $\mathrm{C}_{2 \mathrm{x}} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{RcS}_{2}:$ C. 48.26 : HI. 2.89: N, 6.030\%. Found: C. 48.20 : II, 3.01: N. 5.85° o. Broun plate erystals of 2 were analyzed at 158 - 1 K : monodinic, space group $/ 2(1) \mathrm{t}$ with $a-13.9609(6)$ A. b $-14.6346(6) \AA . c-14.4209(6) \AA .\left(z-90^{\circ} . b-108.1490(10)^{\circ} . \gamma-\right.$ $90^{\circ} . \mathrm{V}^{\circ}-2799.8(2) \AA^{3} .7-4 . d_{\text {aded }}-1.771 \mathrm{~g}_{\mathrm{cm}}{ }^{3} . \mu_{\mathrm{a}}(\mathrm{Mo} \mathrm{K} \alpha)-$ $4.622 \mathrm{~mm}^{-1}$. goodness of lit on $\Gamma^{2}-1.021 . R-0.0310$ and $R_{n}-$
 $7.5\left(\mathrm{~m}, 15 \mathrm{II}, \mathrm{PPh}_{3}\right)$. and $10.2(\mathrm{~s}, 1 \mathrm{I},-\mathrm{CH}-\mathrm{N}-)$. $\mathrm{FT}-\mathrm{IR}(\mathrm{KBr}$ pellet. cm^{i}): $1597(\mathrm{C}-\mathrm{N})$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{I}_{3-} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{PRe}: \mathrm{C}, 49.87$: H. 3.24: N. 1.88° o, Found; C .50 .07 : H. 3.49: N. $1.93^{\circ}{ }_{0}$. Crystallographic details and complete listings of 1 and 2 have been deposited at the Cambridge Corstallographic Data Center (Deposition No. CCDC-197630 and CCDC-197631) respectively: The data can be obtained free of charge via wwweccelc:com.ac.sh combs ntrieving ham/ (or from the CCDC, 12 Union Road. Cambridge CB2 IEZL. UK: lax: 441223 336033: e-mail: deposif(iccdc.cam.ac. $w h$).
8. (a) Abram. U.: Carballo. R.: Cabaleiro. S.: Garcia-Fontam. S : Vazaqucz-S ope7. Г.. M. Iodelectron 1999. 18. 1495. (b) Dirghangi, B. K.: Menon, M.: Pramanik. A.: Chakravorty: A. Inorg. (hem. 1997. 36. 1095. (c) Menon, M.: Pramanik. A.: Bag. N.: Charkravort: A. Jhorg. (hem. 1994. 33.403.
