Synthesis and Antiviral Evaluation of Novel Acyclic Nucleosides

Joon Hee Hong ${ }^{*}$ and Ok Hyun Ko
College of Pharmacy, Choszm University, Gwangiu 501-759, Korea
Received Mo9:7,2003

Abstract

A very short and concise synthetic route for a novel acyclic version of d 4 T is described. The required quaternary carbon was successfully installed using a [3,3]-signatropic rearrangement. The condensation of the mesylates 16-18 with an adenine base under standard nucleophilic substitution conditions ($\mathrm{K}_{2} \mathrm{CO}_{3}$. 18-Crown6. DMF) in addition to deblocking afforded the target acyclic nucleosides 22-24. In addition, the antiviral evaluations against various viruses were performed.

Key Words: Acyclic nucleosides. [3,3]-Sigmatropic rearrangement, Antiviral agents

Introduction

The discovery of acyclovir ${ }^{1}$ as an antiherpes agent ignited the search for new antiviral nucleosides with a disconnected chain resulting from the omission of bonds from the pentose or cyclopentane rings. During the past twenty years, many new synthetic schemes for various acyclic nucleoside ${ }^{2}$ analogues have been reported and many of these molecules have exhibited promising antiviral activities. ${ }^{\text { }}$ Among them, deciclovir, ${ }^{4}$ ganciclovir, ${ }^{5}$ penciclovir, ${ }^{6}$ famciclovir ${ }^{7}$ have exhibited potent antiviral activity against HBV. HIV, as well as the herpes virus. Furthermore, the recent approval of bis(POC)PMPA ${ }^{8}$ by the FDA as an anti-HIV agent warrants further searches for acyclic nucleosides as chemotherapeutic agents (Figure 1).
Nevertheless, the utility of these drugs is limited due to their toxicity and side effects, as well as the emergence of drug resistant viral strains. Therefore, it is essential to search

Acyclovir: $\mathrm{X}=\mathrm{OH}$
Deciclovir: $\mathrm{X}=\mathrm{H}$

Penciclovir: $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{OH}$
Famciclovir: $R=A c, X=H$

Bis(POC)PMPA: R =Isopropoxy-carobonyloxylmethyl

Figure 1.

[^0]for less toxic and more effective antiviral agents, which do not have any cross-resistance with existing drugs. In view of the stimulating results reported for acyclic nucleosides and as a part of our ongoing drug discovery efforts, this study aimed to synthesize novel $l^{\prime}, 2$-seco- 4^{\prime} - $(C$-branched nucleosides. This paper reports their synthetic routes from the simple acyclic ketone derivatives 1-3.

Results and Discussions

As shown in Scheme 1, the synthetic route is straightforward. It was envisaged that a [3,3]-sigmatropic rearrangement of compounds 7-9 would produce the desired quaternary carbon compounds $\mathbf{1 0 - 1 2}$ with the required functional groups. Subjecting compounds $\mathbf{1 6 - 1 8}$ to nucleophilic substitution conditions and desilyation gave the desired nucleosides 2224.

Silyl protection of the hydroxyl group of the commercially available starting materials $\mathbf{1 - 3}$, followed by a Homer-Wadsworth-Emmons (HWE) reaction, ${ }^{\text {, }}$ provided the unsaturated ethyl ester 4 and the cisitrans isomeric mixtures of compounds $\mathbf{5 , 6}$. It was not necessary to separate the isomers of compounds 5 and 6 , as they merged into one isomer in the subsequent reactions.

The α, β-unsaturated ethyl esters 4-6 were reduced by DIBALH at $-20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the allylic alcohols $7-9$ in an $83-97 \%$ yield, which were subjected to a standard Johnson ortho ester Claisen rearrangement ${ }^{(1)}$ using triethy! orthoacetate to produce the $\gamma \delta$-unsaturated esters $\mathbf{1 0 - 1 2}$ in $81-86 \%$ yield. The slow addition of DIBALH to a solution of the esters $\mathbf{1 0 - 1 2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ furnished desired alcohols $\mathbf{1 3 - 1 5}$ in an $89-91 \%$ yield. The hydroxyl group of compounds $13-15$ were mesylated by treating them with methanesulfonyl chloride (MsCl) in an anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the key intermediates 16-18, which were coupled with the nucleobase (adenine) under well-known standard conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3} \text {. I8-C-6. DMF) }\right)^{\prime \prime}$ to give the acyclic adenine derivatives $\mathbf{1 9 - 2 1}$ in a $42-48 \%$ two step yield. Although a small amount of the N^{7}-isomer ${ }^{12}$ (less than 5%) of the adenine base were present, they could be readily differentiated [UV $(\mathrm{MeOH}) \lambda_{\max } 279 \mathrm{~nm}$]. The removal of the t-butyldimethyl-

Scheme I. Reagents: i) DIBAL.H. $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C} .2 \mathrm{~h} .83-97 \%$; ii) Triethyl orthoactate, Propionic acid. overnight. $130{ }^{\circ} \mathrm{C} .81-86 \%$; iii)
 54%; vi) TBAF. THF rt. 3 h. $81-90 \%$.

Table 1. The antiviral activities of the synthesized compounds

	$\begin{gathered} 1 I I V-1 \\ E C_{s 0}(\mu g / \mathrm{mL}) \end{gathered}$	HSV-1 $\mathrm{EC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$	IlCMV $\mathrm{ECso}(\mu \mathrm{g} \mathrm{mL})$	Cor 133 $\mathrm{EC}_{50}(\mu \mathrm{gmL})$	cytotoxicity $\mathrm{C}_{50}(\mu \mathrm{~g} / \mathrm{mL})$
22	10.40	>100	62.16	>100	>100
23	>100	>100	>100	53.49	>100
24	>100	>100	>100	>100	>100
A $/ \mathrm{T}$	0.0005	ND)	ND)	ND)	0.5
Ganciclovir	ND)	1.21	ND)	NI)	>10
Ribavirin	ND)	NI)	NI)	30.96	>300

[^1]silyl (TBDMS) group of compounds $\mathbf{1 9 - 2 1}$ was accomplished by tetrabutylammonium fluoride (TBAF) to give the final nucleosides 22-24 in an 81-90\% yield.

Antiviral assays of the synthesized nucleosides 22-24 against the human immunodeficiency virus 1 ($\mathrm{HIV}-\mathrm{I}$), the herpes simplex virus 1 (HSV-I), human cytomegalovirus (HCMV) and CoxB3 virus were performed. Although the tested compounds did not display any exceptional antivital activity, the hydroxymethyl branched nucleoside $\mathbf{2 2}$ exhibited moderate anti-HIV activity in MT-4 cells (EC:50$10.4 \mu \mathrm{~mol}$) without any cytotoxicity up to $100 \mu \mathrm{~mol}$ (Table 1). This result strongly suggests that this structure for the novel nucleosides might be a candidate for a new lead compound for the development of new antiviral agents.

Conclusion

Novel acyclic nucleosides were successfully synthesized starting from very simple ketone derivatives. This synthetic method is highly efficient and convenient, and can be further applied to the synthesis of geminally substituted novel acyclic nucleosides. Based on this strategy, the syntheses of the other 4'-modified acyclic nucleosides with different bases are in progress.

Experimental Section

The melting points were determined on a Mel-tem II laboratory device and are uncorrected. The NMR spectra were recorded on a Bruker 300 Fourier transform spectro-
meter. The chemical shifts are reported as parts per million (δ) and the signals are quoted as s (singlet). d (doublet) t (triplet). q (quartet). m (multiplet) and dd (doublet of doublets). The UV spectra were obtained using a Beckman DU-7 spectrophotometer. The elemental analyses were performed using an Elemental Analyzer System (Profile HV-3). TLC was performed on Uniplates (silica gel) purchased from Analtech Co. All reactions were carried out under N 2 unless otherwise specified. Dry dichloromethane. benzene and pyridine were obtained by distillation from CaH_{2}. The dry THF was obtained by distillation from Na and benzophenone immediately prior to use.
4,4-Bis(t-butyldimethylsilyoxy)-iso-pent-2-en-1-01 (7): To a solution of 4 (10 g .51 .45 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. DIBALH ($108 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in hexane) was added slowly at $-20^{\circ} \mathrm{C}$. and stirred for 2 h at $0^{\circ} \mathrm{C}$. To the mixture. methanol (108 mL) was then added. The mixture was stirred at room temperature for 2 l . and the resulting solid was filtered through a Celite pad. The filtrate was concentrated under vacuum. and the residue was purified by silica gel column chromatograply (EtOAc/hexane. $1: 4$) to give the allylic alcohol 3 ($16.78 \mathrm{~g} .97 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.82(\mathrm{t} . J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s} .4 \mathrm{H})$. $4.16(\mathrm{~s} .2 \mathrm{H}) .0 .92$ (s. 18 H) 0.00 (s. 12 H).
(E, Z)-4-(t-Butyldimethylsilyloxymethyl)-3-methyl-but-2-en-1-0l (8) and (E, Z)-4-(t-Butyldimethylsilyloxymethyl)-3-phenyl-but-2-en-1-ol (9): Compound 8 and 9 were prepared from 5 and 6, respectively as described for compound 7. Compound 8: yield 89% : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$. $300 \mathrm{MHz}) \delta 5.68(\mathrm{brs} \mathrm{IH}) ..4 .2 \mathrm{I}(\mathrm{d} . J=6.6 \mathrm{~Hz} .2 \mathrm{H}) .4 .03$ (s. 2 H) $1.77,1.64$ (s. s. 3 H). 0.91 (s. 9 H) 0.07 (s. 6 H): compound 9: yield 83% : ${ }^{l} \mathrm{H}$ NMR (CDCl_{3}. 300 MHz) δ $7.32-7.07(\mathrm{~m}, 5 \mathrm{H}) .5 .99 .5 .91$ (dt. $J=6.6 .6 .6 \mathrm{~Hz}, \mathrm{IH}) .4 .31$ (d. $J=6.6 \mathrm{~Hz}, 1 \mathrm{H})+.27(\mathrm{~s} .1 \mathrm{H}) .0 .85,0.81$ (s. s. 9 H$), 0.02$ (m. 6H).

Ethyl 3,3-bis(t-butyldimethylsilyloxymethyl)-pent-4enoate (10): A solution of $15 \mathrm{~g}(43.27 \mathrm{mmol})$ of allylic alcohol 7. 150 mL of tiethyl orthoacetate. 0.78 mL of propionic acid was heated at $130-135{ }^{\circ} \mathrm{C}$ overnight with constant stirring under conditions for the removal of ethanol by distillation. The excess triethyl orthoaceate was distilled off and the residue was purified by silica gel column chromatography' (EtOAchevane. $1: 15$) to give compound $10(15.5 \mathrm{~g} .86 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 5.87$ (dd. $J=18.0 .11 .4 \mathrm{~Hz}, 1 \mathrm{H}$) 5.09 (d. $J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}) .4 .98(\mathrm{~d} . J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q} . J=7.5 \mathrm{~Hz} .2 \mathrm{H})$. 3.64 (dd $J=15.6 .9 .0 \mathrm{~Hz}$). 2.40 (s. 2 H). $1.22(\mathrm{t} . J=7.5 \mathrm{~Hz}$. $3 \mathrm{H}) .0 .85$ (s. 18 H$) .0 .01(\mathrm{~s}, 12 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta$ 1171.92. 139.76, 114.48. 64.67, 59.88. 45.98, 36.84, 25.85. 18.25. 14.25. -5.56 . Anal calc for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Sin}_{2}: \mathrm{C} .60 .52: \mathrm{H}$. 10.64. Found: C. 60.39: H. 10.87.
(\pm)-3-(t-Butyldimethylsilyloxymethyl)-3-methyl-pent-4enoic acid ethyl ester (11) and (\pm)-3-(t-Butyldimethylsilyl-oxymethyl)-3-phenyl-pent-4-enoic acid ethyl ester (12): Compound 11 and 12 were prepared from compounds 8 and 9. respectively as described for compound $\mathbf{1 0}$. Compound 11. yield 83% : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \delta 5.91$ (d. $J=$
$10.8 \mathrm{~Hz} .1 \mathrm{H}) .5 .89(\mathrm{~d} . J=11.4 \mathrm{~Hz} .1 \mathrm{H}) .5 .05(\mathrm{~d} . J=1.2 \mathrm{~Hz}$. (H). $5.02(\mathrm{~d}, J=7.5 \mathrm{~Hz} . \mathrm{lH}) .4 .01(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .3 .46$ (d. $J=9.3 \mathrm{~Hz} . \mathrm{lH}$). $3.4 \mathrm{I}(\mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{lH}) .2 .40(\mathrm{~d} . J=3.3$ $\mathrm{Hz} .2 \mathrm{H}) .1 .23(\mathrm{t} . J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .1 .21(\mathrm{~s} .3 \mathrm{H}) .1 .11(\mathrm{~s} .9 \mathrm{H})$, $0.05(\mathrm{~s} .6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.94,143.11 .112 .99$. 69.91. 59.83, 41.39. 29.25, 25.66. 20.70, 14.26. -5.58 : Anal calc for $\mathrm{C}_{15} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{Si}$: C. 62.89: H. 10.55 . Found: C. $62.60: \mathrm{H}$, 10.45 .

Compound 12: yield 81% : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{2} .300 \mathrm{MHz}\right) \delta$ $7.36-7.25(\mathrm{~m} .5 \mathrm{H}) .6 .26$ (dd. $J=18.0 .11 .1 \mathrm{~Hz} . \mathrm{lH}$). 5.31 (dd. $J=11.4 .1 .2 \mathrm{~Hz} .1 \mathrm{H}) .5 .16(\mathrm{dd} . J=17.7 .0 .6 \mathrm{~Hz} .1 \mathrm{H}$), $4.10-3.99(\mathrm{~m} .4 \mathrm{H}) .3 .00(\mathrm{~s} .2 \mathrm{H}) .1 .18(\mathrm{t} . J=6.9 \mathrm{~Hz} .3 \mathrm{H})$, 0.99 (s. 9 H). 0.02 (d. $J=8 . \mathrm{I} .6 \mathrm{H}$): ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 171.51, 143.17. 142.33. 127.82, 127.34. 126.30. 114.34. 67.73. 59.94, 48.70. 39.74. 25.76, 18.19. 14.07, -5.71: Anal calc for $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{Si}$: C. 68.92 : H. 9.25. Found: C. 68.69 : H. 9.05 .

3,3-Bis(t-butyldimethylsilyloxymethyl)-t-penten-1-0l (13): To a solution of compound 10 (5 g .11 .99 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. DIBALH ($25.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in hevane) was added slowly at $-20^{\circ} \mathrm{C}$. and stirred for $\mathrm{I} h$ at 0 ${ }^{\circ} \mathrm{C}$. To the misture. methanol (25.2 mL) was then added. The misture was stirred at room temperature for 1 h . and the resulting solid was filtered through a Celite pad. The filtrate was concentrated under vacuum and the residue was purified by silica gel column chromatography (EtOAc/hexane. 1:5) to give the alcohol $5(4.09 \mathrm{~g} .91 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.72$ (dd. $\left.J=17.5 .11 .5 \mathrm{~Hz} .1 \mathrm{H}\right)$, $5.15(\mathrm{~d} . J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d} . J=18.0 \mathrm{~Hz}, 1 \mathrm{H}) .3 .98(\mathrm{t}$. $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .3 .61(\mathrm{~d} . J=9.0 \mathrm{~Hz}, 4 \mathrm{H}) .1 .83(\mathrm{t} . J=8.1 \mathrm{~Hz}$, $2 \mathrm{H} . \mathrm{H}-2$). 0.88 (s. 18 H), 0.01 (s. 12 H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 149.28, 109.21, 69.78, 58.78. 37.78, 33.45, 20.19. 15.07. -5.72: Anal calc for $\mathrm{C}_{19} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{Si}_{2}:$ C. $60.90: \mathrm{H}, 11.30$. Found: C. 60.67: H. 10.95 .
(\pm)-3-(t-Butyidimethylsilyloxymethyl)-3-methyl-pent-4-en-1-0l (14) and (\pm)-3-(t-Butyldimethylsilyloxymethyl)-3-phenyl-pent-4-en-1-ol (15): Compound 14 and 15 were prepared from compounds 11 and 12 . respectively as described for compound 13. Compound 14: yield 90% : ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \delta 5.89$ (dd. $\left.J=17.7 .11 .4 \mathrm{~Hz} .1 \mathrm{H}\right)$, 5.06 (dd. $J=4.5 .1 .2 \mathrm{~Hz} . \mathrm{IH}) .5 .02$ (dd. $J=10.5 .0 .9 \mathrm{~Hz}$. 1H). 3.67 (dd. $J=11.7 .6 .3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=9.6 \mathrm{~Hz}$. $1 \mathrm{H}) .3 .38(\mathrm{~d} . J=9.6 \mathrm{~Hz} . \mathrm{lH}), 1.69(\mathrm{t} . J=5.7 \mathrm{~Hz} .2 \mathrm{H}), 1.00$ (s. 3 H). $0.90(\mathrm{~s} .9 \mathrm{H}), 0.06(\mathrm{~s} .6 \mathrm{H}):{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 144.45, 112.80, 70.81, 59.34. 41.18, 25.84, 21.04. 18.29. -5.52: Anal calc for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$: C. 63.87 : H, 11.55. Found: C. 63.74 : H. 11.61: compound 15 : yield 89% : ${ }^{l} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} 300 \mathrm{MHz}\right) \delta 7.33-7.28(\mathrm{~m} .5 \mathrm{H}) .5 .82(\mathrm{dd} . J=17.4$, $10.8 \mathrm{~Hz} .1 \mathrm{H}) .5 .33(\mathrm{~d} . J=10.7 \mathrm{~Hz}, \mathrm{IH}) .5 .13(\mathrm{~d} . J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}) .4 .24(\mathrm{t} . J=6.9 \mathrm{~Hz} .2 \mathrm{H}) .3 .80(\mathrm{~s} .2 \mathrm{H}), 1.72(\mathrm{~m} .2 \mathrm{H}), 0.90$ (s. 9H) $-0.02(\mathrm{~s} .6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1+2.48,1+1.65$. 128.20, 127.32, 126.60. 115.09. 68.80, 67.72, 48.59. 34.18. 25.74. 18.13. -5.71: Anal calc for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}$: C. 70.53: H , 9.87. Found: C. 70.26 : H, 9.66.

1-O-Mesyl-3,3-bis(t-butyldimethylsilyloxymethyl)-tpentene (16): To a solution of the alcohol 13 (350 mg .0 .93 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. anhydrous triethylamine (0.24
mL) and $\mathrm{MsCl}\left(130 \mathrm{mg} .1 .12 \mathrm{mmol}\right.$) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 1 h . and quenched by a cold saturated NaHCO_{3} solution (0.5 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The organic layer was dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under vacuum, and the residue ($376 \mathrm{mg} .89 \%$) was then subjected to the subsequent coupling reaction without further purification. In order to obtain spectroscopic data. a small amount of sample was purified by flash silica gel column chromatography (EtOAchexane. $1: 3$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 5.77$ (dd. $\left.J=18.0,11.7 \mathrm{~Hz} .1 \mathrm{H}\right), 5.17$ (d. $J=10.5 \mathrm{~Hz}$). 5.06 (d. $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}) .4 .30(\mathrm{t} . J=7.5$ Hz. 2H). 3.56 (d. $J=9.0 \mathrm{~Hz} .4 \mathrm{H}$). 2.97 (s. 3 H). $1.90(\mathrm{t} . J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}) .0 .89$ (s. 18 H) , 0.04 (s. 12 H).
$(\pm)-1-O$-Methanesulfonic acid-3-(\boldsymbol{t}-butyldimethylsilyl-oxymethyl)-3-methyl-pent-4-enyl ester (17) and (\pm)-1-OMethanesulfonic acid-3-(t-butyldimethylsilyloxymethyl)-3-phenyl-pent-4-enyl ester (18): Compound 17 and 18 were prepared from compounds 14 and 15 . respectively as described for compounds 16 . Compound 17: yield 88% : ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \delta 5.82(\mathrm{~d} . J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (d. $J=11.1 \mathrm{~Hz} .1 \mathrm{H}$). 5.11 (dd. $J=10.8 .0 .9 \mathrm{~Hz} .1 \mathrm{H}) .5 .00$ (dd. $J=17.7 .0 .9 \mathrm{~Hz} .1 \mathrm{H}) .4 .25(\mathrm{t} . J=7.8 \mathrm{~Hz} .2 \mathrm{H}), 3.36(\mathrm{dd}$. $J=18.9 .9 .3 \mathrm{~Hz} .2 \mathrm{H}) .2 .98(\mathrm{~s} .3 \mathrm{H}) .1 .91-1.85(\mathrm{~m} .2 \mathrm{H}) .1 .02$ (s. 3 H). $0.90(\mathrm{~s} .9 \mathrm{H}) .0 .04(\mathrm{~s} .6 \mathrm{H})$: compound 18 : yield 83% : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 7.35-7.29(\mathrm{~m} .5 \mathrm{H}) .6 .02(\mathrm{dd}$. $J=17.4 .10 .8 \mathrm{~Hz} .1 \mathrm{H}) .5 .34(\mathrm{~d} . J=9.9 \mathrm{~Hz} .1 \mathrm{H}) .5 .17(\mathrm{~d} . J=$ $17.7 \mathrm{~Hz} .1 \mathrm{H}) .4 .25(\mathrm{t} . J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .3 .83$ (s. 2 H). 2.93 (s. $3 \mathrm{H}) .2 .44(\mathrm{~m}, 2 \mathrm{H}) .0 .95(\mathrm{~s} .9 \mathrm{H}) .-0.02(\mathrm{~s} .6 \mathrm{H})$.
9-[3,3-Bis(t-butyldimethylsilyoxymethyl)-4-penten-1-yl] adenine (19): A solution of the mesylate 16 (376 mg .0 .83 mmol). $\mathrm{K}_{3} \mathrm{CO}_{3}(231 \mathrm{mg} .1 .67 \mathrm{mmol})$. 18 -crown-6 (329 mg . 1.26 mmol). and adenine (113.5 mg .0 .84 mmol) in dry DMF (6.7 mL) was stirred overnight at $90^{\circ} \mathrm{C}$. The misture was cooled to room temperature and concentrated under vacuum. The residue was diluted with brine (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 4)$. The combined organic layer was dried over anhỵdrous MgSO_{4}. filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{3}, \mathrm{I}: 10$) to give compound 19 ($220 \mathrm{mg}, 54 \%$) as a white solid: $\mathrm{mp} 168-170^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta$ $8.31(\mathrm{~s} .1 \mathrm{H}) .7 .71(\mathrm{~s} .1 \mathrm{H}) .5 .76(\mathrm{dd}, J=18.0 .11 .1 \mathrm{~Hz}, 1 \mathrm{H})$. 5.61 (br s. 2 H). 5.17 (d. $J=11.1 \mathrm{~Hz} .1 \mathrm{H}) .5 .10(\mathrm{~d} . J=18.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{t} . J=8.4 \mathrm{~Hz} .2 \mathrm{H}), 3.56(\mathrm{dd}, J=13.2 .9 .3 \mathrm{~Hz}$. 4 H) 1.97 (dd. $J=17.1,8.7 \mathrm{~Hz} .2 \mathrm{H}) .0 .84$ (s. 18 H), 0.02 (s. $12 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 155.28,152.88 .140 .29,139.78$. 115.24. 64.84. $45.90,39.93,32.44,25.85,18.22,-5.52$: Anal calc for $\mathrm{C}_{24} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Si}_{2}$: C. 58.61 : H. 9.22: N. 14.24. Found: C. 58.62 : H, 9.16: N. 14.36.
(\pm)-9-[3-(t-Butyldimethylsilyloxymethyl)-3-methy]-t-pent-1-enyl] adenine (20) and (\pm)-9-[3-(t-Butyldimethyl-silyloxymethyl)-3-phenyl-4-pent-1-enyl] adenine (21): Compound 20 and 21 were prepared from compounds 17 and 18 . respectively, as described for compound 19. Compound 20: yield 52% : mp $160-161{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 8.33(\mathrm{~s} .1 \mathrm{H}) .7 .74(\mathrm{~s} .1 \mathrm{H}) .5 .87(\mathrm{br} \mathrm{s}$. $2 \mathrm{H}) .5 .83$ (d. $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) .5 .77(\mathrm{~d} . J=10.8 \mathrm{~Hz} . \mathrm{lH})$, 5.10 (dd. $J=7.8,1.2 \mathrm{~Hz} .1 \mathrm{H}) .5 .06$ (dd. $J=14.1 .0 .9 \mathrm{~Hz}$. $1 \mathrm{H}) .4 .14(\mathrm{t} . J=6.3 \mathrm{~Hz} .2 \mathrm{H}) .3 .42(\mathrm{~d} . J=10.2 \mathrm{~Hz} .1 \mathrm{H}) .3 .35$ (d. $J=10.2 \mathrm{~Hz} .1 \mathrm{H}$) 1.97 (t. $J=7.2 \mathrm{~Hz} .2 \mathrm{H}$). 1.04 (s. 3 H). $0.85(\mathrm{~s} .9 \mathrm{H}),-0.03(\mathrm{~s} .6 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 155.43$. 152.88, 150.07. 142.71. 140.24, 119.51. 70.48, 41.24, 40.34. 36.97. 25.84, 20.25, 18.24. -5.54. Anal calc for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{OSi}$: C. 59.79: H. 8.64: N. 19.37. Found: C. 59.58: H. 8.72: N, 19.53: compound 21: yield 50% : mp 167-170 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} 300 \mathrm{MHz}\right) \delta 8.31(\mathrm{~s} .1 \mathrm{H}) .7 .68(\mathrm{~s} .1 \mathrm{H}) .7 .42-7.26$ (m. 5H). 6.67 (br s. 2 H). 6.13 (dd. $J=17.7,11.1 \mathrm{~Hz}, \mathrm{lH}$) 5.39 (dd. $J=10.8 .0 .6 \mathrm{~Hz} .1 \mathrm{H}) .5 .27(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.19 (t. $J=8.1 \mathrm{~Hz} .2 \mathrm{H}$). 3.90 (dd. $J=14 . \mathrm{I} .9 .9 \mathrm{~Hz} .2 \mathrm{H}$). 2.57-2.48 (m. 2H). 0.87 (s. 9H), -0.03 (s. 6 H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.44 .152 .20,149.75,142.5 \mathrm{I} .141 .64 .140 .09$. $128.25,127.42,126.67 .115 .42$. 68.70. 49.02, 40.73. 25.76. 18.15. -5.70: Anal calc for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{OSi}$: C. 65.21 : H. 7.85 : N. 16.53. Found: C. 65.44: H. 7.69: N, 16. 32.

9-[3,3-Bis(hydroxymethyl)-4-penten-1-yl] adenine (22): To a solution of compound 19 (100 mg .0 .2 mmol) in tetrahydrofuran (3 mL). tetrabutylammonium fluoride (TBAF) $\left(0.6 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ solution in THF) was added at $0^{\circ} \mathrm{C}$. The misture was stirred at room temperature for 3 h , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{5} . \mathrm{I}: 5$) to give compound 22 (47.4 mg. 90%) as a white solid: mp $184-186^{\circ} \mathrm{C}$: UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm}:{ }^{1} \mathrm{H}$ NMR (DMSO-d6. 300 MHz) $\delta 8.12$ (s. 1 H). 7.17 (br s. 2 H), $5.80(\mathrm{dd} . J=18.3 .11 .4 \mathrm{~Hz}, 1 \mathrm{H}) .5 .14(\mathrm{~d} . J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.08 (s. IH). 4.58 (br s. 2 H) .4 .12 (t. $J=8.4 \mathrm{~Hz} .2 \mathrm{H}$). 3.40 (s. $4 \mathrm{H}) .1 .87(\mathrm{t} . J=8.4 \mathrm{~Hz}, 2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right) \delta 155.92$. 152.02, 149.39. 140.83. 118.72, 114.77.63.87, 45.39, 32.39. 23.19. 19.24. 13.55. 10.21: Anal calc for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: C . 54.74: H. 6.51: N. 26.60 . Found: C. 54.80 : H. 6.49: N. 26.78.
(\pm)-9-[3-(t-Hydroxymethyl)-3-phenyl-4-pent-1-enyl] adenine (23) and (\pm)-9-[3-(t-Hydroxymethyl)-3-phenyl-4-pent-1-enyl] adenine (24): Compound 23 and 24 were prepared from compounds 20 and 21, respectively as described for compound 22. Compound 23 : yield 81% : mp $180-182^{\circ} \mathrm{C}$: UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 260.5 \mathrm{~mm} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}. $300 \mathrm{MHz}) \delta 8.13$ (s. 2 H). 7.14 (br s. 2 H). 5.86 (d. $J=11.4$. 1H). $5.80(\mathrm{~d} . J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .5 .08(\mathrm{~d} . J=5.1 \mathrm{~Hz} .1 \mathrm{H}) .5 .03$ (s. 1H). 4.70 (br s. 1 H). $4.13-3.99$ (m. 2H). 3.27 (d. $J=5.1$ $\mathrm{Hz} .1 \mathrm{H}) .3 .23(\mathrm{~d} . J=5.1 \mathrm{~Hz} .1 \mathrm{H}) .1 .89-\mathrm{I} .80(\mathrm{~m} .2 \mathrm{H}), 1.00(\mathrm{~s}$. $3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 149.29, ~ 147.10$. 143.59. 141.40, 140.53. 118.619, 113.36. 41.05, 36.67.34.91. 20.45: Anal calc for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$: C. 58.28 : H. 6.93: N. 28.32 . Found: C. 58.57: H. 6.60: N. 28.56: compound 24 : yield $86 \%:$ mp 182-185 ${ }^{\circ} \mathrm{C}$: UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 261.0 \mathrm{~nm}:{ }^{1} \mathrm{H}$ NMR (DMSO- $d .300 \mathrm{MHz}$) $\delta 8.12$ (s. 1H. H-8). 8.08 (s. 1 H). $7.41-7.15(\mathrm{~m} .5 \mathrm{H}) .6 .05$ (dd. $J=15.9 .11 .1 \mathrm{~Hz}, 1 \mathrm{H}) .5 .27(\mathrm{~d}$. $J=11.7,1 \mathrm{H}) .5 .17(\mathrm{~s} .1 \mathrm{H}) .4 .87\left(\mathrm{t} . J=6.4 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable). 4.01 (br s. 2 H). 3.76 (m. 2 H). 2.36 (br d. $J=$ 7.8 Hz .2 H): ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 155.91,152.30,149.39$. 143.25, 142.46. 140.60. 128.07, 127.35. 126.10. 114.62. 66.68. 48.58, 34.67, 23.05. 13.47. Anal calc for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$:
C. 66.00: H. 6.19: N. 22.64. Found: C. 66.38: H. 6.31: N. 22.48.

Acknowledgement. The authors wish to acknow ledge Dr. C.-K Lee (Korea Research Institute of Chemical Technology) for the antiviral assays.

References

1. Schaeffer. H. J.; Beauchamp. L.: De Miranda, P.; Elion, G .B.: Bauer. D. J. Collins, P. Nature 1978. 272. 583.
2. El Ashry. E. S. H.: El Kilany. Y. Acyclonucleosides: Part 1. 2. 3. in Advances in Heterocyclic Chenistry: Academic Press: 1997: Vol. 67.68. 69.
3. De Clercq, E.: Descamps. T.: De Somer. P;: Holy. A. Science 1978. 200. 563. (b) Martin. I. C.: Dvorak, C. A.: Smee. D. F.: Matthew, T. R.: Verhevden. J. P. H. J. Mect Chem. 1983, 26,759. (c) Smith, K. O.: Galloway. K. S.: Kennell. W. L.: Oglivie. K. K.: Radatus. B. K. Anomicrob Agents Chenother. 1982.23.55. (d) Vandendriessche. F.: Snoeck. R.: Janssen. G.: Hoogmartens. J.: Van Aerschot. A.: De Clereq. E.: Herdwijn. P. J. Med. Chem. 1992. 35, 1458.
4. Krenitsky, T. A.; Hall, W. W.; De Miranda, P; Beauchamp, L. M.: Schaeffer. H. I.: Whiteman. P. D. Proc. Nad Acad. Sci. USA 1984.
81.3209.
5. (a) Crumpacker. C. S. N. Engl. J. Med. 1996. 335. 721. (b) Hamzeh. F. M.: Lietman. P. S. Aminicrob Agents. Chemother: 1991.35. 1818.
6. Earnshaw. D. L.: Bacon. T. H.; Darlison, S. J.; Edmonds, K.; Perkins, R. M.; Vere Hodge, R. A. Antinicrob. Agents Chemother. 1992. 36, 2747.
7. Vere Hodge. R. A.: Sutton. D.: Boyd. M. R.: Harnden. M. R.: Jarvest. R. L. Antimicroh Agents Chemother. 1989. 33. 1765.
8. Arimilli. M. N.: Kim. C. U.: Dougherty. J.: Mulato. A.: Oliyai. R.: Shaw, J. P.: Cundy, K. C.; Bischofberger, N. Amiviral Chem. Chenother 1997, 8. 557.
9. Jeong. L. S.; Lee. Y. A.: Moon. H. R.; Chun, M. W. Nucleosides \& Nucleotides 1998. 17, 1473.
10. (a) Ko. O. H.: Hong. T. H. Tetrahedron Lett 2002. 43. 6399. (b) Hong. T. H.: Gao. M. Y.: Chu. C. K. Tetrahedron Lett. 1999. to. 231.
11. Lee. J. Y.; Oh. C. H.: Ko, O. H.: Hong, J. H. Nucleosides Nucleotides \& Aucleic Acids 2002, 21. 709. (b) Hossain. N.: Rozenski. J.; De Clereq. E.: Herdewjn. P. Tetrahedron 1996, 52. 13655.
12. (a) Panzica. R. P.: Rousseau. R. J.: Robins. R. K.: Townsend. L. B. J. Am. Chem. Soc. 1972. 94. 4708 . (b) Rousseau. R. J.: Robins. R. K.; Townsend, L. B. J.Am. Chem. Soc. 1968, 90. 2661.

[^0]: ${ }^{*}$ Corresponding author. Tel.: +82-62-230-6378: Fax: $+82-62-$ 222-5414; c-mail: hongjh \bar{a} mail.chosun.ac.kr

[^1]: ND: ©ot Determined.

