Synthesis of Cyclic Sulfamides from N, N^{\prime}-Bis(2-arylethyl)sulfamides

Ji Sun Lee, Il Doo Yang, Sung Hoon Kim, Sung Il An, and Chai-Ho Lee*
Department of Chemistry, Wonkwang Lhmersity, Iksan, Jeonbuk 570-749, Korea
Recenved October 30, 2002

Key Words : Iminium ion. Sulfamide. α-Sulfamidoalkylation reaction. Tetrahydroisoquinoline

The sulfamide unit is a ubiquitous structural entity in many naturally occurring compounds and medicinal agents (i.e.. anticonvulsant. antilyypertensive, hyperglycemia, histamine H_{2}-receptor antagonist. herbicide. HCMV inhibitors). ${ }^{1}$ Previously, we have demonstrated that intermolecular α sulfamidoalkylation reaction of N-(2-arylethyl)sulfamide with acetal (or aldehyde) proceeding through the intermediacy of an iminium ion provides an expeditious route for the preparation of cyclic sulfamides. ${ }^{2}$ The α-sulfanidoalkylation reaction consists in the condensation of N-(2ary lethyl)sulfanmide with an acetal in the acidic media to yield a tetrahydroisoquinoline containing sulfanide moiety, and is a special example of the Mannich reaction and the Pictet-Spengler reaction. ${ }^{3}$
In the present study, we report on the α-sulfamidoalkylation reaction of N, N^{\prime}-bis(2-arylethyl)sulfamides 1 with diacetals 2. 4, and 6 and dialdehyde 8 in formic acid for the generation of cyclic sulfamides of novel structures (Scheme 1). The starting sulfanides $\mathbf{1}$ were prepared from the treat-
ment of sulfamide with the corresponding 2-arylethylamine at reflus for 6 lr in anhydrous pyridine. according to established synthetic protocols. ${ }^{3 e .4}$

Treatment of sulfamides $\mathbf{1}$ with diacetals 2. 4, and 6 and dialdelyyde 8 in formic acid (96% in water) gave as the major product ($43-98 \%$ yield) the fused ring compounds $3,5.7$, and 9 . Formation of $\mathbf{3} .5,7$. and 9 is believed to proceed by the stepwise pathway depicted in Scheme 2.

Compounds $3,5.7$ and 9 exlubited characteristic absorption bands in the infrared spectrum at 1152-1167 and 1310$1329 \mathrm{~cm}^{-1}$ of sulfonyl group. ${ }^{5}$ Diagnostic signals were observed for the methine wit furnished by acetals or aldehyde at $\delta 4.45-4.97 \mathrm{ppm}$ for $3,5.7$ and $6.27-6.30 \mathrm{ppm}$ for 9 in the ${ }^{1} \mathrm{H}$ NMR spectra. and at $\delta 55.0-65.2 \mathrm{ppm}$ for 3.5 , 7 and $57.3-57.4 \mathrm{ppm}$ for 9 in the ${ }^{13} \mathrm{C}$ NMR spectra. Distinctive signals for two methylene protons of tetrahydroisoquinoline ring of $3,5,7$, and 9 were noted at $\delta 2.66-2.83$. 2.72-3.66. 2.91-3.21 and 3.74-4.02 ppm as multiplet in the ${ }^{1} \mathrm{H}$ NMR spectra. and at $\delta 28.5-30.3$ and $39.0-42.9 \mathrm{ppm}$ in

Scheme 1. Reagents; i) dimethoxyacetaldehyde (2), ii) 1,1,3,3-tetraethoxypropane (4), iii) 2,5-diethoxytetrahydrofuran (6), iv) phthalic dicaroxaldehyde (8).

Scheme 2

[^0]

Figure 1. An ORTEP drawing of compound 7 a with atonic numbering scheme.

Figure 2. An ORTEP drawing of compound 9a with atomic numbering scheme.
the ${ }^{13} \mathrm{C}$ NMR spectra. Analysis of 7 a and 9 a by X-ray crystallography confirmed the proposed ditetrahydroiso-quinolino-annelated 1,2.7-thiadiazepane ring structure. ORTEP view of 7a and 9a is presented in Figure 1 and Figure 2. respectively.

In conclusion. we have elucidated an α-sulfamidoallhylation reaction of $N^{\prime} N^{\prime}$-bis(2-arylethyl)sulfanides 1 with diacetals 2. 4, and 6 and dialdehyde 8 in fonmic acid for the generation of novel cyclic sulfamides. The success achieved with arylsulfamides suggests that the corresponding alkenyl and acetylenic sulfamides should serve as suitable starting materials the construction of alicyclic based sulfamides.
General methods. Infrared spectra were obtained on a JASCO FT/IR- 5300 spectrophotometer and NMR spectra were recorded on JEOL (500 MHz) FT-NMR spectrometer. Chemical shifts (δ) were given in ppm relative to TMS. Low-resolution mass spectra were obtained on a Quattro AC spectrometer at the Wonkwang University. The solvents and reactants were purchased from Aldrich Chemical Co.. and were used without purification
General procedure for $\boldsymbol{\alpha}$-sulfamidoalkylation reaction of N, N^{\prime}-bis(2-arylethyl)sulfamide 1 with acetals 2,4 , and 6 (or dialdehyde 8): A formic acid (96% in $\mathrm{H}_{2} \mathrm{O} .20 \mathrm{~mL}$) solution of sulfamides $1(2.0 \mathrm{mmol})$ and acetals (2.0 mmol) was stirred for 24 hr at room temperature, and then the solution was quenched with excess water (50 mL). The solid that precipitated was filtered and then recrystallized from acetone-hexane to give the desired products.
3,11-Dimethoxy-5,6,8,9,13b,13c-hexahydro-7-thia-6a,7adiazadibenzo[c,g]fluorine 7,7-dioxide (3a). Begiming with sulfamide $1 \mathrm{a}(0.73 \mathrm{~g})$ and acetal $2(0.21 \mathrm{~g})$. compound 3 a was obtained in 75% yield (0.58 g): $\mathrm{mp} 178-180^{\circ} \mathrm{C}$: IR $(\mathrm{KBr}) 1323,1167 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.81(\mathrm{ddd}, J=$ 15.2 .4 .1 and $3.2 \mathrm{~Hz}, 2 \mathrm{H}$). 3.11 (ddd. $J=15.2 .10 .5$ and 4.6
$\mathrm{Hz} .2 \mathrm{H}), 3.20(\mathrm{ddd} . J=12.9 .10 .5$ and $3.2 \mathrm{~Hz}, 2 \mathrm{H}) .3 .81$ (s. $6 \mathrm{H}) .3 .95$ (ddd. $J=12.9,4.6$ and 4.1 Hz .2 H$), 4.46(\mathrm{~s} .2 \mathrm{H})$, $6.49(\mathrm{~d} . J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .6 .68(\mathrm{dd}, J=8.7$ and 2.8 Hz .2 H$)$. $6.77(\mathrm{~d} . J=2.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 29.6$, 42.9. 55.4, 65.1, 112.0, 113.9. 112.4, 130.4. 137.2. 159.3 ppm: LR FAB MS: calcd for $[\mathrm{M}+1]^{-} 387.14$. found 387.23 .

2,3,11,12-Tetramethoxy-5,6,8,9,13b,13c-hexahydro-7-thia-6a,7a-diazadibenzo[c,g]fluorene 7,7-dioxide (3b). Beginning with sulfamide $\mathbf{1 b}(0.85 \mathrm{~g})$ and acetal $2(0.21 \mathrm{~g})$, compound 3b was obtained in 78% yield (0.70 g): mp 174$177^{\circ} \mathrm{C}$: $\mathrm{IR}(\mathrm{KBr}) 1329.1167 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.80$ (ddd, $J=15.2 .4 .1$ and $3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.05 (ddd, $J=15.2 .9 .4$ and $4.6 \mathrm{~Hz}, 2 \mathrm{H}$). 3.23 (ddd. $J=13.1,9.4$ and 3.7 Hz .2 H), $3.62(\mathrm{~s} .6 \mathrm{H}) .3 .89(\mathrm{~s}, 6 \mathrm{H}), 3.92$ (ddd. $J=13.1,4.6$ and 4.1 $\mathrm{Hz} .2 \mathrm{H}) .4 .45$ (s. 2 H), 6.08 (s. 2 H), 6.74 (s. 2 H) ppm, ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.9 .42 .9 .55 .9,56.0 .65 .2,111.8,112.5$. 121.9, 128.1. 146.8 .148 .8 ppm : LR FAB MS: calcd for [$\mathrm{M}+1]^{-} 447.16$. found 447.31

3,11-Dimethoxy-5,8,9,13b,14,14a-hexahydro-6H-7-thia-6a,7a-diazadibenzo[a,j]anthracene 7,7-dioxide (5a). Beginning with sulfamide $1 \mathrm{a}(0.73 \mathrm{~g})$ and acetal $4(0.33 \mathrm{~g})$, compound 5 a was obtained in 63% yield (0.50 g): mp 226 $228^{\circ} \mathrm{C}$; IR (KBr) $1319.1154 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.44$ $(\mathrm{t} . J=6.9 \mathrm{~Hz} .2 \mathrm{H}), 2.29(\mathrm{ddd}, J=17.0 .7 .6$ and $6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.08 (ddd. $J=17.0 .6 .4$ and $5.5 \mathrm{~Hz}, 2 \mathrm{H}$). 3.66 (ddd. $J=12.9$. 6.9 and 6.4 Hz .2 H). 3.74 (ddd. $J=12.9 .7 .6$ and 5.5 Hz , $2 \mathrm{H}) .3 .79(\mathrm{~s}, 6 \mathrm{H}) .4 .79(\mathrm{t} . J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d} . J=2.3$ $\mathrm{Hz} .2 \mathrm{H}), 6.78(\mathrm{dd}, J=8.7$ and 2.3 Hz .2 H$), 7.04(\mathrm{~d} . J=8.7$ $\mathrm{Hz} .2 \mathrm{H})$ ppm, ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.8 .32 .9,42.0,54.6$, 55.3. 112.9. 113.9. 126.2. 127.1. 135.1, 158.6 ppm: LR FAB MS: calcd for $[\mathrm{M}+1]^{-} 401.15$. found 401.24 .

2,3,11,12-Tetramethoxy-5,8,9,13b,14,14a-hexahydro-6H-7-thia-6a,7a-diazadibenzo[a,j]anthracene 7,7-dioxide (5b). Beginuing with sulfamide 1b (0.85 g) and acetal 4 $(0.33 \mathrm{~g})$. compound $\mathbf{5 b}$ was obtained in 71% yield $(0.65 \mathrm{~g})$: mp 294-295 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1319. $1165 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.07(\mathrm{dd}, J=14.2$ and 12.4 Hz .1 H$), 2.02$ (dd. $J=$ 14.2 and $2.8 \mathrm{~Hz} . \mathrm{lH}$). 2.83 (ddd, $J=16.0,5.7$ and 4.8 Hz , 2 H). 2.91 (ddd. $J=16.0 .7 .3$ and $5.0 \mathrm{~Hz}, 2 \mathrm{H}$). 3.48 (ddd. $J=$ 11.9. 5.7 and $5.0 \mathrm{~Hz}, 2 \mathrm{H}$). 3.57 (ddd. $J=11.9 .7 .3$ and 4.8 Hz .2 H). 3.85 (s. 6 H). 3.87 (s. 6 H). 4.97 (dd. $J=12.4$ and 2.8 $\mathrm{Hz} .2 \mathrm{H}) .6 .59$ (s. 2H). 6.63 (s. 2H) ppm: ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $28.5,35.0,40.8 .55 .9,56.5,57.3,109.4,111.6,125.8,127.0$. 147.9. 148.4 ppm: LR FAB MS: calcd for $[\mathrm{M}+1]^{-} 461.17$. found 461.32 .

3,11-Dimethoxy-5,6,8,9,13b,14,15,15a-octahydro-7-thia-6a,7a-diazadinaphthaleno[1,2-a; $1^{\prime}, 2^{\prime}$-e]cycloheptene 7,7dioxide (7a). Beginning with sulfamide 1a (0.73 g) and acetal $6(0.32 \mathrm{~g})$, compound 7 a was obtained in 88% yield (0.73 g): mp $198-204{ }^{\circ} \mathrm{C}$: IR (KBr) $1315.1153 \mathrm{~cm}^{-\mathrm{j}}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.01-2.03(\mathrm{~m} .2 \mathrm{H}), 2.17-2.19(\mathrm{~m} .2 \mathrm{H}) .2 .82$ (ddd. $J=16.2 .4 .3$ and $3.7 \mathrm{~Hz}, 2 \mathrm{H}$) .3 .01 (ddd. $J=16.2 .10 .2$ and 5.2 Hz .2 H). 3.51 (ddd. $J=13.2,10.2$ and 3.7 Hz .2 H). $3.78(\mathrm{~s} .6 \mathrm{H}) .3 .99$ (ddd. $J=13.2 .5 .2$ and $4.3 \mathrm{~Hz}, 2 \mathrm{H}) .4 .72-$ $4.74(\mathrm{~m}, 2 \mathrm{H}) .6 .65(\mathrm{~d} . J=2.5 \mathrm{~Hz} .2 \mathrm{H}) .6 .75$ (dd. $J=8.7$ and 2.5 Hz .2 H). 7.00 (d. $J=8.7 \mathrm{~Hz} .2 \mathrm{H}$) ppm: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 30.3,35.0 .40 .3 .55 .0 .55 .4 .112 .9 .113 .4 .128 .1$.

Table 1. Crystal data and structure refinement for 7a and 9a

	7a	9 a
Temperature	293(2) K	293(2) K
Wavelength	0.71070 A	0.71070 A
Crystal system, space group	Monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}$	Monoclinic, $\mathrm{P} 2_{1} / \mathrm{m}$
Unit cell dimensions	$\begin{aligned} & a=16.1253(13) A \alpha=90^{\circ} . \\ & b=7.1637(8) A \beta=92.308(6)^{\circ} . \\ & c=17.2203(12) A \gamma=90^{\circ} . \end{aligned}$	$\begin{aligned} & a=11.0637(7) A \\ & b=16.2745(16) A \beta=91.915(6)^{\circ} \\ & c=12.2462(10) \AA \end{aligned}$
Volume	1987.6(3) $\mathrm{A}^{\text {3 }}$	$2203.8(3) \AA^{3}$
$\mathrm{Z}, \mathrm{D}_{\text {cald }}$	$4,1.385 \mathrm{mg} / \mathrm{m}^{3}$	$4,1.394 \mathrm{mg} / \mathrm{mr}^{3}$
μ	$0.195 \mathrm{~mm}^{-1}$	$0.184 \mathrm{~mm}^{-1}$
$F(000)$	880	976
Crystal size	$0.4 \times 0.4 \times 0.45 \mathrm{~mm}$	$0.35 \times 0.40 \times 0.45 \mathrm{~mm}$
θ range for data collection	1.26 to 25.97 deg .	2.08 to 25.97 deg.
Inder ranges	($<=\mathrm{h}<=19,0<=\mathrm{k}<=8,-21<=1<=21$	($\ll=\mathrm{h}<=13,0<=\mathrm{k}<=20,-15<=1<=15$
Reflections collected / unique	$3898 / 3776[\mathrm{R}(\mathrm{nit})=0.0441]$	4544/4315 [R(int $)=0.0324]$
Refinement method	Full-matrix least-squares on F^{3}	Full-matrix least-squares on F^{3}
Data / restraints / parameters	3776/0/270	43150/310
Goodness-of-fit on F :	0.960	1.034
Final R indices [$\mathrm{l}>2 \mathrm{e}(\mathrm{I}$]]	${ }^{9} R 1=0.0516,{ }^{\text {b }}$ WR2 $=0.1375$	${ }^{9} R 1=0.0531,{ }^{\text {b }}$ WR2 $=0.1451$
R indices (all data)	${ }^{\mathrm{a}} R 1=0.1178,{ }^{\text {b }} w R 2=0.1704$	${ }^{8} R 1=0.1079,{ }^{\text {b }}$ WR2 $=0.1713$
Largest difṫ. peak and hole	0.190 and $-0.303 \mathrm{e} . \mathrm{A}^{-3}$	0.259 and $-0.367 \mathrm{e} . \AA^{-3}$

 with $F_{0}-2 \sigma F^{2}$).
129.2, 135.6. 158.3 ppm ; LR FAB MS: calcd for $[\mathrm{M}+1]^{+}$ 414.2 , found 414.4

2,3,11,12-Tetramethoxy-5,6,8,9,13b,14,15,15a-octahydro-7-thia-6a,7a-diazadinaphthaleno[1,2-a; $1^{\prime}, 2^{\prime}$-e]cycloheptene 7,7-dioxide (7b). Beginning with sulfamide $1 \mathrm{~b}(0.85 \mathrm{~g})$ and acetal $6(0.32 \mathrm{~g})$, compound 7 b was obtained in 98% yield (0.93 g): $\mathrm{mp} 226-228^{\circ} \mathrm{C}$: IR (KBr) $1310,1152 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.04-2.07(\mathrm{~m}, 2 \mathrm{H}) .2 .18-2.20(\mathrm{~m}, 2 \mathrm{H})$. 2.76 (ddd, $J=16.0 .4 .2$ and 3.7 Hz .2 H). 2.96 (ddd, $J=16.0$. 10.3 and 5.5 Hz .2 H), 3.52 (ddd. $J=13.2 .10 .3$ and 3.7 Hz . $2 \mathrm{H}), 3.84(\mathrm{~s} .6 \mathrm{H}), 3.85(\mathrm{~s} .6 \mathrm{H}), 4.02$ (ddd. $J=13.2 .5 .5$ and $4.2 \mathrm{~Hz}, 2 \mathrm{H}) .4 .69-4.71$ (m. 2 H). 6.56 (s. 2 H). 6.61 (s. 2 H) ppm: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 29.5 .34 .7 .40 .4$. 55.1. 56.0. 56.2 . 109.9. $111.5,126.5,128.7,147.8 .148 .1 \mathrm{ppm}:$ LR FAB MS: calcd for $[M+1]^{-} 474.2$. found 474.4 .
3,11-Dimethoxy-5,6,8,9,13b,17b-hexahydro-7-thia-6a,7a-diazabenzo[c]dinaphthaleno[1,2-a;1',2'-e]cycloheptene 7,7-dioxide (9a). Beginning with sulfamide $1 \mathbf{a}(0.73 \mathrm{~g})$ and aldehyde 8 (0.27 g). compound 9 a was obtained in 43% yield (0.40 g): mp $280-282^{\circ} \mathrm{C}$: IR (KBr) $1325.1159 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.69-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.75(\mathrm{~m} .2 \mathrm{H})$. 3.13-3.21 (m. 2 H). $3.74-3.78(\mathrm{~m} .2 \mathrm{H}) .3 .84$ (s. 6 H). $6.30(\mathrm{~s}$. $2 \mathrm{H}) .6 .53$ (dd $J=5.8$ and $3.7 \mathrm{~Hz}, 2 \mathrm{H}) .6 .76(\mathrm{~d}, J=2.7 \mathrm{~Hz}$. $2 \mathrm{H}) .6 .80(\mathrm{dd}, J=8.2$ and $2.7 \mathrm{~Hz}, 2 \mathrm{H}) .7 .00(\mathrm{~d}, J=8.2 \mathrm{~Hz}$. $2 \mathrm{H}) .7 .11$ (dd. $J=5.8$ and 3.2 Hz .2 H$) \mathrm{ppm}:{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.2 .39 .0 .55 .4,57.3,112.5,114.0 .126 .3,127.5$. 129.3, 131.3, 136.1. 140.5, 159.0 ppm: LR FAB MS: calcd for $[M+1]^{-} 463.2$. found 463.5 .
2,3,11,12-Tetramethoxy-5,6,8,9,13b,17b-hexahydro-7-thia-6a, 7a-diazabenzo[c]dinaphthaleno[1,2-a;1',2'-e]cycloheptene 7,7 -dioxide (9 b). Beginning with sulfamide $\mathbf{1 b}$ $(0.85 \mathrm{~g})$ and aldehyde $8(0.27 \mathrm{~g})$. compound 9 b was obtained

Table 2. Selected Bond lengths [\AA] and Angles [deg] for $6 \mathbf{a}^{\prime \prime}$

Bond lengths			
$\mathrm{S}(1)-\mathrm{N}(2)$	$1.602(3)$	$\mathrm{S}(1)-\mathrm{N}(1)$	$1.635(3)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.477(4)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.494(4)$
$\mathrm{N}(2)-\mathrm{C}(22)$	$1.464(4)$	$\mathrm{N}(2)-\mathrm{C}(13)$	$1.468(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.517(4)$	$\mathrm{C}(1)-\mathrm{C}(11)$	$1.533(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.378(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.392(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.530(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.528(4)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.516(4)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.389(4)$
$\mathrm{C}(14)-\mathrm{C}(20)$	$1.392(4)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.379(5)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.507(4)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.518(4)$
Bond angles			
$O(1)-\mathrm{S}(1)-\mathrm{N}(2)$	$106.87(15)$	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$105.07(15)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	$112.99(14)$	$\mathrm{N}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$102.19(13)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(1)$	$119.0(2)$	$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)$	$114.6(2)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)$	$117.4(2)$	$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{C}(13)$	$115.5(3)$
$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{S}(1)$	$123.3(2)$	$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{S}(1)$	$120.8(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$111.8(2)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	$108.5(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	$109.6(23)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$109.0(3)$
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$110.1(3)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(1)$	$117.8(3)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$115.5(3)$	$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(14)$	$109.3(2)$
$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(12)$	$110.0(3)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$112.9(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$112.5(3)$	$\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{C}(21)$	$108.5(3)$

${ }^{\text {asmmetry }}$ transfomations used to generate equivalent atoms.
in 58% yield (0.61 g): $\mathrm{mp} 300-302^{\circ} \mathrm{C}$: IR (KBr) 1316. 1157 $\mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.66$ (dd. $J=15.6$ and 4.6 Hz . 2 H). 2.72 (ddd, $J=11.9 .11 .3$ and $4.6 . \mathrm{Hz} .2 \mathrm{H}$). 3.13 (ddd. J $=15.6,11.3$ and $7.3 \mathrm{~Hz}, 2 \mathrm{H}$). 3.77 (dd. $J=11.9$ and 7.3 Hz . $2 \mathrm{H}) .3 .81$ (s. 6 H). 3.91 (s. 6 H). 6.27 (s. 2 H). 6.57 (s. 2 H). $6.60(\mathrm{dd} . J=5.6$ and 3.7 Hz .2 H$), 6.71$ (s. 2 H) , 7.14 (dd. $J=$ 5.7 and 3.2 Hz .2 H$) \mathrm{ppm}:{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.6 .39 .1$. $56.0 .57 .4,110.8$. 111.7. 125.8. 126.9. 127.6, 131.5, 140.3.

Table 3. Selected Bond Lengths [\AA] and Angles [deg] for $9 \mathbf{a}^{\circ}$

Bond lengths			
$\mathrm{S}(1)-\mathrm{O}(1)$	$1.423(2)$	$\mathrm{S}(1)-\mathrm{O}(2)$	$1.427(2)$
$\mathrm{S}(1)-\mathrm{N}(2)$	$1.622(3)$	$\mathrm{S}(1)-\mathrm{N}(1)$	$1.642(3)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.472(4)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.485(4)$
$\mathrm{N}(2)-\mathrm{C}(17)$	$1.467(4)$	$\mathrm{N}(2)-\mathrm{C}(26)$	$1.477(4)$
$\mathrm{C}(1) \mathrm{C}(2)$	$1.502(4)$	$\mathrm{C}(1)-\mathrm{C}(11)$	$1.537(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.520(5)$	$\mathrm{C}(2)-\mathrm{C}(8)$	$1.409(4)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.514(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.528(5)$
$\mathrm{C}(18)-\mathrm{C}(24)$	$1.392(4)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.408(4)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.519(4)$	$\mathrm{C}(12)-\mathrm{C}(17)$	$1.538(4)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.510(4)$		
Bond Angles			
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$120.29(14)$	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(2)$	$105.87(14)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(2)$	$107.88(13)$	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	$105.15(13)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$106.90(14)$	$\mathrm{N}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$110.62(14)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(1)$	$111.8(2)$	$\mathrm{C}(21)-\mathrm{O}(4)-\mathrm{C}(22)$	$116.8(3)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)$	$115.4(2)$	$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)$	$120.2(2)$
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{S}(1)$	$118.5(2)$	$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(26)$	$113.9(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$106.8(2)$	$\mathrm{C}(26)-\mathrm{N}(2)-\mathrm{S}(1)$	$122.1(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$120.9(3)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(11)$	$112.8(2)$
$\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.6(3)$	$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(1)$	$120.7(3)$
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$109.0(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.93)$
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(12)$	$112.2(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$1148(3)$
$\mathrm{N}(2)-\mathrm{C}(26)-\mathrm{C}(25)$	$107.1(2)$	$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	$108.5(2)$

"Symmetry transformations used to generate equivalent atoms.
147.5, 148.6 ppm ; LR FAB MS: calcd for $[\mathrm{M}+\mathrm{I}]^{-} 523.2$. found 523.6 .
X-ray Analysis of 7a and 9a. Details of the crystal data and summary of intensity data collection parameters for 7a and 9a are given in Table 1. Crystals were grown from chloroform solution stored at room temperature. Crystals were mounted on glass fibers in random orientations, and the data were collected on a Enraf-Nonius CAD + diffractometer equipped with graphite-monocluromated Mo- K_{α} radiation (α $=0.71070 \AA$) at room temperature. Unit cell parameters were determined by using search, center. index and lestsquare routine. Structure was solved by the application of direct methods using the SHELX-86 program ${ }^{6}$ and least-
squares refinement using SHELEX-97.' Anisotropic thermal parameters were used for all atoms except hydrogen. All the remaining lyydrogen atoms were included in calculated positions. Some selected bond lengths and bond angles for 7a and 9a are shown in Table 2 and Table 3. respectively.

Supplementary material. Tables of full bond distances and bond angles. anisotropic thermal parameters. and atomic coordinates of lyydrogen atoms are available from the corresponding author.

Acknowledgment. This paper was supported by Wonkwang University in 2001.

References

1. (a) Esteve. C.: Bidal. B. Tetrahedron Letl. 2002. 43. 1019. (b) Xiao. Z.: Timberlake. J. W. J. Heterocyclic Chen. 2000. 37,773. (c) Martinez. A.; Gil, C.: Prez. C.; Caastro, A.; Prieto. C;- Otero, J; Andrei, G.; Snoek, R.; Balzarini, J; Clercp. E. D. J. Med Chem. 2000. 43. 3267. (d) Kuang. R.: Venkataraman. R.: Ruan. S.: Groutas. W. C. Bicorg. Med Chem. Letl 1998. 8. 539. (e) Lee. C.-H.: Kohrl. H J. Pharm. Sci. 1990. 70. 716. (f) Lee. C.-H.: Korp, J. D.: Kohn. H. J. Org. Chem. 1989. 54, 3077.
2. (a) Lee, J. S., Lee. C. H. Bull. Korean Chem. Soc. 2002, 23(1). 167. (b) Lee. J. S.; Lee. C. H. J. Korean Chem. Soc. 2001. 45.92. (c) Kong. Y. T.: Kim. S. H.: Lee. C.-H. J. Korem Chem. Soc. 1999. 13. 131. (d) Lee. C.-H.: Kohn. H. J. Heterocyctic Chem. 1990. 27. 2107.
3. (a) Grigg, R.; Thornton-Pett, M.: Wang, J.: Xu, J; Zhang. J. Tetrahedron 2002. 58, 2627. (b) Speckamp. W. N.: Moolenaar, M. J. Tetrahedron, 2000. 56.3817 . (c) Cox. E. D.: Cook, J. M. Chem. Rev. 1995. 6. 1675. (d) Lee. C.-H.: Kohn1. H. J. Org. Chem. 1990. 55. 6098. (e) Lee. C. H.: Kohn1. H. Heterocycles 1988. 27.2581.
4. (a) Davis. F. A.: Gangriodano. M. A.: Starmer. W. E. Tetrahechron Letf. 1986, 27, 3957 . (b) DuBois, G. E.: Stephenson. R. A. J. Org. Chem. $1980,+5,5371$.
5. Nakanish. K.;- Solomon, P. H. Infroved Absorption Spectroscopy: Holden-Day: San Francisco. 1977.
6. Sheldrick. G. M.: Kruger. C. Cnstallographic Compuing 3: Oxford University Press: London. 1985: pp 175-189.
7. Sheldrick, G. M.: Flack, H. D.; Parkanvi, L.: Simon. K. Gystallographic Computing 6; Oxford University Press: London. 1993: pp 111-189.

[^0]: 'Cortesponding author. e-mail: chaihoowonkwang.ac.kr: Fax: $+82-63-84]-4893$, Phone: $+82-63-850-6229$

