Chirospecific Synthesis of D-erythro- and L-threo-Sphinganines from Sugars

III-Yun Jeong, Jin Hwan Lee, Byong Won Lee, Jin Hyo Kim, and Ki Hun Park*
Division of Apphed Life Sicience (BN2 I Program), Department of Agricultural (hemistry Gyeongsang National linversity, R.4IRC, Jinju 660-701, Korea Received Jonuaty 4, 2003

Abstract

D-ervitho-sphinganine $\mathbf{1}$ and L -threo-sphinganine $\mathbf{2}$ have been prepared in the enantiomerically pure form by the chirospecitic manner. Key intermediates, 2 -amino-3-hydroxy-4-pentenoates 8 and 12, were obtained from L-glucono-l,5-lactone and L -gulonic acid g -lactone via a simultaneous dealkoxyhalogenation.

Key Words: D-ervhro-Sphinganine, I.-theo-Sphinganine, Simultaneous dealkoxyhalogenation, I -Gilucono-1,5-bactone, I-Gulonic acid γ-actone

Introduction

Dihydrosphingosine. called sphinganine, is an intemediate of the biosynthesis of sphingolipids ($\epsilon . g$. ceramides. cerebrosides. splingomycelin. gangliosides).' which plays an important role in a wide range of physiological activities such as immme response. signaling and cell recognition. ${ }^{2}$ D-ervitho-Sphinganine 1 is the important components of cellular membranes and is known as an inhibitor of protein kinase $C{ }^{3}$ Quite a number of syntheses of sphingosine and its derivatives have been reported. ${ }^{+}$Although many synthetic routes from noncarbohydrates through a chiral induction step have been proven as useful methods. ${ }^{4 c .5}$ chirospecific routes from carbohydrates have low overall yields owing to a tedious number of steps. This encouraged us to explore an efficient synthetic route to sphingosine derivatives starting from carbohydrates. Planning use of carbohydrate derivatives as an enantiomerically pure building block. we focused on the transformation of C6-unit sugars into a multifunctionalized β-hydroxy- α-amino acid derivatives that can easily approach sphingosine derivatives. For example, we reported the synthetic route of 2-amino-3-hydroxy-4-pentenoic acid derivatives via a simultaneous dealkoxy halogenation. ${ }^{\text {? }}$ Here. we describe the synthesis of D-ervhro-sphinganine 1 and L-threo-sphinganine 2 by homochiral sy nthetic techniques from L-ghucono-l,5-lactone and L-gulonic acid γ lactone. Our general retrosynthesis of target molecules $\mathbf{1}$ and 2 is outlined in Figure 1.

Results and Discussion

As our chiral source. we chose L-glucono-1.5-lactone and L -gulonic acid γ-lactone. which have the two stereocenters required for the target molecules 1 and 2 , respectively. (Figure 1) Thus, the stereochemistry of C2 and C3 in L-glucono-l.5-lactone was used for compound 1 , while that of C2 and C3 in L-gulonic acid γ-lactone was used for compound 2 .

[^0]
1

8

Figure 1. Retrosynthesis of compounds 1 and 2

D-erythro-Sphinganine 1. Our synthesis commenced with the synthesis of the known diisopropylidenemannonate 3 which was easily accessible via known procedures ${ }^{8}$ from D-glucono- δ-lactone. We chose the 9 -phenyl-9-fluorenyl (Pf) group for protection of the amine since the protecting group has been shown to inhibit deprotonation at the α position of an α-amin ester. ${ }^{9}$

For regioselective hydrolysis of the terminal ()-isopropylidene group in diisopropylidene 3 under acidic condition. Dowex 50 W -X8 was treated to 3 in 90% methanol to give the diol 4 in 95% yield. The diol 4 was oxidized in the presence of NaIO_{4} : this was followed by NaBH_{4} reduction of the resulting aldehyde. which led to the formation of alcohol 5 in quantitative yield. After mesylation of alcohol 5. the resulting mesylate was treated with Lil to give 2.3 -isopropylidene iodide 7 in 97% yield. Treatment of 2,3 -isopropylidene iodide 7 with n-BuLi at $-400^{\circ} \mathrm{C}$ gave the ($2 R .3 R$)-2-amino-3-hydroxy-4-pentenoate $8\left\{[\alpha]_{1\}}^{I 11}+278.2\right.$ (c 1.00 . $\left.\left.\mathrm{CHCl}_{5}\right)\right\}$ in 84% yield through a simultaneous dealkoxy-

$\downarrow i$

7
Scheme 1. Reagents and conditions: i) rel 8. 10: ii) Dowex 50WX8, MeOH, rt. 95%, iii) $\mathrm{NaIO}_{4}, \mathrm{NaBH}_{4}$, FtOH- $\mathrm{H}_{2} \mathrm{O}(2 / 1)$, it to 0 ${ }^{\circ} \mathrm{C}, ~ 98 \%, \mathrm{MsCl}, \mathrm{Ft} 3 \mathrm{~N}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 97 \%$ iv) J.il, DMF, $80{ }^{\circ} \mathrm{C}, 97 \%$.
halogenation. This 2-amino-3-hydroxy-t-pentenoate 8 is an important chiral building block for an asymmetric sy nthesis of bioactive β-hydrony- α-amino acids. The ester group of pentenoate 8 was reduced by LAH at $0^{\circ} \mathrm{C}$ to give compound 9 in 94% yield. The compound 9 was treated with $2,2-$

14

Scheme 3. Reagents and conditions; i) ret 7: ii) T.AH, THF, $00^{\circ} \mathrm{C}$, 92% iii) TsOII, Acetonc, McOH, 2,2-dimethoxypropanc. $50{ }^{\circ} \mathrm{C}$, 86% : iv) $\mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2} \mathrm{~h}_{2} \mathrm{CH}_{2} \mathrm{PH}: \mathrm{Br}, \mathrm{H}-\mathrm{BuLi}\right.$, THF. $-40{ }^{\circ} \mathrm{C}$ to rt, 66%, v) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}, 82 \%$. Dowex 50W-X8, MeoH, rt, 79\%.
dimethoxypropane in acetone to give the isopropylidene pentene 10 in 89% yield. After ozonolysis of pentene compound 10 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$, the resulting aldehyde was treated with tetradecyltriphenylphosphonium bromide to give octadecen-1.3-diol mixture compound 11 ($Z: E 16: 1$, 68% y ield). After reduction of Pf group and olefin with 10% Pd / C, the remaining isopropylidene group was completely hydrolyzed with Dowex $50 \mathrm{~W}-\mathrm{X8}$ in $90 \% \mathrm{MeOH}$. The mixture was filtered and the resin was washed with MeOH , and then eluted with 3 N aqueous $\mathrm{NH}_{1} \mathrm{OH}$ to afford the free base form of D-ervhro-sphinganine 1 (76% yield) without further purification.

L-threo-Sphinganine 2. To further demonstrate the versatility of the synthetic strategy, we have prepared the L-threo-sphinganine 2. The (2R.3.)-2-amino-3-hydroxy-4pentenoate 12 was easily obtained from L-gulonic acid γ lactone as described: ${ }^{3}$ the overall yield for this comversion was 59%.

The ester group of (2R.3,)-2-amino-3-hydrony-t-pentenoate 12 was reduced by LAH at $0^{\circ} \mathrm{C}$ to give compound 13 in 92% yield. The diol compound 13 was treated with 2.2-dimethoxypropane in acetone to give isopropylidene pentene 14. Ozonolysis of compound $1+$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ gave the aldehyde. which was immediately condensed with the ylide, obtained from the tetradecyltriphenylphosphonium bromide, to get 15 as an isomer misture ($Z \cdot F$ $20: 1.66 \%$ yield). The compound 15 was treated with H_{2}, $10 \% \mathrm{Pd} / \mathrm{C}$, and Dowex $50 \mathrm{~W}-\mathrm{X} 8$ sequentially, the same procedure for compound 1 to give L-threo-sphinganine 2 $\lfloor\alpha\rfloor_{1}^{21)}-2.6\left(c: 2.00, \mathrm{CH}_{3} \mathrm{OH}\right)(79 \%$ yield $)$.

Conclusions

We have described the chirospecific synthesis of D-ervthro-splinganine 1 and L-threo-sphinganine 2 via a simultaneous dealkoxylalogenation. The developed synthetic routes should be valuable for vicinal aminoalcohol like splingosine derivatives.

Experimental Section

General. All non-aqueous reactions were carried out under an inert nitrogen atmosphere. THF was distilled from Na /benzophenone; 2,2-dimethoxypropane. DMF. and methỵlene chloride were distilled from CaH_{2}. Column chromatography was carried out using $230-400$ mesh silica gel. The final solution before exaporation was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{1}$. Melting points are uncorrected. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ experiments were conducted on Brucker AW-500 spectrometer. HREIMS were obtained on a JEOLJMS-700 mass spectrometer. Optical rotations were measured on a JASCO DIP- 1000 polarimeter and $[\alpha]_{\nu}$ values are given in units of $10^{-1} \operatorname{deg} \mathrm{~cm}^{2} g^{-1}$.

Methyl 2-deoxy-3,4;5,6-di-()-isopropylidene-2-(9 -phenyl9 -fluorenyl)-amino]-L-mannonate 3. The mamonate 3 was prepared from L-glucono-1.5-lactone. using a method to the described one. ${ }^{8,1(}$ solid. 80% (overall yield) $[\alpha]_{13}^{21)}+77.2$ (c $2.00 . \mathrm{CHCl}_{3}$): IR (KBr): 2987. 2935. $1735 \mathrm{~cm}^{-1}: \delta_{11}(500$ $\mathrm{MHz}: \mathrm{CDCl}_{3}$) $1.08(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.33$ (s. 3 H). 1.35 (s. 3H). 2.83 (dd. $J=7.2 .9 .2 \mathrm{~Hz} .1 \mathrm{H}) .3 .20(\mathrm{~d}, J=9.3 \mathrm{~Hz}$. 1H). $3.23(\mathrm{~s} .3 \mathrm{H}) .3 .95(\mathrm{~m} .3 \mathrm{H}) .+.09(\mathrm{~m} .2 \mathrm{H})$ and $7.18-7.69$ (m. $13 \mathrm{H} . \mathrm{Pf}$): $\delta_{-}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 25.4 .26 .4,27.2 .27 .5$, $51.6 .58 .8 .66 .9,72.9,77.3,79.5,82.0,109.7,110.3,119.3$. 120.1. 125.2. 126.2. 127.3, 127.5. 128.1. 128.2, 128.t. 128.5. 140.4. 141.1. 1+4.2. 148.5. 148.7, and 174.0. Anal. calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{6}$: C. 72.57: H. 6.66: N. 2.64. Found: C, 72.59: H. 6.69: N. 2.64.

Methyl 2-deoxy-3,t-O-isopropylidene-2-I(9-phenyl-9-fluorenyl)-aminol-L-mannonate 4 . To a solution of the compound (3.00 g .5 .66 mmol) in $90 \% \mathrm{MeOH}(20 \mathrm{~mL})$ was added Dowex $50 \mathrm{~W}-\mathrm{X} 8$ resin $(0.5 \mathrm{~g})$. The reaction mixture was stirred for 24 h at room temperature, filtered. and the filtrate was evaporated. The crude residue was chromatographed on silica gel [hexane-EtOAc (1:1)] to give compound
 CHCl_{3}): IR (KBr): $3020,2360.2341 .1731 \mathrm{~cm}^{-1}: \delta_{\mathrm{H}}(500$ $\mathrm{MHz}: \mathrm{CDCl}_{3}$) 1.07 (s. 3 H). 1.25 (s. 3 H) 2.32 (br. 1 H), 2.59 (d. $J=9.5 \mathrm{~Hz} .1 \mathrm{H}) .3 .25(\mathrm{~s} .3 \mathrm{H}) .3 .50(\mathrm{t} . J=7.7 \mathrm{~Hz} . \mathrm{HH})$, $3.66(\mathrm{~m} .1 \mathrm{H}) .3 .70(\mathrm{~m} .1 \mathrm{H}) .3 .84(\mathrm{dd} . J=3.2 .11 .2 \mathrm{~Hz} . \mathrm{HH})$. $3.90(\mathrm{dd}, J=7.3 .9 .3 \mathrm{~Hz} .1 \mathrm{H})$ and $7.06-7.73$ (111. 13H, Pf): $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 26.2$, 26.6. 52.2. 58.6. 64.5. 72.7. 72.9. 77.3. 80.2, 81.6. 109.9. 120.3, 120.t. 125.6. 126.0. 126.3. 127.6. 127.6. 128.4, 128.7. 128.9. 129.3, 140.7. 141.1, 142.2, 1+7.4. and 174.6. Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{66}$: C. 71.15; H. 6.38: N. 2.86. Found: C. $71.20: H, 6.39:$ N. 2.88.

Methyl 2-deoxy-3,4-O-isopropylidene-2-[(9-phenyl-9-fluorenyl)-aminol-L-lyxonate 5 . To a solution of diol 4
($2.50 \mathrm{~g}, 5.11 \mathrm{mmol}$) in $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL}: 20 \mathrm{~mL}$) was added NalO_{4} (1.31 g .6 .12 nmol) at room temperature. After stirring for 2 h . the mixture was cooled to $0^{\circ} \mathrm{C}$, and then $\mathrm{NaBH}_{4}(0.23 \mathrm{~g}, 6.12 \mathrm{mmol})$ was added and stirred for 10 min. After evaporation of EtOH , the mixture was poured into an excess of $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($40 \mathrm{~mL} \times$ 3). After concentration of combined extracts. the residue was chromatographed on silica gel [hexane-EtOAc (2:1)] to give compound 5 ($2.30 \mathrm{~g}, 98 \%$) as a solid. mp $65-66^{\circ} \mathrm{C}$: $[\alpha]_{1)}^{31)}+150\left(c: 1.1 . \mathrm{CHCl}_{3}\right)$: IR (KBr): $3500.3+10.2990$. $2945.1730 \mathrm{~cm}^{-1}: \delta_{11}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 1.09(\mathrm{~s} .3 \mathrm{H}) .1 .28$ $(\mathrm{s} .3 \mathrm{H}) .2 .63(\mathrm{~d} . J=8.9 \mathrm{~Hz} .1 \mathrm{H}) .3 .23(\mathrm{~s} .3 \mathrm{H}) .3 .34$ (br. 1 H , OH). $3.78(\mathrm{~m}, 1 \mathrm{H}) .3 .85(\mathrm{~m} .2 \mathrm{H})$. and $7.09-7.72(\mathrm{~m} .13 \mathrm{H}$, Pf): $\delta_{\mathrm{c}}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 26.4$ 26.8. 51.9. 58.7.63.8. 72.7. 76.8. 80.2, 80.3, 109.6, 120.2. 120.2. 125.6. 125.8. 126.2. 127.4. 127.5, 128.3. 128.5, 128.7, 128.9. 140.4. 141.2, 143.2, 148.0. and 174.7. Anal calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{NO}_{5}: \mathrm{C}$. 73.18: H, 6.36; N. 3.05. Found: C. 73.20 ; H. 6.38: N. 3.06.

Methyl 2-deoxy-3,4-O-isopropylidene-5- $($-methane-sulfonyl-2-I(9-phenyl-9-fluorenyl)-aminol-L-lyxonate 6. To a solution of alcohol $5(2.20 \mathrm{~g}, 4.79 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ were added triethylamine ($1.3 \mathrm{~mL}, 9.58 \mathrm{mmol}$) and methanesulfonyl chloride (0.56 mL .7 .18 mmol) at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 min , the mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with EtOAc ($20 \mathrm{~mL} \times 3$). After concentration of combined extracts, the resulting residue was chromatographed on silica gel [hexane-EtOAc $(4: 1)$] to give compound $6(2.50 \mathrm{~g} .97 \%)$ as a solid, mp $15+-157^{\circ} \mathrm{C}:[\alpha]_{\mathrm{I}}^{3 \mathrm{i}}+202\left(c: 0.95, \mathrm{CHCl}_{3}\right)$: IR (KBr): $3400,2990.2950 .1753 \mathrm{~cm}^{-1} ; \delta_{I I}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right)$ $1.10(\mathrm{~s} .3 \mathrm{H}), 1.30(\mathrm{~s} .3 \mathrm{H}) .2 .63(\mathrm{br}, \mathrm{HH}) .3 .03(\mathrm{~d} . J=4.9 \mathrm{~Hz}$. 1H). 3.11 (s. 3 H) , $3.2+(\mathrm{s} .3 \mathrm{H}) .3 .82$ (dd. $. J=7.3 .8 .8 \mathrm{~Hz}$. $1 \mathrm{H}) .4 .00(\mathrm{ddd} . J=2.4 .7 .1,9.3 \mathrm{~Hz} .1 \mathrm{H}) .4 .45(\mathrm{dd} . J=6.2$. $10.9 \mathrm{~Hz}, 1 \mathrm{H}) .4 .74(\mathrm{dd}, J=2.5 .10 .9 \mathrm{~Hz} .1 \mathrm{H})$. and $7.13-7.71$ (m. 13H. Pf): $\delta_{\mathrm{E}}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 26.6,26.9,37.9 .51 .9$. 58.8 . 70.3. 72.7. 78.2. 78.2, 110.6. 120.2. 120.3. 125.1. 125.9. 126.2, 127.5. 127.6. 128.t. 128.5. 128.6. 128.8. 140.2, 1+1.3. 143.5, 1+8.0. 148.3, and 174.4. Anal. caled for $\mathrm{C}_{-2} \mathrm{H}_{31} \mathrm{NO}-\mathrm{S}: \mathrm{C} .64 .79$: H. 5.81: N. 2.61. Found: C. 64.82: H. 5.79: N. 2.60 .

Methyl 2,5-dideoxy-3,t-O-isopropylidene-5-iodo-2-I(9-phenyl-9-fluorenyl)-aminol-L-lyxonate 7. To a solution of mesy late $6(2.00 \mathrm{~g} .3 .72 \mathrm{mmol})$ in dried DMF (19 mL) was added LiI (1.99 g .14 .88 mmol). After stirring of the mixture overnight at $80^{\circ} \mathrm{C}$. saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc $(20) \mathrm{mL} \times$ 3). The extract was evaporated and the remaining residue was chromatographed on silica gel [hexane-EtOAc (10: 1)] to give compound 7 ($2.05 \mathrm{~g} .97 \%$) as a solid. mp $63-66^{\circ} \mathrm{C}$: $[\alpha]_{1)}^{(1)}+160.0\left(c: 1.5, \mathrm{CHCl}_{i}\right):$ IR (KBr): 3300. 2950. 1715 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{\mathrm{i}}\right) 1.07(\mathrm{~s} .3 \mathrm{H}) .1 .34(\mathrm{~s} .3 \mathrm{H}) .2 .63$ $(\mathrm{t} . J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .3 .04(\mathrm{~d} . J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) .3 .23(\mathrm{~s}, 3 \mathrm{H})$, $3.4+(\mathrm{m} .1 \mathrm{H}) .3 .67(\mathrm{dd} . J=3.2,10.1 \mathrm{~Hz} .1 \mathrm{H}) .3 .77(\mathrm{~m} .2 \mathrm{H})$. and 7.13-7.70 (m. 13H. Pf): $\delta_{i}^{\circ}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 8.4 .27 .1$. 27.6 . 51.8, 58.6. 72.6. 79.6. 82.3, 110.2, 120.2, 120.3, 125.2. 126.0. 126.1. 127.5. 127.5, 128.4. 128.5. 128.6. 128.8.
140.2, 141.3. 143.7, 148.2. 148.3, and 174.5. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{2 x} \mathrm{INO}_{1}: \mathrm{C}, 59.06$: H. 4.96; N, 2.46. Found: C. 59.06; H, 4.97; N. 2.45.

Methyl ($2 R, 3 R$)-3-hydroxy-2-[(9-phenyl-9-fluorenyl)-aminol-t-pentenoate 8. A solution of iodide $7(1.50 \mathrm{~g} .2 .63$ mmol) in THF (15 mL) was cooled to $-40^{\circ} \mathrm{C} .2 .5 \mathrm{M} n$-BuLi ($4.21 \mathrm{~mL} .10 .54 \mathrm{mmol}, 400 \mathrm{~mol} \%$) was added dropwise over 5 min via syringe pump. The reaction mixture was stirred an additional 10 min at $-40^{\circ} \mathrm{C}$. then quenched with saturated aqueous $\mathrm{NH}_{1} \mathrm{Cl}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 3$) and combined extracts were concentrated. The resulting residue was chromatographed on silica gel [hexane-EtOAc $(+: 1)]$ to give compound $8(0.85 \mathrm{~g} .84 \%)$ as a solid. $\mathrm{mp} 120-122^{\circ} \mathrm{C}:\lfloor\alpha\rfloor_{1)}^{211}$ +278.2 ($c: 1.00 . \mathrm{CHCl}_{3}$); IR (KBr): $3500.3055,17+0 \mathrm{~cm}^{-1}$: $\delta_{11}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.77(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) .3 .28(\mathrm{~s} .3 \mathrm{H})$, $4.01(\mathrm{t} . J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) .4 .69(\mathrm{~s}, 1 \mathrm{H} . \mathrm{NH}) .5 .15(\mathrm{~d} . J=10.6$ $\mathrm{Hz} .1 \mathrm{H}) 5.25(\mathrm{~d} . J=14.7 \mathrm{~Hz}, 1 \mathrm{H}) .5 .7+(\mathrm{ddd} . J=16.3 .10 .5$. 5.5 Hz .1 H) and $7.20-7.67$ (m. $13 \mathrm{H}, \mathrm{Pf}$): $\delta_{\mathrm{c}}:(125 \mathrm{MHz}$: CDCl_{3}) 50.4. 58.8. 71.4. 72.0. 115.2. 118.8. 118.9. 124.0. 124.8 . 125.1. 126.2. 126.2, 127.0. 127.2. 127.3, 127.5. 135.6. 139.0. 139.9. 142.9. 146.9. 147.3 and 172.7. Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{3}: \mathrm{C}, 77.90: \mathrm{H} .6 .01$: N, 3.63. Found: C, 77.70: H. 6.03; N. 3.60.
(2S,3R)-1,3-Dihydroxy-2-[(9-phenyl-9-fluorensi)-amino]-+-pentene 9. To an ice-cooled solution of LAH (0.12 g . 3.11 mmol) in THF (8 mL) was added a solution of compound $8(0.80 \mathrm{~g} .2 .08 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$. The reaction misture was warmed to room temperature. stirred for 30 min . then quenched by the sequential addition of water $(0.8 \mathrm{~mL}) .15 \%$ aqueous $\mathrm{NaOH}(0.8 \mathrm{~mL})$. and water ($2 .+$ mL). The mixture was filtered and evaporated. The resulting residue was chromatographed on silica gel [hexane-EtOAc ($2: 1$)] to give compound $9\left(0.70 \mathrm{~g} .9+\%\right.$) as an oil. $[\alpha]_{1)}^{2 i 1}$ +183.6 (c 2.00. CHCl_{3}): IR (neat): $3424,3310.3063 .3013$. $2929.2857 \mathrm{~cm}^{-1}: \delta_{11}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 2.10$ (ddd. $J=1.6$. $4.4 .6 .0 \mathrm{~Hz}, 1 \mathrm{H}) .2 .73(\mathrm{dd}, J=4.4 .11 .1 \mathrm{~Hz} .2 \mathrm{H}) .3 .17(\mathrm{dd} . J$ $=1.6 .11 .1 \mathrm{~Hz} .1 \mathrm{H}) .4 .03(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}) .5 .13(\mathrm{~m}, 1 \mathrm{H})$. $5.27(\mathrm{~m} .1 \mathrm{H}) .5 .57$ (ddd, $J=6.1,10.4 .16 .8 \mathrm{~Hz} .1 \mathrm{H})$, and $7.21-7.69$ (m. $13 \mathrm{H}, \mathrm{Pf}$): $\mathrm{\delta}_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 57.3,62.1$, 72.7. 74.7. 117.4. 120.3, 120.5. 125.1. 126.2. 126.3. 127.7. 128.4 . 128.5. 128.8. 128.9. 129.0. 138.7. 140.5. 141.1, $145.2,149.1$, and 150.8 . Anal. caled for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}$. 80.64 : H. 6.49 : N. 3.92 . Found: C. 80.66 : H. 6.48: N. 3.90 .
(2S,3R)-1,3-O-Isopropylidene-2-[(9-phenyl-9-fluorenyl)-aminol-4-pentene 10. Solution of compound 9 (0.65 g . 1.82 mmol). 2.2 -dimethoxypropane (0.67 mL .5 .46 mmol) and p-toluenesulfonic acid (20 mg) in dry acetone (20 mL) was stirred at $50^{\circ} \mathrm{C}$ overnight. After evaporation of acetone. the mixture was poured into saturated aqeous NaHCO_{3} $(20 \mathrm{~mL})$ and extracted with EtOAc ($20 \mathrm{~mL} \times 2$). After concentration of combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (8:1)] to give compound $10(0.64 \mathrm{~g} .89 \%)$ as a solid. $\mathrm{mp} 136-138^{\circ} \mathrm{C}$: $[\alpha]_{1>}^{j=11}-+3.3\left(c 2.00, \mathrm{CHCl}_{3}\right)$: IR (KBr): 3302, 3064. 2994. 2938. $2875,1447 \mathrm{~cm}^{-1}: \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{7}\right) 1.21(\mathrm{~s}, 3 \mathrm{H})$. $1 .+1(\mathrm{~s} .3 \mathrm{H}) .2 .0+(\mathrm{br} .1 \mathrm{H}) .2 .22(\mathrm{ddd} . J=5.2 .9 .7 .9 .7 \mathrm{~Hz}$.

1H). 2.86 (dd. $J=5.2 .11 .7 \mathrm{~Hz}, 1 \mathrm{H}) .3 .29$ (dd, $J=9.7$. $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd} . J=7.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}) .5 .31(\mathrm{ml}, 1 \mathrm{H})$, $5.41(\mathrm{~mm} .1 \mathrm{H}), 5.62(\mathrm{ddd}, J=7.7,10.1 .17 .5 \mathrm{~Hz} .1 \mathrm{H})$, and 7.16-7.69 (m. 13H, Pf): $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 19.2,29.0$. 50.9. 66.1. 72.4. 75.9. 97.9. 119.6. 120.1. 120.2. 125.3. $125.6,126.0,127.2$. $127.8,127.8,128.3 .128 .5 .128 .6$. 136.8. 139.8. 140.9, 145.3. and 148.7. Anal. caled for $\mathrm{C}_{2}: \mathrm{H}_{2}-\mathrm{NO}_{2}: \mathrm{C}, 81.58$: H. 6.85 : N. 3.52. Found: C. 81.59 : H. 6.83 ; N. 3.52.
($2 S, 3 R,+Z$)-1,3-O-Isopropylidene-2-[(9-phenyl-9-fluorenyl)-amino]-4-octadecen-1,3-diol 11. A solution of the isopropylidene pentene 10 ($0.50 \mathrm{~g}, 1.26 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was ozonized at $-78^{\circ} \mathrm{C}$ until the solution turned blue. and then the residue ozone was removed with N_{2} gas. To the reaction mixture was added dimethyl sulfide $(0.28 \mathrm{~mL}, 3.78$ mmol) and it was stirred for overnight at room temperature The residue mixture was evaporated to give aldehyde. which was in the used next step without further purification. To a suspension of the tetradecyltriphenylphosphonium bromide (1.17 g .2 .10 mmol) in THF (12 mL) was added dropwise $2.5 \mathrm{M} n-B u L i\left(0.84 \mathrm{~mL}, 2.10 \mathrm{mmol} .200 \mathrm{~mol} \%\right.$) at $-40{ }^{\circ} \mathrm{C}$. After stirring for 2 h , a solution of the crude aldehyde in THF (2 mL) was added. The reaction mixture was warmed to room temperature. stirred for 30 min , then quenched with water (20 mL). The mixture was extracted with EtOAc (20 $\mathrm{mL} \times 4$) and combined extracts were concentrated. The remaining residue was chromatographed on silica gel [hexane-EtOAc (10: 1)] to give compound $11(0.50 \mathrm{~g} .68 \%)$ as an oil: $[\alpha]_{10}^{11)}+176.7$ (c $3.00 . \mathrm{CHCl}_{3}$): IR (neat): 3336 . 3062. 2992. 2925. 2854, $1453 \mathrm{~cm}^{-1}: \delta_{\text {II }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .1 .26(\mathrm{~m} .22 \mathrm{H}) .1 .36(\mathrm{~s}, 3 \mathrm{H}) .1 .42(\mathrm{~s}$. $3 \mathrm{H}) .1 .76(\mathrm{~m} .1 \mathrm{H}) .1 .89(\mathrm{~m} .1 \mathrm{H}) .1 .9+(\mathrm{br} .1 \mathrm{H}) .2 .93(\mathrm{dd} . J=$ $2.0 .11 .9 \mathrm{~Hz}, 1 \mathrm{H}) .2 .96(\mathrm{~m}, 1 \mathrm{H}) .3 .39(\mathrm{dd} . J=1.8 .11 .9 \mathrm{~Hz}$. 1H). 4.4 (dd. $J=0.7 .7 .6 \mathrm{~Hz} .1 \mathrm{H}) .5 .57$ (ddd. $J=7.6 .7 .6$. $11.2 \mathrm{~Hz}, \mathrm{IH}) .6 .00(\mathrm{~m} .1 \mathrm{H})$ and 7.11-7.66 (m. 13H. Pf): 8 . (125 MHz: CDCl_{5}) $14.5,19.2,23.1 .28 .3,29.6 .29 .8 .29 .9$. 29.9. 30.0. 30.1. $30.1 .30 .2 .32 .3,50.7,64+4,70.5,72.7,99.1$, 120.0. 120.2, 125.7. 126.7. 127.t. 128.0. 128.t. 128.t. 128.6. 128.6. 129.0, 133.2, 140.2, 141.0. 146.3, 149.4, and 152.1. Anal. calcd. for $\mathrm{C}_{101} \mathrm{H}_{33} \mathrm{NO}_{2}$: C. $82.85 ; \mathrm{H} .9 .21$: N , 2.42. Found: C. 82.82 : H. 9.23; N. 2.40 .
(2, $3,3 R$)-2-Amino-1,3-dihydroxy-4-octadecane (D-erythrosphinganine) 1. The protected octadecen-1.3-diol 11 $(0.20 \mathrm{~g} .0 .34 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.07 \mathrm{~g})$ were placed in $\mathrm{MeOH}(10 \mathrm{~mL})$ under an atmosphere of hydrogen at $60^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was filtered through Celite. and the filtrate concentrated. The residue was chromatographed on silica gel $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$-IPA $\left.(6: 1)\right]$ to give octadecane compound ($0.10 \mathrm{~g} .85 \%$) as an oil. A solution of octadecane compound (0.09 g .0 .26 mmol) and Dowex $50 \mathrm{~W}-\mathrm{X} 8$ resin $(0.05 \mathrm{~g})$ in $90 \% \mathrm{MeOH}(5 \mathrm{~mL})$ was stirred for 12 h at $50{ }^{\circ} \mathrm{C}$. The mixture was filtered. and then the insoluble material was washed with $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL}$). The remaining residue was eluted with $3 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$. The ammoniacal solution was evaporated, then co-evaporation with toluene to give compound 1 ($0.06 \mathrm{~g} .76 \%$) as a solid. $\mathrm{mp} 125-127^{\circ} \mathrm{C}:[\alpha]_{\mathrm{I})}^{2(1}$ $-3.5\left(c .3 .00, \mathrm{CH}_{3} \mathrm{OH}\right): \mathrm{IR}(\mathrm{KBr}): 3261,2918.2850 \mathrm{~cm}^{-1}: \delta_{\mathrm{H}}$
$\left(500 \mathrm{MHz}: \mathrm{CD}_{3} \mathrm{OD}\right) 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .1 .28(\mathrm{ml} .26 \mathrm{H})$. $1.49(\mathrm{~m} .3 \mathrm{H}) .1 .93(\mathrm{br} .3 \mathrm{H}) .3 .16(\mathrm{~m}, \mathrm{lH})$. and $3.68-3.83(\mathrm{~m}$. $3 \mathrm{H}): \delta_{1-}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1+.9,2+2,2+5,27.5,30.9$. 31.0. 31.1, 31.2, 31.2, 31.2, 33.5. 34.6. 58.8. 59.8. and 71.0; MS m/z: $28+.270 .252(\mathrm{M})$: Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{NO}_{3}: \mathrm{C}$. 71.70: H. 13.04: N. 4.65. Found: C. 71.72: H. 13.01: N. +.65.

Methyl ($2 R, 3 S$)-3-hydroxy-2-[(9-phenyl-9-fluorenyl)-aminol-+-pentenoate 12 . This was prepared from L-gulonic acid γ-lactone as described: ${ }^{11} \mathrm{mp}$ 117-120.
(2S,3S)-1,3-Dihydroxy-2-[(9-phenyl-9-fluorenyl)-amino]-t-pentene 13. To an ice-cooled solution of LAH (0.13 g . 3.50 mmol) in THF (10 mL) was added a solution of compound 12 ($0.90 \mathrm{~g}, 2.33 \mathrm{mmol}$) in THF (5 mL). The reaction misture was warmed to room temperature. stirred for 30 min . then quenched by the sequential addition of water (0.9 mL) 15% aqueous $\mathrm{NaOH}(0.9 \mathrm{~mL})$, and water $(2.7 \mathrm{~mL})$. The mixture was filtered and evaporated. The residue was chromatographed on silica gel [hexane-EtOAc (2:1)] to give compound $13(0.77 \mathrm{~g} .92 \%)$ as an oil. $\lfloor\alpha\rfloor_{1}^{-i 1}$ +94.6 ($c: 1.30 . \mathrm{CHCl}_{3}$): IR (neat): $3+68.3318 .3063 .3016$. $2929.2857 .1447 \mathrm{~cm}^{-1}: \delta_{11}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 2.30(\mathrm{~m}, \mathrm{lH})$. $2.94($ br. 1 H$), 3.26(\mathrm{ddd} . J=5.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=$ $5.4 .10 .1 \mathrm{~Hz}, 1 \mathrm{H}) .3 .49(\mathrm{br} .1 \mathrm{H}) .3 .71$ (m. 1H). 5.08 (ddd. $J=$ $1.6 .1 .6,10.6 \mathrm{~Hz}, 1 \mathrm{H}) .5 .14-5.18(\mathrm{~m} .1 \mathrm{H}), 5.67(\mathrm{ddd}, J=5.1$. 10.6. 16.2 Hz .1 H) and $7.25-7.75$ (m1. 13H. Pf): $\delta \cdot(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 57.0 .63 .9,72.5,73.4,114.9 .119 .9,120.0$. 125.4. 126.0. 127.2, 127.8. 128.1. 128.3, 128.5. 137.9, 140.1. 140.7, 145.2, 149.6. and 150.4. Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$: C. 80.64 : H. 6.49: N. 3.92. Found: C. 80.63 ; H. 6.47: N. 3.93.
($\mathbf{2 S}, \mathbf{3 S}$)-1,3-O-Isop ropylidene-2-[(9-phenyl-9-fluorenyl)-aminol-t-pentene 14. A solution of diol $13(0.70 \mathrm{~g}, 1.96$ menol). 2.2-dimethoxy propane ($0.72 \mathrm{mL}$.5.88 mmol) and p toluenesulfonic acid (22 mg) in dry acetone (22 mL) was stirred at $50^{\circ} \mathrm{C}$ overnight. After evaporation of acetone, the mixture was poured into saturated aqeous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with EtOAc ($15 \mathrm{~mL} \times 3$). After concentration of combined extracts, the residue was chromatographed on silica gel [hexane-EtOAc (8: 1)] to give compound $14(0.67$ g. 86%) as a solid. $\mathrm{mp}+8-50^{\circ} \mathrm{C}:[\alpha]_{1>}^{-1)}+215.8$ (c 2.00. $\left.\mathrm{CHCl}_{3}\right): \mathrm{IR}(\mathrm{KBr}): 3337,3062,2992,2938.2868 .1452 \mathrm{~cm}^{-1}$. $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 1.33(\mathrm{~s}, 3 \mathrm{H}) .1 .44(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz} . \mathrm{lH}$) $.2 .9+(\mathrm{dd} . J=2.0 .11 .9 \mathrm{~Hz}, 1 \mathrm{H}) .3 .39$ (dd. $. J=$ $1.8,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.1+(\mathrm{m} .1 \mathrm{H}) .5 .18-5.24(\mathrm{~m}, 2 \mathrm{H}), 6.11$ (ddd. $J=5.9 .10 .7 .17 .0 . \mathrm{Hz} .1 \mathrm{H}$), and 7.19-7.66 (m. 13 H , Pf): $\delta_{1:}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right)$ 19.2. 30.1. 50.7 .64 .t. 72.7. 75.3 . $99.1 .116 .2,120.0,120.3$. 125.8, 126.6. 126.7, 127.4. 127.9. 128.4. 128.5. 128.6. 128.7. 138.1. 140.3. 140.9. 146.2. 149.5. and 151.8 Anal. calcd for $\mathrm{C}_{2}-\mathrm{H}_{2} \mathrm{NO}_{2}:$ C. 81.58: H , 6.85 : N. 3.52. Found: C. 81.61 : H. 6.85 ; N. 3.51
($2 S, 3 S, 4 Z$-1,3-O-Isopropylidene-2-[(9-phenys-9-fluorenyl)-aminol-4-octadecen-1,3-diol 15. A solution of the isopropylidene pentene $14(0.60 \mathrm{~g} .1 .51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL) was ozonized at $-78^{\circ} \mathrm{C}$ until the solution turned blue, and then the residue ozone was removed with N_{2} gas. To the reaction mixture was added dimetlyl sulfide (0.33 mL . 4.53 mmol) and it was stirred overnight at room temperature. The residue mixture was evaporated to give aldehyde. which
was used in the next step without further purification. To a suspension of the tetradecyltripheny lphosphonium bromide (1.45 g .2 .60 mmol) in THF (15 mL) was added dropwise $2.5 \mathrm{M}{ }_{7}-\mathrm{BuLi}\left(1.04 \mathrm{~mL}, 2.60 \mathrm{mmol} .200 \mathrm{~mol} \%\right.$) at $-40^{\circ} \mathrm{C}$. After stirring for 2 h . a solution of the crude aldelyde in THF (7 mL) was added. The reaction mixture was warmed to room temperature. stirred for 30 min, then quenched with water (22 mL). The mixture was extracted with EtOAc (25 $\mathrm{mL} \times 3$) and the combined extracts were concentrated. The remaining residue was chromatographed on silica gel [hexane-EtOAc ($10: 1$)] to give compound $15(0.58 \mathrm{~g} .66 \%$) as an oil. $\lfloor\alpha]_{1}^{-i i}-60.9$ (c $3.00 . \mathrm{CHCl}_{3}$): \mathbb{R} (KBr): 3301, $3062,2992,2925,2854,1449 \mathrm{~cm}^{-1}: \delta_{11}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right)$ $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .1 .21(\mathrm{~s}, 3 \mathrm{H}) .1 .28(\mathrm{~m} .22 \mathrm{H}) .1 .43(\mathrm{~s}$, 3 H). 2.05 (br. 1 H). 2.23 (m, 2H). $2.2+$ (ddd. $J=5.1 .9 .2$. $10.3 \mathrm{~Hz}, 1 \mathrm{H}) .2 .80(\mathrm{dd}, J=5.1 .11 .7 \mathrm{~Hz} .1 \mathrm{H}) .3 .31(\mathrm{dd} . J=$ $10.3 .11 .7 \mathrm{~Hz}, 1 \mathrm{H}) .4 .43(\mathrm{dd} . J=9.2,9.2 \mathrm{~Hz} .1 \mathrm{H}), 5.12(\mathrm{dd}$. $J=9.2 .10 .7 \mathrm{~Hz}, 1 \mathrm{H})$, and $5.76(\mathrm{ddd}, J=7.5 .7 .5,10.8 \mathrm{~Hz}$. 1H) $7.17-7.69(\mathrm{~m}, 13 \mathrm{H} . \mathrm{Pf}): \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.6$. 19.5. 23.1. 28.6. 29.6. 29.8. 29.9. 30.0. 30.0. 30.1, 30.1, 32.4. $51.9 .66 .7,69.4,72.8 .98 .3,120.5,120.6,125.7 .126 .3 .127 .6$. $128.2,128.2,128.7 .128 .8,128.9,137.3 .140 .0 .141 .5$, 145.8. 149.3. and 151.2. Anal caled for $\mathrm{C}_{14} \mathrm{H}_{53} \mathrm{NO}_{2}: \mathrm{C}$. 82.85: H. 9.21: N. 2.42. Found: C. 82.84; H. 9.21: N. 2.44.
(2S,3S)-2-Amino-1,3-dihydroxy-t-octadecane (L-fhreosphinganine) 2. The protected octadecen-1.3-diol 15 (0.25 g. $0 .+3 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(0.08 \mathrm{~g})$ were in $\mathrm{MeOH}(10$ mL) under an atmosphere of hydrogen at $60^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was filtered through Celite. and the filtrate concentrated. The residue was chromatographed on silica gel $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-1 \mathrm{PA}(6: 1)\right]$ to give octadecane compound (0.12 g. 82%) as a solid. To a solution of amine compound (0.10 g . 0.29 mmol) in $90 \% \mathrm{MeOH}$ (5 mL) was added Dowex 50 W X 8 resin $(0.05 \mathrm{~g})$. The reaction mixture was stirred 12 h at $50^{\circ} \mathrm{C}$. The mixture was filtered. and then the insoluble material was washed with $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL}$). The remaining residue was eluted with $3 \mathrm{~N} \mathrm{NH}_{3} \mathrm{OH}$. The NH_{3} solution was exaporated to give compound $2(0.07 \mathrm{~g} .79 \%)$ as a solid. mp $126-128^{\circ} \mathrm{C}:[\alpha]_{1)}^{-1)} 2.6$ (c $2.00 . \mathrm{CH}_{3} \mathrm{OH}$): IR (KBr): $32+1$. $2919.2850 \mathrm{~cm}^{-1}: \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CD}_{3} \mathrm{OD}\right) 0.90(\mathrm{t} . J=6.9 \mathrm{~Hz}$. 3H). 1.29 (m. 26 H). 1.49 (m. 3 H). 1.91 (br. 3 H). 3.14 (m. $1 \mathrm{H}) .3 .69(\mathrm{dd} . J=8 .+11 .+\mathrm{Hz}, 1 \mathrm{H}) .3 .77(\mathrm{~m} .1 \mathrm{H})$. and 3.82 (dd, $J=3.7 .11 .+\mathrm{Hz}, 1 \mathrm{H}): \delta_{C}\left(125 \mathrm{MHz}: \mathrm{CD}_{3} \mathrm{OD}\right) 14.8$. 24.1. 27.4. 30.9. 31.0. 31.1. 31.1, 31.2, 33.5, 34.6. 58.8. 59.9. and 71.1: MS m/z: 28+. 270. 252 (M'): Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{NO}_{2}:$ C. $71.70 ;$ H, 13.04; N. 4.65. Found: C. 71.70: H. 13.05: N. +. 63 .

Acknowledgements. This research was supported by the Korea Science and Engineering Foundation (KOSEF) through the Regional Animal Industry Research Center at Jinju National University, Jinju, KOREA. We also grateful for the financial support of Brain Korea 21 program.

References

1. (a) Sweeley. C. C. In Biochemistry of Lipids and Membrabes:

Vance. D. E.: Vance, J. E.. Eds.: Benjamin Cummings Publishing Co.: Menlo Park. CA. 1985. (b) Karlsson. A. Anm. Rera Biochem. 1989. 58. 309 .
2. IJamun, Y. A.: Bell. R. M. Science 1989. 2f3, 500.
3. Schwartz. G. K.: Jiang. J.: Kelsen, D.: Albino. A. P. J. Nat. (Cancer hast. 1993, 85, 402.
4. (a) Holinan. R.: Tao. J. Tetrahedron Lett. 1998. 39. 3953. (b) Hollinan. R.: Tuo. J. J. Ogg. Chem. 1998. 63. 3979. (c) Azuma. H.: Tamagaki. S.: Ogino. K. J. Ong. Chom. 2000. 65. 3538. (d) Fernandes, R. Aㄷ Kumar, P: Tetrafedon: Tsmmetry 1999, 10. 4797. (心) Cook, G. R.: Pararajasingham. K.: Tetrohedron Letf. 2002, 43.9027. (f) Chun, J.: J.i, G.: Byun, II.S.: Bittman. R. Tetrahedom Lett. 2002. 43. 375 .
5. (a) Khiur. N.: Singh. K.: Garcta. M.: Marlin-Lomas. M. Tetrahedon Lett. 1999. 10. 5779. (b) Chung. S.-K.: Lee. J.-M.:

Tefrahadrom: Asymmetry 1999. Jo. 1441. (c) Hudlicky. T': Nugent. I.: Grilfith. W. J. Ong. Chem. 1994. 59. 7944.
6. (a) Shinozaki. K.: Mizano. K.: Masaki. Y, Chem. /hamm. Bull. 1996, 44, 927. (b) Murakani, T.: Iato, M. J. (hem. Soc. Perkin Trabs. $/$ 1996. 823. (c) Koike, K: Numara. N.: Sugimoto. M.: Nakahara, Y.: Ogaua, T. ('arhohud: Res. 1986. /58. 113. (d) Schmidt. R. R.: Kimmemman. P. Thetrahedom Leff. 1986. 27. 481. (e) Kiso. M.: Nakamura. A.: Jomita. Y.: Hasegawa. A. Carboblydr: Res. 1986. 158. 101
7. Jee, J. I.: Kang. J. F..: Yang. M. S.: Kang. K. Y.: Park, K. II. Tetrahedron 2001. 57. 10071.
8. Gerspacher, M.: Rapoport. II. J. Org. (Hem 1991, $56,3700$.
9. Lubell. W. D.: Rapopori. H. J. Am. Chem. Soc. 1987. 109. 236.
10. Cusk. R.: Hugener. M.: Vasella. A. Hek Chim. Acfo 1988. 71.

[^0]: *Comesponding author: F'ax: +82-55-757-0178: L-mail: khpark iogshp.gsnuackr

