DOI QR코드

DOI QR Code

DEHP Migration Behavior from Excessively Plasticized PVC Sheets

  • Kim, Jung-Hwan (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers,Hanyang University) ;
  • Kim, Seong-Hun (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers,Hanyang University) ;
  • Lee, Chang-Hyung (Department of Medical Devices & Radiation Health, Korea Food & Drug Administration) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Hahn, Airan (Biotechnology & Environmental Eng. Div., Agency for Technology & Standards)
  • Published : 2003.03.20

Abstract

The quantity, process and kinetics of di-(2-ethylhexyl)phthalate (DEHP) migration in the 30/70 and 40/60 poly(vinylchloride) (PVC)/DEHP blends were investigated using gas chromatograph. A thin and flexible PVC sheet was soaked in surrounding medium (SM) of water/ethanol mixture and acetonitrile with constant stirring to release DEHP. By observed concentration of DEHP in the SM, it is found that acetonitrile is more intense in DEHP migration than water/ethanol mixture. In addition the amount of extracted DEHP is proportional to the leaching temperature and added ratio of DEHP. The behavior of DEHP migration from flexible PVC sheets was described by the Ficks's law with $2.72-10.1\;{times}\;10^{-10}$ cm²/s of the diffusion coefficients.

Keywords

References

  1. Jayakrishnan, A.; Sunny, M. C. Polymer 1996, 37, 5213. https://doi.org/10.1016/0032-3861(96)00501-0
  2. Ljunggren, L. Artif. Organs. 1984, 8, 99. https://doi.org/10.1111/j.1525-1594.1984.tb04251.x
  3. Kambia, K.; Dine, T.; Azar, R.; Gressier, B.; Luyckx, M.; Brunet, C. Int. J. Pharm. 2001, 229, 139. https://doi.org/10.1016/S0378-5173(01)00840-7
  4. Parmar, D.; Srivastava, S. P.; Singh, G.; Seth, P. K. Vet. Human Toxicol. 1995, 34, 310.
  5. Jacobson, M. S.; Kevy, S. V.; Parkman, R.; Wesolowski, J. S. Transfusion 1980, 20, 443. https://doi.org/10.1046/j.1537-2995.1980.20480260277.x
  6. Sharman, M.; Read, W. A.; Castle, L.; Gilbert, J. Food Addit. Contam. 1994, 11, 375. https://doi.org/10.1080/02652039409374236
  7. Tomita, I.; Nakamura, Y.; Yagi, K.; Tutikawa, K. Environ. HealthPersp. 1982, 45, 71.
  8. Li, L. H.; Jester, W. F.; Orth, J. M. Toxicol. Appl. Pharm. 1988,153, 258.
  9. Guillette, L. J.; Pickford, D. B.; Crain, D. A.; Rooney, A. A.;Percival, H. F. Gen. Comp. Endocr. 1996, 101, 32. https://doi.org/10.1006/gcen.1996.0005
  10. Messadi, D.; Vergnaud, J. M. J. Appl. Polym. Sci. 1982, 27, 3945. https://doi.org/10.1002/app.1982.070271027
  11. Papaspyrides, C. D. J. Appl. Polym. Sci. 1992, 44, 1145. https://doi.org/10.1002/app.1992.070440703
  12. Steiner, I.; Scharf, L.; Fiala, F.; Washuttl, J. Food Addit. Contam.1998, 15, 812. https://doi.org/10.1080/02652039809374715
  13. Papaspyrides, C. D.; Duvis, T. Polymer 1990, 31, 1085. https://doi.org/10.1016/0032-3861(90)90256-X
  14. Messadi, D.; Vergnaud, J. M. J. Appl. Polym. Sci. 1981, 26, 2315. https://doi.org/10.1002/app.1981.070260718
  15. Labow, R. S.; Tocchi, M.; Rock, G. Transfusion 1986, 26, 351. https://doi.org/10.1046/j.1537-2995.1986.26486262743.x
  16. Rastogi, S. C. Chromatographia 1998, 47, 724. https://doi.org/10.1007/BF02467461
  17. Dine, T.; Luyckx, M.; Cazin, M.; Brunet, C.; Cazin, J. C.;Goudaliez, F. Biomed. Chromatogr. 1991, 5, 94. https://doi.org/10.1002/bmc.1130050211
  18. Fayz, S.; Herbert, R.; Martin, A. J. Pharm. Pharmac. 1977, 29,407. https://doi.org/10.1111/j.2042-7158.1977.tb11354.x
  19. ISO 3826, “Plastics Collapsible Containers for Human Blood andBlood Components”, 1993.

Cited by

  1. H-NMR techniques vol.26, pp.3, 2009, https://doi.org/10.1080/02652030802520852
  2. Migration of novel epoxidized neem oil as plasticizer from PVC: Experimental design approach vol.121, pp.2, 2011, https://doi.org/10.1002/app.33554
  3. Temperature- and solvent-dependent migrations of di(2-ethylhexyl)phthalate, the hazardous plasticizer from commercial PVC blood storage bag vol.19, pp.7, 2012, https://doi.org/10.1007/s10965-012-9915-4
  4. Influence of Temperature on the Emission of Di-(2-ethylhexyl)phthalate (DEHP) from PVC Flooring in the Emission Cell FLEC vol.46, pp.2, 2012, https://doi.org/10.1021/es2035625
  5. Thermal stability of epoxidized soybean oil and its absorption and migration in poly(vinylchloride) vol.53, pp.8, 2013, https://doi.org/10.1002/pen.23417
  6. The effect of temperature on di(2-ethylhexyl) phthalate leaching from PVC infusion sets exposed to lipid emulsions vol.67, pp.5, 2012, https://doi.org/10.1111/j.1365-2044.2011.07006.x
  7. Fungal biodegradation of phthalate plasticizer in situ vol.24, pp.2, 2013, https://doi.org/10.1007/s10532-012-9584-3
  8. Synthesis and Application of Carbonated Fatty Acid Esters from Carbon Dioxide Including a Life Cycle Analysis vol.7, pp.4, 2014, https://doi.org/10.1002/cssc.201301115
  9. Plasticized poly(vinyl chloride) composites: Influence of different nanofillers as antimigration agents vol.132, pp.39, 2015, https://doi.org/10.1002/app.42559
  10. Plasticizer migration from micro-layered flexible poly (vinyl chloride) films prepared by multi-layer co-extrusion technology vol.32, pp.4, 2016, https://doi.org/10.1177/8756087915612884
  11. Environmentally Friendly Oil-Modified Polyesters as Polymeric Plasticizers for Poly(vinyl chloride) vol.25, pp.2, 2017, https://doi.org/10.1007/s10924-016-0810-7
  12. Migration behaviour of silicone moulds in contact with different foodstuffs vol.27, pp.3, 2003, https://doi.org/10.1080/19440040903341869
  13. Metallocene based polyolefin: a potential candidate for the replacement of flexible poly (vinyl chloride) in the medical field vol.21, pp.9, 2003, https://doi.org/10.1002/pat.1475
  14. The leaching of phthalates from PVC can be determined with an infinite sink approach vol.6, pp.None, 2003, https://doi.org/10.1016/j.mex.2019.10.026
  15. The Effect of the Composition of the Extractant on the Kinetics of Desorption of Plasticizers from Polyvinyl Chloride vol.14, pp.2, 2021, https://doi.org/10.1134/s1995421221020246