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We present a brief account of the theory of diffusion-influenced kinetics of reactions involving polymers. The 
review will be based on the recent contributions from the authors. Both intrapolymer and interpolymer 
reactions are considered, and the effects of various physical factors, such as the chain length, chain stiffness, 
and hydrodynamic interactions, are described within a unified theoretical framework.
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Introduction

Chemical reactions between functional groups on polymeric 
molecules are ubiquitous in many applications. Termination 
in radical polymerization, crosslinking of polymer gels, and 
reactions involving biopolymers such as proteins and receptors 
are a few examples.1,2 In spite of their practical importance, 
understanding of the principles behind their reaction kinetics 
is still in a primitive stage. This is due to the difficulty arising 
from the strong constraint of chain connectivity as well as of 
chain entanglements, leading to a deviation of the dynamics 
of reactive groups from the free Brownian motion. It is in 
contrast to the reaction kinetics of small molecules, which 
have been studied extensively for many years.3,4

Much attention has been paid to the intrachain reactions of 
polymers because such reactions occur in a variety of reacting 
polymer systems and measurements of the intrachain reaction 
rates provide valuable information on the conformational 
structure and dynamical behavior of polymer chains.5,6 A 
general theory for describing the diffusion-influenced kinetics 
of intrachain reactions was first advanced by Wilemski and 
Fixman.7 By utilizing a factorization approximation (also 
called the closure approximation), they could derive analytic 
expressions for the reaction rate and the time-dependent 
survival probability of unreacted polymer for several types 
of intrachain reactions. More specific aspects of the 
intrachain reactions have been investigated also. Friedman 
and O'Shaughnessy developed a renormalization group 
method for calculating the cyclization rates of chain polymers 
as a function of reactive group locations along the backbone.8 
Stampe and Sokolov investigated the effects of electrostatic 
interaction between the charged end groups on the cyclization 
rate.9 Dua and Cherayil considered the effect of backbone 
rigidity on the dynamics of chain closure.10 Bandyopadhyay 
and Ghosh utilized a non-Markovian reaction-diffusion 
equation to investigate the memory effect in the fluorescence 
resonance energy transfer.11 Rey and Freire,12 and more 
recently Podtelezhnikov and Vblogodskii13 investigated the 
effect of excluded volume interactions by using Brownian 

dynamics simulations.
Investigations on reactions between polymers have also 

been made for a number of situations. de Gennes discovered 
a regime of time-dependent reaction rates with and without 
the effects of entanglements.14 Oshanin and his coworkers 
have made investigations on trapping reactions involving 
polymers in two and three dimensions,15 and summarized 
the many-particle effects occurring in various polymeric 
reactions.16 Reactions at polymeric interfaces were studied 
extensively by O'Shaughnessy et al.17 and by Fredrickson.18

In this review, we present a brief account of the theory of 
diffusion-influenced kinetics of reactions involving polymers, 
based on the recent contributions from the authors. In 
particular, we show that for both intrachain and interchain 
reactions, the reaction event and the inherent polymer dynamics 
can be decoupled approximately in many cases. The effects 
of various physical factors, such as the chain length, chain 
stiffness, and hydrodynamic interactions, on the reaction 
kinetics can thus be described within a unified theoretical 
framework.

Intrachain Reactions

Figure 1 illustrates schematically a typical intrachain 
reaction. For simplicity, the polymer is modeled as a chain of 
spherical beads connected by harmonic springs. As shown in 
the figure, we consider the general case in which the reacting 
groups are located at any position on the chain. Most previous 
theories dealt with the case where the reaction occurs 
between the reacting groups at the chain ends. Although we 
will use the terms tailored for a simple cyclization reaction, 
the theory can also be applicable to intrachain energy transfer19 
and the excimer-formation reaction20 with a little modification.

Derivation of the Rate Expressions. Let 电(rN +1, t) be 
the probability density for the polymer being in the open 
form, with the N + 1 beads constituting the chain located at 
卩+1 三(r°, r”...，rN . Similarly, Wr(X +1, t) is the probability 
density for the polymer making a ring due to the bond 
formation between the ith and jth beads, with the N + 1
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Figure 1. Pictorial representation of the reversible cyclization 
reaction. The bond forms between the zth and the jth monomers.

beads located at X+1 三(x0, x1, ..., xN). The probability 
density function Wo(r ，t) evolves in time according to7

d / N +17-z N +1、 / N +1
dj^O(r , t) = L(r 川O(r , t)

-JdxN RrN+ 】|xN+ 1 )恥(rN+ 1, t)

N+ 1 N+ 11 N+ 1、 N+ 1+ Jdx Rr(x |r )Wr(x , t) . (1)

Here L (rN +1) is the Smoluchowki operator governing the 
thermal evolution of the open-chain distribution in the 
absence of reaction. The sink functions Rf and Rr represent 
the inherent rates of bond formation and dissociation at the 
bead configurations given by r^+1 and xN +1, respectively. 
We assume that they have the simple forms given by

R( rN+ 1 |xN+ 1) = Sf( rN+ 1 )5( rN+ 1-X" 1),

Rr( xN+ 】| rN+ 1) = SO (丈 1 )5( rN+ 1-X" 1), ⑵

where 5(rN+1-X"1) = 5(r°-x°)...5(rN—xf) - Equation (2) 
tells us that the inherent bond formation and dissociation 
occur so rapidly that the polymer conformation does not 
change much during the course of the reactive transitions. 
With Eq. (2), Eq. (1) reduces to

d N +1N +1、 N +1
融。(r , t) = L( r Wo (r , t)

0 N+1 N+1 0 N+1 N+1-Sf(r )Wo(r , t) + Sr(r 、)Wr(r , t). (3)

We now assume the following sink functions:
S(r +1) = ff(|马 - 니)， (4)

S0(rN +1) = K”r(|r 一 rj) . (5)

With these sink functions, integration of Eq. (1) over (r0, 
..., r，-1, r汁1,...,弓-1,弓+1, ..., rN) gives

d-PO (r,, r t) = L'(rt, r)PO(rt,弓,t)

-KfSf(|r, 一 rj) Pg r t) + KrSr(|r, 一 rj)PR (r,,弓,t) . (6)

PO(弓.,弓,t)[PR(r,,rj,t)] is the probability density for the 
polymer being in the open [ring] form at time t with the 
ith and jth beads at r. and 顼 L'(r,.,弓)is the reduced 
Smoluchowski operator governing the thermal evolution of 
PO( r.,弓,t) in the absence of a reaction. When the external 

flows and forces are absent, it is clear that PO (r.,弓，t) and 
PR(r., Vj, t) depend only on R(三 |r, — rj ):

PO(r,, % t) = V-xPo(R, t),

PR(r,, r t) = V』Pr(R, t). ⑺

Po(R, t)[PR(R, t)] is the probability density for the polymer 
being in the open [ring] form at time t with the distance 
between the ,th and jth beads being given by R. Hence, Eq. 
(6) reduces to

ddtPo(R, t) = L(R)Po(R, t)

-Kf )Po(R, t) + KrSr(R)Pr(R, t) . (8)

Here, L(R) is an effective thermal operator governing the 
reaction-free evolution of Po(R, t), whose explicit expression 
need not be known at the moment.

If the vibration of the ring-forming bond is very fast, the 
deviation of PR(R, t) from the internal equilibrium distribution 
PRq( R) should be negligible, so that we can write

Pr(R, t)= PR(R)Sr(t) . (9)

SR(t) is the probability that the polymer is in the ring form at 
time t. With this approximation, Eq. (8) can be rewritten as

ddtPo(R, t) = L(R)Po(R, t)

-Kf )Po(R, t) + KrSr(R)PR(R)Sr(t) . (10)

Integrating Eq. (10) over R (,.e., over the relative separation 
and orientation of the ,th and jth beads), we obtain the rate 
equation as

jSo(t) = -KjdRf R)Po(R, t) + 罗[1 -So(t)] . (11)

Here So(t)[= 1 - SR(t)] is the probability that the polymer is 
in the open form at time t, and k：어 denotes the equilibrium 
rate constant for the bond-dissociation:

So(t) = JdRPo(R, t) , (12)

keq = KrJdRSr(R )PR어(R) . (13)

We assume that initially the polymer is in the equilibrium 
configuration of the open chain:

So( t =0) = 1, Po (R, t =0) = P^Oq (R) . (14)

For this initial condition, Laplace transformation of Eq. (10) 
yields the following perturbative solution:

JdRSf(R)Po(R, s)=广 JdRSf(R)Peo(R)

-K疽 ]J dRSf( R )J dR0 G (R, s|R°) SfR〉) P 응 (R°)
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-KfJdRSf(R)JdR[G(R, s|R1)SfR)

乂 JdRoG(R1，sRo)Sf(Ro腰(R) + …

+ k,Sr(s申dRSfR)JdRoG(R, s|Ro)S"。)P엉(R°)

-KfJdRSfR)JdR©(R, s|R1)SfR)

乂 JdRoG(R1，sRo)Sr(Ro)PRq(R°) + …}. (15)

We denote the Laplace transform of any function f(t) as 
人s). In Eq. (15), the Green s function G(R, sRo) is defined 
by

with

R(t) = JdRSf(R)JdRoG(R, t|R°)PR(R°).

At long times, when the equilibrium state is restored, we 
should have

(25)limSr() = limsS(s) = k 三 SR .
I” sE k尸 + k어

However, neither of the solutions given by Eqs. (22) and (24) 
satisfies this requirement in general. We can remedy this 
problem immediately. When the system is restored to the 
equilibrium state, we should have PO(R, t) = Pe(O(R)S(O and 
Eq. (1o) reduces to

G(R, 이Ro) = 箫(眼"- . '
s - L( R)4nR2

By using the decoupling approximation suggested
Weiss,21 we can resum the series solution in Eq. (15) as

sJ 艸R )P O( R,財 /- s-. + fv

& /、 Dr( s)
+ KrSR(s) 一------ 一 ， '1 + KfDf( s)/ Vf

(16)

by

(17)

Kf) PO (R )SOq = KrSr (R) Pg SR . (26)

With this detailed balance condition, Eq. (22) becomes

f [ ,eqsDff(s) 1-1
, s + kf너一一一一 + kr 너 X .s [ f Df8) rSR ( s ) (27)

where

V = J dRfR) PO (R), (18)

Dft) = JdRSf(R)J dRGR tRo)fRo)P*(Ro), (19)

Dr(t) = JdRSf(R)JdR0G(R, t|R°)Sr(Ro)PRq(Ro). (20)

On the other hand, Laplace transformation of Eq. (11) 
gives

One can immediately see that Eq. (27) satisfies the equilibrium 
condition given by Eq. (25).

In contrast, the WF solution cannot be saved by the above 
detailed balance condition. The reason is that in the WF 
theory a couple of approximations were made at the stage of 
Eq. (3). First,勇(裆 +1) was set equal to a constant k. 
Second, Wr(产+1, t) was approximated by 睇(r +1 )Sr(t) 
where V앪(r ) is the equilibrium chain distribution 
function for the ring polymer. Thus, one can easily see that 
the WF solution is regained from our solution if Sr(R) is set 
equal to unity.

When the sink functions can be modeled as 5-functions [i.e., 
when SRR = S^R) = 8(R-d)/(4no) ], Eq. (27) reduces to

KfJdRSf、R)Po(R, s) -keq[s 1-So(s)] = 1-sSo(s). (21)

Substitution of Eq. (17) into Eq. (21) finally gives
Sr (s)=- 八

s s + fG (g, s| <y) + krq
(28)

SR(s') = s - ŜO(s)

where

=4"?끄一"』阳赛一一 - D씌「

(22)

伊 = f d RSf( R) P 응 (R) = KfVf. (23)

Note that Dg = Vf2 and Dr(^) = Vf\dRSr(R)PeRq(R).
Equation (22) is the key result of the formalism developed 

in this section. This can be compared with the WF result:7 

It should be remarked that the decoupling approximation of 
Weiss becomes exact in this 5-function sink case.

The Green’s Function. To calculate the intrachain reaction 
rate between two reactive groups on a polymer, we need an 
explicit Green’s function expression for the relative motion 
of the beads carrying the groups in the absence of reaction.

To the best of our knowledge, only the Green’s function 
for the end-to-end motion of a polymeric chain has been 
given in the literature. For the free draining Rouse chain, the 
following expression has been derived by Wilemski and 
Fixman7 using the boson representation method and also by 
Doi22 using the more straightforward integration procedure:

SWF (s) 이- J s+kff一+keq 

*

+ k"
-1

(24)

5 mj 。 f/2 J 3 [R-0(t)Ro]21 
G(R, tRo) = I —一2---------2一一 I exp, —一2-----------------------X.

<2nZ2[1-02(t)]V [ 2L2 [1-02(t)]
(29)

Here, R is the end-to-end vector ro -財 and L2(=Nb2) is the

3
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equilibrium mean squared end-to-end distance with b2 
denoting the equilibrium mean squared length of a single 
bond of the Rouse chain. 0(t) is given by

臥t) = 으 £ -=exP(-3无t/上), 弟 =
n odd k k

H is the matrix describing the pre-averaged hydrodynamic 
interaction between the beads that is given by

(k = 0, 1, ..., N),

2

(30)

1 (i = j)
z (i i)

nb( 6n3| i-j\1 /2)

where t1 is the characteristic diffusion time scale defined by 
t]三 b /D], and Di is the diffusion constant of a single 
bead. The expression for 臥)given in Eq. (30) is valid only 
for large N. A more accurate expression for 0(t) is20,23

(씨') = N(N+1注传-4)exp(-3源/，]) ' (31)

where 源^(k = 0, 1, ...,N) is the Rouse eigenvalue given by

^k = 4sin2(宀. (32)

where §= kBT/D】denotes the friction coefficient for a 
single bead, and n is the solvent viscosity.

Let Q denote a matrix whose N + 1 columns are the 
eigenvectors of the matrix H • A, so that H • A is diagonalized 
by the similarity transformation:

Q-1 . H . A . Q = A with A” =源,8订 (38)

Zimm showed that the same matrix Q can also be used to 
diagonalize H and A separately, though not by similarity 
transformations:24

Note that in Eqs. (30) and (3]) summation includes only the 
odd values of k.

In Ref. 20, we derived a more general expression for 
G(R, t|R°) with R = r, - rj (0 < i < j < N). We also 
took into account the dynamic effects of hydrodynamic 
interactions among the beads. The analysis was based on the 
Rouse-Zimm model of a linear chain.24 In this model, the 
potential energy of the chain is given by

3N c a. 一 一t23
UkBT =—2£(ri-r-j =—2 £ I.a-X,

2b i = 1 2b y= x,y, z
(33)

where A is the (N + 1)x( N + 1) matrix given by

1 -1 0 0 0 0 0
-1 2 -1 0 0 0 0
0 -1 2 -1 0 0 0

A= 0 0 -1 -2
•

0
:

0 0 (34)

0 0 0 0 2 -1 0
0 0 0 0 -1 2 -1
0 0 0 0 0 -1 1

and X is the (N + 1)-dimensional vector defined by

(x0 ) (y0 ) (z0 )

Xx =
x1

:
Xy =

y1
Xz = z1

:
\xN)

项丿 \ZN丿

(35)

with the superscript T denoting the transpose.
In the absence of reaction, the probability density function

N + 】』、「 N +1W(r , t) for the N + 1 beads being located r 三(r°, 口,

...,rN) at at time t evolves as

d里
~di = D1 £

Y= x, y, zL
(36)

Qt . A . Q = M with Mij =卩而,

Q-1. H. Q-1T = A M-1 = N with N” =听司=源/%.)而广

(39)

Hence by introducing the normal coordinates {qk = (qkx, qky, 
qkz)} defined by

N
ri = £ Q-ij qk , (40)

k = 0

Eq. (36) can be rewritten as

知",t)=D1 £』奖+2%(으')T. q里 , (4i)
出 i= 0 |_dq" 檢qi 丿

where a = (3%i)/(2b1) and qN +1 = (q°,q”...,qN. Except 
for q0 which corresponds to the center-of-mass motion, the 
normal modes are over-damped harmonic oscillators with 
force constants 2akBT and diffusion constants De

From Eq. (40), we have
N

R = rI - r = £ ckqk (42)
k=0

with Ck = Qik - Qjk. Note that c° = 0 since R should be 
independent of the center-of-mass coordinates. Hence the 
Green’s function G(R, t|R°) can be expressed as

G(R, t| R0) = N\dV JdqjW £ c-qi - R

U=1 丿

mi …(N \ v, 1
X GF(qN+1,t|qj物 £ 啊。一R。阻就). (43)

"j=1 丿

Here, GF(qN +1, t| qN +1) is the full Green’s function for Eq. 
(41) satisfying the initial condition, GF( qN +1, t = 이 qN +1)

= n 而(q? - q?0) .里eq(qN +1) is the equilibrium distribution 
i=0

function, and N is the normalization constant.
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First, Weq(q"+1) can be obtained easily by solving

(44)

0 = -h2/h1, and Eq. (51) becomes
3 ]3” J 3[R-0Ro]2 ]

exp〈--- ------ -  \ ,
[2〈日2〉[1-0和

(52)

G(R,，|Ro)=] 2 2
[2n〈R2〉[1-02]

We have

Weq(q +1)=广 f[ (a,/n)372exp(-a,q2), (45)
i = 1

We can relate 0 to <R(t) • R(o)> by

where V is the volume of the system. The normalization 
constant N appearing in Eq. (43) is obtained by requiring 
that jdRG(R, t|Ro) = 1 . For t = 0, this requirement on Eq. 
(43) gives

Njdq +1《W c,q‘ - Ro Weq(q"+1) = 1. (46)

〈R(t) - R(o)〉= jdRjdRoR - RoG(R, t| R°)P*(Ro) = 0〈R2〉
(53)

Finally, after some algebra, we can show that the 
equilibrium mean squared distance between the ith and jth 
beads,〈 R〉, and the normalized time correlation function 
of the vector R, 0(t), are given by

〈r2〉= b W i = \i-j\b2,

k = 1 卩 k
2

心、〈R(t)・R(o)〉 1 領气…、 /“、
0(t) = ' 2 =|—- W ---exp(-3Akt/t1) , (55)

〈R2〉 卩 -jk =M

where t1 = b2/D1. The equilibrium distribution function for 
the distance R is given by

(54)

With the expression for Weq( qN +1) in Eq. (45), we have

N-=
z 、一3/2 z

N 2 , 2
n£ c/%• exp -Ro
i=1

2 , cr、
Ba = R0q(Ro) . (47) 

丿

Next, Eq. (42) shows that R is a Gaussian random variable. 
Hence the reduced Green’s function (RGF) G(R, t|R°) 
should be a Gaussian function with respect to both R and Ro：

E = E = 厂exp (56)

G( R, t| Ro) = N exp I-2 [ R - H】-R

+ 2R - H2 - Ro + Ro - H3 - Ro" . (48)

where N is a normalization constant, and Hi (i = 1, 2, 3) is a 
time-dependent matrix. For an isotropic system, 
G(R, t| Ro) depends on the magnitudes of R and Ro and on 

the relative angle between R and Ro, but is independent of 
the respective orientations of Ro and R in the laboratory 
fixed frame. Hence, Hi must be proportional to unit matrix, i.e. 
h, = h1(t)I.

In addition, the RGF satisfies the following properties:

jdRG(R, t|Ro) = 1 , (49)

jdRoG(R, t|Ro)PO(Ro) = PO(R) , (5。)

where P牙(R) is the equilibrium distribution. From Eq. 
(49), we can show that N = (h1/2n)3/2 and h； = h03, so that 
Eq. (48) becomes

G(R, t|Ro) = (£j"exp]-?[r + h2Ro"」2} , (51)

At long times, we must have hg) = 3/〈R2〉三h； and 
/项8) = o, since lim G(R, t|R°) = P牙(R) and <R2> = 
jdRR2P牙(R). tt；

From Eq. (5o), we can obtain h] = h；/( 1 一 0) with

An expression for the orientation-averaged Green’s function 
G(R, tRo) can be readily obtained from Eq. (52):

3 I" 1
G(R,tRo) = &〈r2〉[1-02(用 4nRRo0(t)

J f 3 [R -0(t)Ro]2
X1 exp| -—二'''-------- -------
[I 2〈R2〉[1-02(t)]

f 3 [R + 0(t)Ro]2)
一 exp| -—'''''-------- -------I 2〈R2〉[1-02(t)]丿

(57)

For the free'draining Rouse chain, more explicit expressions 
can be obtained. In this case, we have for k = o, 1, ..., N

nR ..r a . 2f kn A
사 = 卩 k =4s삐示+①丿,

R ,f2-3ko*2 . [(i+j+ 1)k찌 . r(i-j)knl 心、
c=-2In+tJ 叫 2(N+1) J叫2(N+i)J , (58) 

with the superscript R denoting a quantity for the free' 
draining Rouse chain. In particular, when the reaction occurs 
between the beads at the chain ends (i.e. i = o, andj = N), we 
have〈R2〉= Nbb, and the expression for G(R, t|R°) 

reduces to that given by Eqs. (29) and (31).
Effect of Chain Stiffness. The effect of chain stiffness can 

be incorporated into the present theoretical framework by 
adopting the optimized Rouse-Zimm (ORZ) model.25 The 
ORZ model differs from the Rouse-Zimm model in that the 
bond angles are fixed; see Figure 2. The chain stiffness does 
not affect the inherent reaction step, so that its influence is
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Figure 2. The optimized Rouse-Zimm model of a linear chain. The 
bond angles are fixed at a constant value 6.

reflected only in the nonreactive chain dynamics.
The evolution equation governing the random thermal 

motion of the chain is again given by the Smoluhowski 
equation as given by Eq. (36), but with the A and H matrices 
replaced by

1 -(1+q) q 0

-(1+ q) 2 + 2q+q -(1+ q)2 q

As = 一一2

1-q

q -(1+q)2 2 + 2q + 2q2 -(1+q)2
0q

: :
-(1+ q)2 (2 + 2q + 2q2)

0 0 0 0
0 0 0 0

1 0 0 0 0

... 0 0 0 ]

... 0 0 0

. 0 0 0

. 0 0 0

... 2 + 2q + 2q2 -(1+ q)2 q
2...-(1 + q)2 22+2q+q -(1 + q)

. q -(1+ q) 1丿

(59)(Hs )t]

where q = -cos 6 with 6 denoting the bond angle (see Fig. 2), 
and we have put the subscript "S” to the matrices to 
designate the quantities for the “stiff” chain.

The procedure to get the Green’s function expression 
follows the same line as in the previous subsection. Let us 
introduce the following notations:

Qs1 - As Qs = As with (卜為 = 서林

QS- AS- Qs = MS with (Ms為=谴辅;
Qs1 - Hs - Qs" = As - M； = Ns

with (Ns)” = vS8t] = <Ej席專

N _ s
r, = £ (Qs*q；；

k = 0

R = r,-弓=£ cSqS with c； = (Qs),*-(Qsj - (60) 
k=0

Then the expressions for the Green’s functions given by 
Eqs. (52) and (57) remain the same, but with the expressions 
for〈R2〉and 0(t) given by

八〉2\ 农 2|. Ji + q 2q 1 - ^-j「| ,G、
〈R〉= b \i -j\ -—^ - -------j——--y , (61)|_1-q I，-j (1-q)2」

2 N (C；)2 cb pr ( k) / o T ；
臥t) = -r £ "—s- exp(一3 尢"/11) . (62)

〈R2〉k = o 此

Intrachain Reaction Kinetics. We have set up the 
theoretical apparatus that can be used to analyze the time
dependent kinetics of intrachain reactions. One can now 
investigate the effects of various physical factors, such as the 
chain length, chain stiffness, and hydrodynamic interactions, 
within a unified theoretical framework. Some of the results 
have been presented in Refs. 19 and 20.

A useful experimental technique for probing the dynamical 
properties of a flexible chain polymer is to measure the time
dependent intensity of fluorescence emitted from a fluorophore 
attached at one end of the chain, which is sensitized by an 
external illumination and quenched by an energy acceptor 
located at the other end.26 Time-resolved fluorescence data 
are most commonly obtained by exciting the reaction system 
with a short pulse of light and thereafter measuring the time
dependent fluorescence emission.27 However, the excitation 
light pulse has a finite time span so that an extensive 
deconvolution of the data needs to be carried out. Even if one 
uses a picosecond laser, the observed instrument response 
function often spans over 0.1 ns. Hence it can be rather difficult 
to obtain adequate resolution. An alternative method is to 
measure the frequency response of the emission to intensity- 
modulated light. This method, called the frequency-domain 
fluorometry, is known to have high sensitivity to resolve 
the complex decay of fluorescence intensity. It was first 
implemented by Gratton and Limkeman,28 and has been widely 
applied by Lakowicz and Gryczynski.29 In particular, Lakowicz 
et al. used the method to investigate the intramolecular energy 
transfer reactions occurring in flexible molecules.30

In Ref. 19, we presented a theory for analyzing the 
frequency-domain fluorometric experiments on intrachain 
fluorescence-quenching reactions occurring in flexible chain 
polymers. The results were applied to investigate the qualitative 
dependence of the modulation and the phase angle on the 
chain length of the polymer.

In Ref. 20, we formulated a general theory for analyzing 
the kinetics of intrachain excimer-formation reactions. While 
most previous theories for intrachain reactions dealt with the 
end-to-end reaction case, we considered the general situation 
in which the reacting groups are located at any position on 
the chain backbone. Various aspects of the reaction kinetics, 
such as the effect of hydrodynamic interaction and the 
dependence of reaction rate on the positions of reacting groups 
as well as on the chain length, were investigated.
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Figure 3. Pictorial representation of an interpolymer reaction. The 
bond forms between the mth monomer of polymer A and the nth 
monomer of polymer B.

the beads, so that the sink functions are assumed to have the 
following forms:

欧 rNA +', rAB +' ) = Kf8( rAm 一 rBn) , (64)
S0( Ta +', rAB +1) = K同丄 一 Tb„ ) . (65)

Since we cannot keep track of the fate of individual chains, 
we introduce the reduced distribution functions (RDF):

CA(Lm, t)=岑 JdrAW®+1, t), (66)
i = 1

Interchain Reactions

In this section we will consider a typical interpolymer 
reaction, as illustrated schematically in Figure 3. Theories 
for other types of interpolymer reactions can be formulated 
in a similar way.31,32 Again, we model the polymer as a chain 
of beads connected by harmonic springs. We consider two 
different kinds of linear polymers, A and B, with (Na + 1) 
and (NB + 1) beads, respectively. We assume that the chain A 
has a single reactive group at the mth bead, while the chain B 
at the nth bead.

Derivation of the Rate Expressions. We consider a 
reaction system containing Na chains of the type A and Nb 
chains of the type B. To describe the reaction kinetics 
systematically, we introduce a set of hierarchical kinetic 
equations describing the reaction-diffusion process of the 
chains. The lowest-order equation in the hierarchy is given by

§阳占+1, t) = L(rN+1)阳(rNA+1, t)

-"+1 欧奇 +1, rNB *岩 +1, rNB +1, t)
j = i j

+ +g+1 故",聲""',吾+1，t) . (63)
j = ' j

YA (rAA+ , t) is the probability density for the ith chain of 
A being in the unreacted form at time t, with the Na + 1 
beads constituting tlie cihain located at *+1 三(rA0, s,..., 
TanA). WabSTANa + ,rBB +',t) is the joint probability density 
that both the ith chain of A and the jth chain of B are in the
unreacted form at time t, with the beads constituting the 
chains located at rA"+1 三(tao, rAi, ..., Tana) and TN +' 三(tbo, 
Tbi, ..., Tbnb). Similarly, WCjrA"+1, r^+1, t) is the probability 
density for these chains, Ai and Bj, making a bond between 
the mth bead of Ai and nth bead of Bj, with beads located at 
(taNa +1,吊 +'). The first term on the right side of Eq. (63) 
represents the change due to random thermal motion of the 
chain Ai. The second term represents the change due to the 
bond formation between the chains Ai and Bj, while the third 
term represents the change due to the reverse dissociation. 
The sink functions £(卧+1, 쎰") and SjrA4", 捋") 
denote the respective reactive transition rates at the con
figuration (rAA+1, rAB +1).

We then neglect the excluded volume interactions between

CAB(rAm, rBn,t) =、£ ^ JdrNAJdrAB WAiBj(rNAW WA +',t)， 
i = 1 j = 1

(67)

CC(rAm, rBn,t) = 1A 芸"*"£'Wc成rAA W rAB +1,t), 
'=11 = 1 (68)

AAwhere J dr& denotes the inteAahon over the bead coordinates 
of A except rAm, and JdrAA is defined similarly. In a 
homogeneous and isotropic reaction system, the number 
density field of A, Ca(「川彻，t), is independent of rAm and can 
be equated with the bulk number density a(t), and the two- 
particle RDF depends only the separation of the reactive 
beads, namely, CAB(rAm，rB”,t) = CAB(r=|rAm-rB„|,t) .

With Eqs. (64)-(67), integrating Eq. (63) over the 
irrelevant coordinates and then summing the resultant 
equation over i from 1 to Na gives

—시(t) = -—-c(t) = - KfCAB(0, t) + Krc(t) - dt dt (69)

In writing Eq. (69) we identified °。(七所，rAn = f, t) 
with the bulk number density of the product polymers, c(t), 
since rAn = rAm in all C molecules (as assumed in writing the 
sink functions) and。°(七所，rA„ =七所，t) is independent of 
rAm in a homogeneous system.

The kinetic equation for CAA(r, t) can be obtained by ，丿 Na+1 aa+ 1
integrating the evolution equation for WAiA.(rAA , rAA , t) 
over the irrelevant bead coordinates and then summing the 
resultant equation over the reactant molecule indices i and j. 
In the pseudo-first order case, where one species of chains 
(say B) are present in excess over the other, we obtain33

dCAA(r，t) = LAB(r)CAA(r, t) + 5( r)[- KfCAA(r, t) + K”c(t)]

-KfCABA(r, 0, t) + KrCAA(r, t) , (70) 

where LAA(r) denotes an effective thermal evolution operator 
for the RDF CAA(r, t) in the absence of reaction, whose 
explicit expression need not be known at the moment. The 
second term on the right side takes account of the changes in 
CAB(r, t) due to binary reaction events. When the reactant 
number densities are small, only the binary reaction events 
are important and it is less probable that two or more reactant 
molecules of one species compete for a target reactant 
molecule of the other species. The third and the fourth terms 
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arise from the competitive participation of a third chain of B 
in the binary reaction event. The three-particle RDF CBB(r, 
r, t) is the product of 시(t) and the number densities of chains 
of B, whose reactive groups are separated by r and r' from 
that of an A chain, and C^b (r, t) is the two-particle RDF for 
A-B chain pairs with A denoting an A captured by a third 
chain of B.

Eq. (70) for Cab(t, t) is coupled with those for Cabb(\ rf, 
t) and Cab(r, t). The evolution equations for these RDFs 
are in turn given by

dtCAB(r，t) = LAB(r)CAB(r，t) + KfCABB(r，0，t) - £(%侦，t),

(71)

dtCABB(r，r，，t) = [LAB(r) + LAB(r，)] CABB(r，r，，t)

+ 8(r)[- KjCabb(r，r'，t) + k£Ab(r'，t)]
+ 8(r')[- KjCabb(r，r'，t) + 匚％(r，t)]

-Kcabbb (r，r'，0，t) + krCABB (r，r'，t) - (72)

Equation (72) for Cabb(r，rf，t) is further coupled with 
higher-order RDFs Cabbb(r，r'，0，t) and Cabb(r，r'，t). In 
fact, we have an infinite hierarchy of evolution equations.

In Ref. 33, we developed a very accurate and systematic 
procedure to deal with the hierarchical set of reaction
diffusion equations. The many-particle kernel (MPK) theory 
of Ref. 33 gives the following Laplace-transform expression 
for the time-dependence of the reactant number densities:

^a(s) _ AC(s) _ 八+ A )T 
==s 十—

Aa(0) Ac (0) I F (s )J (73)

where Aa(t) = a(t) - a3) and Ac(t) = c(t) - c3). If the 
reaction is not retarded by slow diffusion, F(s) becomes 
unity and the system relaxes exponentially with the 
relaxation rate constant A given by

A = k?CB + 罗. (74)

Cb is the constant number density of B; note that we have 
been considering the pseudo-first-order case in which B 
molecules are present in excess. kf and k： are the 
equilibrium rate constants given by

kf = KfgAB and k? = k , (75)

where gAB(r) is the equilibrium pair correlation function for 
the reactive groups of the chains A and B. The reactant 
number densities at equilibrium, 시(河 and c(^) are given by 
k：q[시(0) + c(0)]/A and kfqCB[시(0) + c(0)]/A, respectively. 
The effect of slow diffusion of reactant molecules on the 
relaxation kinetics is counted by the key dynamic function 
F (s):

. k? . klqCJ AYir( s|Cj)]f(s)=1+时(0，이0)+네 1—S-1] ,

Yr(tM) = exp[-CbJ0 北啓顷)], (76) 

where CB = Cb + (辟/肆)and kfM( t) is the rate coefficient 
for the irreversible reaction. In the Laplace domain it can be 
expressed as

kM s)= ----------------------
s[ 1 + KfG(0，s|0)]

(77)

We can now calculate the time-dependence of reactant 
number densities once the Green’s function expression is 
given.

The Greens Function. In this subsection we will derive 
an expression for the Green’s function G(0，t|0). The 
physical meaning of this Green’s function is the probability 
that the reactive groups of the chains A and B reencounter at 
a time t, given that they were in contact with each other at 
t = 0. Hence we can write

G(0，t|0) = JdrGAm(r，t| 0)Gb„(r，t|0) , (78) 

The

where Ga〃(r，t|0) is the probability density that the mth 
bead of the chain A will be at r, given that it was at the origin 
at t = 0. Gb„(r，t|0) has the similar meaning.

We can calculate the propagator for the bead, &Am(r，t\0), 
based on the ORZ model depicted in Figure 2. The 
propagator has the Gaussian form

GAm(r，A0) = --- 1-----宓，
[2 碎Am(t)]M2

2 rexp --—一一—. :L 20Am(t)J (79)

©Am( t) is the mean square displacement given by

@Am(t) =〈[5(t) - 5(。)T〉

2
V + , 梢 썸 (QAS)m^ z .7S、】

=6DAf + 2bA £ ------ S----  -exp( I/ TAk)]
k = 1 ^Ak

(80)

Here,久三 is the center-of-friction diffusion coefficient of 
A and 以 is the relaxation time for the kth normal mode of 
the ORZ chain A. These are given by

DAf = [vA°Da1/(Na +1)], 

ts. = bA

3ASAkDA1,

(81)

(82)

where DA1 is the diffusion constant of a single bead of A. 
Other parameters in Eqs. (80)-(82) were defined by Eq. (60) 
except that they include a subscript "A” designating a 
quantity for the chain A.

Inserting Eq. (79) into Eq. (78), we obtain

G(0，t|0) = (3/2n)3气队(t) + 缶"(t)]-372 (83) 

where the mean square displacement 缶"(t) of the nth bead 
of the ORZ chain B is given by a similar formula as 们彻(t) 
given in Eq. (80).

When we neglect the hydrodynamic interactions among 
the beads as well as the chain stiffness (that is, for a Rouse
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chain), the expression for @顷(t) given in Eq. (80) reduces

』 p 仁쓰笠竺华lQD蚓］ .(84)

L I bA 丿」'，

For a very long chain (N —8), Eq. (84) further reduces 
to the expression given in the textbook of Doi and Edwards.34

Interchain Reaction Kinetics. We have set up the 
theoretical apparatus that can be used to analyze the time
dependent kinetics of interchain reactions. One can now 
investigate the effects of various physical factors, such as the 
chain length, chain stiffness, and hydrodynamic interactions, 
within a unified theoretical framework. Some of the results 
have been presented in Refs. 31 and 32.

In Ref. 31 we demonstrated how polymeric reactants affect 
reversible energy transfer reactions in a number of situations. 
Depending upon the reactivity as well as upon the Rouse 
relaxation time of the shorter chain, the relaxation of the 
excited polymeric reactants was found to be described by a 
scaling function or by an exponential form. The Stern-Vblmer 
coefficient, which is important in fluorescence quenching 
experiments, was found to exhibit dramatic changes as the 
spontaneous decay rate varies; power-law dependencies on 
the molecular weight of the polymeric quenchers and on the 
spontaneous decay rate were predicted in separate regions, 
which are completely different from the behavior observed 
in the small molecular reactions.

In Ref. 32, we presented a theory for studying the reactions 
of the irreversible quenching of an excitation migrating on a 
fluctuating polymer. An expression for the survival probability 
of an excitation was derived as a function of time for various 
values of chain length and excitation mobility. As the mobility 
increases, the quenching reaction rate is enhanced and this is 
more pronounced for a longer chain. In the limit of infinitely 
fast-moving excitation, the excitation is completely delocalized 
immediately after the initial excitation, and the randomness 
in the initial location produces no effect on the quenching. In 
this case the “effective reaction radius” becomes a useful 
concept, which turns out to be comparable to the radius of 
gyration of the polymer. With this effective reaction radius and 
the well-known Smoluchowski's rate expression, the quenching 
reaction process can be viewed in a simple way. From such 
observation, one can conclude that the fast migration of the 
excitation significantly enhances the quenching rate by the 
factor of the linear dimension of the chain molecule. For 
more general situations with intermediate values of the 
excitation mobility, the quenching reaction process is governed 
by the interplay between excitation migration and dynamics 
of the polymer. On time scales smaller than the inverse of the 

excitation mobility, dynamics of the polymer, which depends 
on the chain molecular weight, as well as of the quenchers 
influences the quenching rate, while otherwise the quenching 
rate converges to the results in the fast-moving excitation limit.

Conclusion

In this short review, we have shown that how the complicated 
dynamics of reactions involving polymers can be disentangled. 
In a situation where the excluded-volume effects can be 
neglected and the reaction is not too long-ranged, the reaction 
events and the polymer dynamics can be approximately 
decoupled. Hence the sophisticated theories developed for 
diffusion-influenced reactions involving simple molecules 
can be easily adopted to treat the polymer reaction dynamics. 
Then, the key dynamic quantity that should be supplemented 
is the Green’s function which describes the dynamics of the 
relative motion of the reacting groups. We have presented more 
general expressions for the Green’s functions of nonreactive 
polymer dynamics, which take into account the effects of 
chain lengths, chain-stiffness, and hydrodynamic interactions. 
Generalizations of the theory to include the excluded volume 
interactions as well as the more realistic model of the 
polymers are under progress.
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