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We report on the theoretical positron affinities of closed-shell atomic anions. The second-order many-body 
perturbation theory is applied taking the positron-electron interaction as a perturbation. The corrections for the 
complete basis set effects to the second order affinity are calculated based on the variational and nonvariational 
energy functionals of explicitly correlated geminals. It is shown that the explicitly correlated methods 
accelerate the convergence of the expansion significantly giving the account of the cusp behavior outside the 
orbital space.
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Introduction

Since the existence of positronium (Ps), the simplest pair 
complex of an electron and a positron, was predicted and 
discovered,1,2 various theoretical and experimental studies of 
positronium complexes have been reported.3 The self- 
consistent field (SCF) method has been employed frequently 
in theoretical treatments.4 The method is, however, not 
qualified to give accurate results in many cases due to the 
absence of the positron-electron correlation effects in the 
approximation. Diffusion Monte Carlo (DMC) techniques 
have been rewarded by results in agreement with experi- 
ments5,6 though they are laborious computationally and less 
suitable for routine calculations. Another way to deal with 
the positron-electron correlation is to extend methods in 
molecular orbital theory, as PsOH was calculated at the 
second-order many-body perturbation theory (MBPT2) 
level.7 The orbital expansion requires a large basis set to 
obtain a saturated result for the cusp behavior between a 
positron and an electron. (The cusp condition is analogous to 
the electron correlation8 but opposite in sign, i.e. the slope is
-1/2.) For electronic cusps, various alternatives with explic­
itly correlated functions have been proposed to improve the 
convergence of a correlated method.9-13 It is anticipated that 
such expansions are also effective for describing the binary 
wave functions of electrons and positrons.

In this paper, we apply SCF and MBPT2 to the positron 
affinities (PAs) of closed shell anions. MBPT2 corrections 
are calculated using frozen Gaussian-type geminals for the 
complete basis effects. It is demonstrated that the results 
with geminals are improved significantly in convergence 
compared to the MBPT2 results of orbitals. In what follows, 
we derive necessary formulae for SCF, MBPT2, and 
explicitly correlated methods. Results and discussions are 
presented in Section 3 and conclusions are given in 
Section 4.

Theory

Throughout this paper, we use the notations, i, j, ..., a, b, 

..., and p, q ... for occupied, virtual and general spin-orbitals, 
respectively. Positronic orbitals are distinguished by over­
bars, as i. We assume that the systems we are interested in 
involve only one positron. The SCF method represents the 
wave function as a product of an electronic determinant and 
a positron orbital. The SCF energy is given by

E = h\ + £ (hl -〈i 1|i 1〉) + 1 £ (〈이〃〉- j、)、), ⑴
11 i 2 i

where {pq^s) and {pq^s) are electron-electron and electron­
positron repulsion integrals, hp and he are one-body Hamilto­
nian matrices for the positron and electrons (differing just in 
the signs of the interactions with nuclei), and 1 denotes the 
positronic occupied orbital. Minimizing the energy expression 
with respect to the orbitals, we obtain the SCF equations,

f= = £&，W，i， (2)

fp =却p1，Vp. ⑶

which are coupled to each other through the positron­
electron interactions in the Fock operators,

底=hpq + £ (9伽)-<pi|iq))-<pl|q1), (4)
i

烏=hpq - £ 例q). (5)
i

The coupled equations are solved iteratively during the SCF 
cycle.

The positron-electron correlations are dealt with at MBPT2 
with the partitioning,

H = Ho + ^&eV + 尤” (6)

where the operators, V and W, are positron-electron and 
electron-electron interactions, ^e and ^e are the corre­
sponding charging parameters, and Ho is the SCF model 
Hamiltonian, i.e. the sum of the Fock operators. At the 
MBPT2 level, W is considered to be much less important 
than V for PAs because of the cancellation between the states 
with and without the positron. Thus we use the MBPT2 
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expression,

e(2 ) = y l〈山做|2 . (7)
iaa £i + £1 - £a - £a

taking V as a perturbation.
To improve the result with a basis set truncation error in 

the MBPT2 calculation, we represent the first order wave 
operator as a sum of a geminal operator and its complement 
in the usual particle-hole excitation form,

Q( 1) = Fn + T(D. (8)

The vacuum amplitude is set zero,

Fn = F-〈 ©|F 6, (9)

in FN with F which is a sum of spherically symmetric 
geminals dependent on the positron-electron distance,

N
F = £ f rn1), (10)

n n1

for the number of electrons, N. Assuming that the SCF 
orbitals are exact in the complete basis limit and the 
commutator between the exchange and the geminal operators 
are negligible,10,11 the Rayleigh-Schrodinger condition for 
the first order wave operator outside the Hilbert space 
spanned by the orbitals becomes in the form,

(Q* Qi- Q1Q1 )僱? - r-1 )卩力=0, Vif, (11)

where Q1 and Q1 are one-electron projectors in the virtual 
spaces of the complete and given basis sets, respectively, and 
Q1 and Q1 are those for positrons. The operator, K；?, is an 
anti-hermite single commutator between the kinetic energy 
and geminal operators,13

K? = -Vf11 -Vf11 .(V1- V1). (12)

The above condition is fulfilled asymptotically for a geminal, 
f(r11) = f(0)-(尸]1/2) + O(r21), since the convergence of 
the expansion with orbital products is slow around 尸口 = 0 . 
Then we obtain the nonvariational energy functional from 
the Rayleigh-Schrodinger expansion,

EN = E ⑵ + AE", (13)

AEN) = £〈ii|K"(Q1Q*-Q1Q1)시ii〉. (14)
i i

It is important to compare the expression with the Hylleraas 
functional,

eV = E(2)-AE" + 2AE昇, (15)

A EZ)= -£〈 i7|K-1 (Q1Q*- Q1Q1)시 ii〉. (16)
i i

U2)All three energy corrections become identical, AEV = 
AE*2 = aE? , when the geminal is exact outside the 
orbital space satisfying Eqn. (11). Hence the ratio,

Z = A eZ )/A eN), (17)

which is unity in the above condition, is a measure to 
indicate the appropriateness of geminals. Replacing the 
geminal operator by %Fn , we obtain the energy expression,

E?)= E ⑵ + Z2 AEN = E ⑵ + zAE?, (18)

which is stationary with respect to Z. One can think of the 
connection between Ae£)and AE； ) as the virial theorem 
for the cusp condition since they are corrections for the 
kinetic and potential energy operators, respectively. Ae£ ) is 
directly obtained from the order-by-order expansion of the 
Schrodinger equation for the transcorrelated Hamiltonian. In 
such a way, the first order cusp condition is renormalized to 
infinite order in the transcorrelated method.

Introducing the one-electron projectors for occupied 
orbitals, P1 = 1 - Q1 and p = 1 - Qy, the components in 
the functional are divided as

AEN = A e"[ 1]-AE"[ P1+ P1 ]

+ AEN\P1P1 ]-AE®[ Q1Q1 ], (19)

AE"[ O] = £〈 77|k" Of11| ii〉， (20)
i i

and similar expressions for aE； . The component, AE" 
[1], can be rewritten in the commutator form leading to the 
operator, K#), which also appears in the transcorrelated 
method,13

AE"[ 1 ] = £〈 iilKQ )1 ii〉， (21)
i i

KQ) = 2因?，f11 ] = - (V1f11) - (Vf11), (22)

The term with single projectors reduces to 3-electron integrals 
and is approximated using the resolution of identity (RI) of 
Kutzelnigg and Klopper11 as,

〈하皆少帛 汀〉즈£〈피K?折〉〈砰11ii〉, (23)
jp

Since the integrals in RI involve three occupied orbitals, the 
maximum angular momenta required for saturated com­
pleteness insertions are 2Locc + Locc and Locc + 2Locc 
for the highest occupied ones of the electrons, Locc, and the 
positron, Locc , in an atomic calculation. This fact prohibits 
the application of RI to a system with heavy atomic elements 
as involving d-occupied orbitals. Most recently, a novel 
decomposition scheme has been developed using density 
fitting,14 which reduces the required maximum angular 
momentum to 2Locc from 3Locc in the original RI for a pure 
electron problem. The scheme is not employed in this work 
as we focus on the positron affinity of light atomic anions.

Results and Discussions

We calculate X- and PsX (X = H and F) at SCF and 
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MBPT2. The orbital centers of positronic and electronic 
basis sets are fixed at the nuclear position. PAs are calculated 
taking the energy differences between X- and PsX. We 
transform the template geminal for electron-electron corre- 
lations12 with the parameter, Cz,

f r11；cz)= c-ft( czr 1T)， (24)

and change the signs of the coefficients for the treatment of 
electron-positron correlations. Throughout this work, we use 
cz = 0.45, which leads to a long-ranged geminal compared to 
those for electron correlations. For electronic wavefunctions, 
we use the (7s4p3d2f) and (13s7p4d3f2g) primitives in the 
aug-cc-pVQZ basis sets15 for H and F as Cartesian Gaussian- 
type functions. For positronic wavefunctions, systematic 
basis sets have not been developed. The SCF orbital of the 
positron is s-type and spreads because of the large 
distribution of the electrons in X-. Thus we use slightly large 
(10s5p4d3f2g) primitives in the aug-cc-pV5Z set augmented 
by an additional diffuse s-primitive with the exponent, 0.005, 
both for PsH and PsF. We also inspect the convergence of the 
positron-electron correlation by increasing the maximum 
angular momentum.

The probability densities of a positron and an electron in 
the SCF wave function of PsH are shown in Figure 1. The 
positronic orbital is more diffuse than those of electrons; the 
electrons are strongly bound around the nucleus and the 
positron is weakly captured by the electrostatic field. We 
tabulate the convergence of the total energy of PsH in Table 
1. The asymptotic limit of the second order energy with the 
present partitioning is ca. -38.5 mEh. The slightly positive 
increments of E《 and E? from (7s4p3d/10s5p4d) to 
(7s4p3d2f/10s5p4d3f) are due to the neglect of the

Figure 1. Probability densities of a positron and an electron in the 
SCF wave function of PsH.

Table 2. PAa of H- (in eV)

Basis (Electron/Positron) SCF MBPT2 VC OPT EXP4

1 (7s/10s) 4.86 5.04 5.62 5.78 7.10
2 (7s4p/10s5p) 4.86 5.72 5.90 5.91
3 (7s4p3d/10s5p4d) 4.87 5.84 5.92 5.92
4 (7s4p3d2f/10s5p4d3f) 4.87 5.87 5.92 5.92

^VC, and OPT mean the PAs calculated from EV2, and E" , respectively. 
"Reference 5.

commutator between the exchange and geminal operators. 
The calculation with the (7s/10s) set reproduces just 17% 
(-6.4 mEh) of the limit in the MBPT2 without corrections. 
The error is substantially reduced by the introduction of the 
explicitly correlated geminal to recover ca. 87% (-33.5 mEh) 

(2)of the correlation energy in Ex . The results of PAs are 
summarized in Table 2 and Figure 2. Schrader and 
coworkers succeeded in the formation of PsH applying the 
positron beam with different momenta to the methane 
molecule.5 Experimentally, the binding energy between Ps 
and the hydrogen atom is estimated to be 1.1士 0.2 eV Using 
the energy of Ps, 6.8 eV, and the electron affinity of 
Hydrogen, 0.8 eV, the experimental positron affinity is 
derived to be 7.1± 0.2 eV The present estimate of the PA in 
the MBPT2 limit is 5.92 eV which deviates from the 
experiment by 1.2 eV. From the small error bar in the 
experimental PA, the main source of the deviation is 
considered to be the absence of the third and higher order 
contributions in the present theoretical treatment. The 
affinities of the second order energies with the geminal

(7s/10s) (7s4/，/10s5/，) (7s4»3d/10$5/4/) (*4p3d2.f7lt*SpA心)

Basis set
Figure 2. Theoretical and experimental PAs of H- in eV.

Table 1. Energy components of PsH and H- (in mEh)

Basis (Electron/Positron) Escf (PsH) E⑵ 百，(2) 
en eV eX X Escf (H-)

1 (7s/10s) -666.54 -6.38 -14.39 -27.86 -33.54 1.84 -487.81
2 (7s4p/10s5p) -666.54 -31.48 -35.91 -38.18 -38.47 1.26 -487.81
3 (7s4p3d/10s5p4d) -666.76 -35.76 -38.29 -38.57 -38.58 1.06 -487.83
4 (7s4p3d2f/10s5p4d3f) -666.76 -36.88 -38.50 -38.50 -38.50 1.00 -487.83
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Table 3. Energy components of PsF and F- (in mEh)

Table 4. PA of F- (in eV)

Basis (Electron/Positron) Escf (PsF) E⑵
百，(2) 
en eV EX X Escf (F-)

1 (13s7p/10s5p) -99641.13 -6.44 -26.79 -29.36 -29.44 1.06 -99457.46
2 (13s7p4d/10s5p4d) -99641.34 -23.14 -31.15 -28.57 -28.78 0.84 -99457.51
3 (13s7p4d3f/10s5p4d3f) -99641.48 -26.37 -30.11 -28.58 -28.74 0.80 -99457.71
4 (13s7p4d3f2g/10s5p4d3f2g) -99641.50 -27.25 -29.31 -28.65 -28.70 0.85 -99457.71

“Reference 6. "Reference 16.

Number (Electron/Positron) SCF MBPT2 VC OPT DMCa EXP4

1 (13s7p/10s5p) 5.00 5.17 5.80 5.80 6.17 6.30
2 (13s7p4d/10s5p4d) 5.00 5.63 5.78 5.79
3 (13s7p4d3f/10s5p4d3f) 5.00 5.72 5.78 5.78
4 (13s7p4d3f2g/10s5p4d3f2g) 5.00 5.74 5.78 5.78

(7s4p3d/10s5p4d) set to converge much faster than the 
conventional MBPT2.

We show the energy components of PsF and F- in Table 3. 
In the result with the (13s7^/10s5p) set, the conventional 
MBPT2 reproduces only 23% of the asymptotic limit of the 
second order energy, ca. -29 mEh. The results with the 
variational corrections are almost saturated with the basis 
sets involving d-shells. Ev with the (13s7p/10s5p) set is 
lower than the limit by 0.3 mEh mainly due to the 
unsaturated RI with the basis set. The saturated RI requires 
d- and p-functions in the electronic and positronic basis, 
respectively. We show the theoretical and experimental PAs 
in Table 4 and Figure 3. The experimental value is derived 
from the binding energy of PsF, 2.9 ± 0.5 eV, reported by 
Tao and Green16 by adding the electron affinity of the 
Fluorine atom, 3.4 eV. The result from the diffusion Monte 
Carlo simulation (DMC) is 6.2 eV.6 The best result in the 
present calculation, 5.8 eV, is slightly smaller than the PAs of 
the experiment and DMC by 0.5 and 0.4 eV, respectively.

To summarize, 79% and 92% of the experimental PA of 
PsF are reproduced at SCF and MBPT2, respectively. This 
is in contrast with the ratios, 68% and 83%, for PsH. The

Figure 3. Theoretical and experimental PAs of F- in eV

difficulty in the treatment of PsH is partly implied by the 
restricted HF energy of H-, -488 mEh, which is higher 
than the hydrogen energy, -500 mEh. The reference 
function for the MBPT2 is thus an artifact due to the spin 
restriction, and the state of H- does not become bound until 
the electron correlation is treated appropriately.11a It is thus 
concluded that the inclusion of higher order perturbations 
involving electron-electron interaction is crucial for an 
accurate PA of PsH.

Conclusion

We applied the SCF and MBPT2 methods to the calcu­
lations of positronic compounds. It has been demonstrated 
that the positron-electron correlation is essential for 
quantitative PAs in the results of MBPT2. It was also shown 
that the variational and nonvariational MBPT2 correction of 
the explicitly correlated geminal accelerates the convergence 
of the expansion. Such an application will enable us to 
calculate PAs of large molecules, to which the access with an 
enormous basis set is difficult.
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