## High Yield Expression System of *Desulfovibrio vulgaris* Miyazaki F Cytochrome c<sub>3</sub>

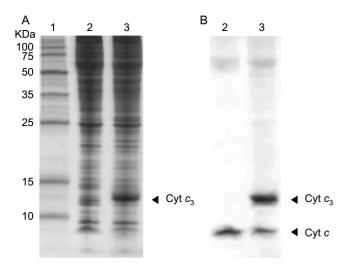
Minghua Li, Deog Su Park, and Jang-Su Park<sup>\*</sup>

Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea Received June 23, 2003

Key Words : Cytochrome  $c_3$ , Sulfate reducing bacterium, NMR

The overexpression of a tetraheme cyt  $c_3$  gene from a sulfate-reducing bacterium has been successful only in a homologus host. D. desulfricans G200.1 In general, cultivation of a strict anaerobe is much more difficult than that of an aerobe. This was the serious drawback of the homologus  $cvt c_3$  expression system. Recently, two distinct novel gene expression systems of the *Desulfovibrio* cyt  $c_3$  have been reported.<sup>2-4</sup> The *D. Desulfovibrio* (*Dd*) tetraheme cvt  $c_3$  gene was overexpressed aerobically in E. coli cotransformed with the E. coli ccm gene cluster, which encodes eight membrane proteins (CcmABCDEFGH).<sup>2</sup> In addition, the D. vulgaris Miyzaki F (DvMF) tetraheme cyt  $c_3$  was also expressed aerobically in S. oneidensis.<sup>3</sup> The expression system of Shewanella seems to be promising, because it has a variety of soluble and membrane-bound c-type cytochromes including multihemic ones.<sup>3</sup> But, the transformation process a little bit tedious. Here, we have shown for the first time that S. oneidensis can be electrotransformed directly by the pKF3type universal vector for E. coli and have established a much more efficient gene expression system using it.

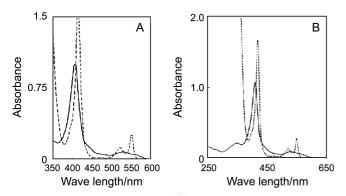
The PCR was used to amplify DNA segements of the gene encoding DvMF cyt  $c_3$  (cyc). *PstI* and *Eco*RI sites were introduced at the 5' and 3' ends of the *cyc* gene, respectively, by PCR amplification from the plasmid pMC3<sup>4</sup> using as primers 5'-AAACTGCAGGTTTACCCCTAACCCACCAG-AG-3' and 5'-GCGAATTCTTAGCTATGGCACTTGGAG-CCCTTGC-3'. For the construction of the expression vector, the *PstI-Eco*RI-digested gene of *cyc* was subsequently ligated in the *PstI-Eco*RI digested pKF3 vector to generate pKF3FPB. Then the *Aat* II digested PCR product of *ref*<sup>T</sup> gene cassette was ligated into an *Aat* II site of plasmid pKF3FPB to yield pFPB. For electroporation, an E. coli Pulser apparatus (Bio-Rad) was used according to the directions for *E. coli* (2.50 kV for a 0.2-cm electrode gap cuvette or 1.8 kV for a 0.1-cm cuvette).


Shewanella belongs to the r domain of *Proteobacteria*, where *E. coli* is also allocated. If the vector for *E. coli* can be used in *Shewanella*, genetic engineering and gene overexpression should become easier and more efficient. Thus, transformation of *S. oneidensis* by a pKF3-type plasmid was examined. Surprisingly, direct electro-transformation of *S.* 

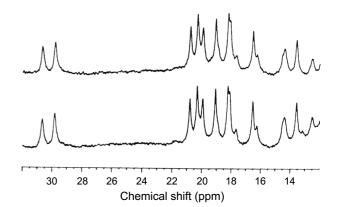
oneidensis by a pKF3-type vector, pFPB, was successful. The efficiency of S. oneidensis electrotransformation by pFPB vector was approximately  $6 \times 10^3$  colonies/ug plasmid DNA on average. These values are much less than that of E. coli DH5a transformation (approximately 10<sup>9</sup> colonies/ug plasmid DNA), but enough to carry out overexpression experiments. By the minipreps of plasmids from 3 mL overnight LB (with 10 mg rifampicin/L) cultures of S. oneidensis transformants, the vield of pKF3-type plasmid found to be approximately 8 ug/3 mL culture (approximately 350 ug/g wet cells). This value did not change significantly after the growth in large-scale culture, suggesting that the plasmids are stable in S. oneidensis cells. The plasmid vield is close to that in E. coli DH5a (approximately 10 ug/3 mL culture or 500 ug/g wet cells). These results show that S. oneidensis can replicate and maintain the high copy number of a pKF3-type vector in spite of its low transformation efficiency.

S oneidensis (pFPB) was aerobically grown at 30°C in LB (with 10 mg rifampicin and 100 mg kanamycin/L) for the best production of DvMF cyt  $c_3$ . Recombinant D. vulgaris Miyazaki F cytochrome  $c_3$  was purified from a supernatant obtained after centrifugation of the broken-cell supernatant treated with streptomycin sulfate (0.16 g per g of cells). Purification was carried out at 4 °C and pH 7.0. The recombinant cytochrome  $c_3$  was purified in two steps. Fist. after dialysis against 10 mM sodium phosphate buffer, the supernatant was loaded onto an SP-Sepharose column (2.6  $\times$ by 10 cm) previously equilibrated with the same buffer. Under these conditions. D. vulgaris Miyazaki F cytochrome  $c_3$  (pI = 10.6) binds to the ion-exchange resin, while endogenous S. oneidensis cytochrome  $c_3$  (pI = 5.8) is eluted together with other proteins. A gredient of 0 to 500 mM NaCl in 10 mM sodium phosphate buffer was then used to remove the *D. vulgaris* Mivazaki F cytochrome  $c_3$ , which was eluted at 150 mM NaCl. Second, the eluted cytochrome  $c_3$  fraction was futher purified by gel filtration on fast protein liquid chromatography system (Amersham Pharmacia Biotech) using a Hiload Superdex 75 column (2.6 by 60 cm) equilibrated with 50 mM NaCl-10 mM sodium phosphate buffer. Relative purity was confirmed by the absense of other bands after SDS-15% PAGE using CBB staining and a purity index (A552RED/A280OX) of 3.0.

The yield of the recombinant DvMF cyt  $c_3$  from S. oneidensis (pFPB) was 2.0 mg/g wet cells or 16.0 mg/L culture. The recombinant protein obtained from S. oneidensis (pFPB) was compared with the authentic DvMF cyt  $c_3$ . The apparent


<sup>\*</sup>To whom correspondence should be addressed. Tel: +82-51-510-2294; Fax: +82-51-516-7421; e-mail: jaspark@pusan.ac.kr \*Abbreviations: PCR, polymerase chain reaction: SDA-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis: PMSF, phenylmethyl sulfonyl fluoride: NMR, nuclear magnetic resonance spectroscopy.




**Figure 1.** Fifteen percent SDS-PAGE analysis of the recombinant DvMF cyt  $c_3$  (A and B). The samples were analyzed by 15% SDS-PAGE and stained with Coomassie brilliant blue(A) or o-tolidine dihydrochloride (B). Lane 1. molecular weight marker: lane 2. cell lysate from *S. oneidensis*: lane 3. cell lysate from *S. oneidensis* (pKF3FPB).

molecular mass by SDS-polyacryamide gel electrophoresis (PAGE) analysis (Fig. 1) and UV-vis absorption spectrum of ferri- and ferro-forms (Fig. 2) were all same as those obtained for the authentic cyt  $c_3$  from DvMF. The NMR spectrum of the recombinant ferri-cyt  $c_3$  was essentially identical with that of the authentic DvMF cyt  $c_3$  (Fig. 3).

There are two major important points in the expression system established in this work. In the first place, *S. onei-densis* has been transformed by a pKF3-type vector for the first time. This gives us major benefits. Because the DNA sequences of the pKF3-type vectors are completely known, and the vectors are stable and with high copy numbers, they are "user-friendly" vectors. The second point is that *S. oneidensis* has been directly transformed by a pKF3-type



**Figure 2.** Absorption spectra of the oxidized (dark line) and dithionite-reduced (pale line) authentic (A) and recombinant (B) cyt  $c_3$ . The measurement was done in 10 mM sodium phosphate buffer, pH 7.0, at room temperature. Peaks, at 410 nm (ox) and at 552, 524, and 410 nm (red). The ferro-type spectra are masked by the absorption of dithionite in the region lower than 380 nm.



**Figure 3.** Five hundred MHz <sup>1</sup>H-NMR spectra of authentic (A) and recombinant (B) *Dv*MF ferricytochrome  $c_3$  at 303 K. Only the fingerprient regions are presented. The protein was dissolved at 0.6 mM in a deuterated solution of 10 mM sodium phosphate buffer, in  $p^2H$  7.0.

vector through electroporation. The transformation by electroporation is an absolutely simple and rapid method compared with the conjugal transfer from *E. coli*. Furthermore, the transformant can be grown aerobically.<sup>3</sup> These advantages enabled us to save time in making various mutants of a target protein. Namely, while the conjugal transfer method with a broad-host-range vector has taken us almost one month from the site-directed mutagenesis of a target gene to checking the expression of recombinant gene, the electroporation method with a pKF3 vector enables us to accomplish the same thing in a week.

The yield per liter of culture of the recombinant DvMF cyt  $c_3$  isolated from *S. oneidensis* became 40 times higher than that from DvMF itself, and is about 2-fold of the recombinant DvMF cyt  $c_3$  from *S. oneidensis* (pMC3).<sup>4</sup>

In conclusion, a rapid simple, and highly efficient gene expression system of *c*-type multiheme cytochromes in a heterologous host has been established. This system would open a new horizon in various studies involving *c*-type multiheme cytochromes such as electron transfer mechanism, bioelectronics, and environmental chemistry.

Acknowledgments. This work was supported by the grant of the Korea Health 21 R&D project, Ministry of Health & Welfare, Republic of Korea (02-PJ3-PG6-EV05-0001). The authors are grateful to Prof. H. Akutsu, Institute for Protein Research, Osaka University, for his assistance.

## References

- Voordouw, G.; Pollock, B.; Bruschi, M.; Guerlesquin, F.; Rapp-Giles, B.; Wall, J. D. J. Bacteriol. 1990, 172, 6122.
- da Costa, P. N.: Conte, C.: Saraiva, L. M. Biochem. Biophys. Rec. Commun. 2000, 268, 688.
- Ozawa, K.: Tsapin, A. I.: Nealson, K. H.: Cusanovich, M. A.: Akutsu, H. Appl. Environ. Microbiol. 2000, 66, 4168.
- Ozawa, K.: Yasukawa, F.: Fujiwara, Y.: Akutsu, H. Biosci, Biotechnol. Biochem. 2001, 65(1), 185.

Communications to the Editor