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Recently the ab initio effective valence shell Hamiltonian method H has been extended to treat spin-orbit 
coupling in atoms or molecules. The quasidegenerate many-body perturbation theory based H method has an 
advantage of determining the spin-orbit coupling energies of all valence states for both the neutral species and 
its ions with a similar accuracy from a single computation of the effective spin-orbit coupling operator. The 
new spin-orbit Hv method is applied to calculating the fine structure splittings of the valence states of SiH, SiH+, 
and SiH2+ not only to assess the accuracy of the method but also to investigate the spin-orbit interaction of 
highly excited states of SiH species. The computed spin-orbit splittings for ground states are in good agreement 
with experiment and the few available ab initio computations. The ordering of fine structure levels of the bound 
and quasi-bound spin-orbit coupled valence states of SiH and its ions, for which neither experiment nor theory 
is available, is predicted.
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Introduction

The computation of the spin-orbit coupling, i.e., the fine 
structure of molecules, is relevant to an understanding of 
their electronic spectra, non-radiative decays, dissociation 
mechanism and fine structure populations in photodissoci
ations, and more. This relativistic effect can, in principle, be 
calculated directly by using the four-component Dirac 
theory, but it remains a formidable task to include the effects 
of electron correlation into relativistic spin-orbit coupling 
calculations. A widely used non-relativistic approach appends 
the approximate Breit-Pauli spin-orbit coupling operator to 
the non-relativistic Hamiltonian, so the spin-orbit coupling 
operator is treated as a perturbation.1,2 This approximation is 
found to be reasonable for systems where the spin-orbit 
interaction is weak or moderate.

The majority of previous computations of spin-orbit 
couplings are based on the variation method, i.e., on 
configuration interaction (CI) calculations. To include
electron correlation properly, large CI calculations must be 
performed, and the resulting CI wave functions are then used 
to calculate the spin-orbit couplings by directly evaluating 
the expectation values of the Breit-Pauli operator. A serious 
drawback of this method arises when computing off- 
diagonal spin-orbit couplings between different electronic 
states because the CI wave functions for different states 
generally involve different sets of molecular orbitals. On the 
other hand, there have been some perturbation approaches 
for spin-orbit coupling.3 Particularly Fedorov and Finley 
reported the spin-orbit coupled term values for selected 
atoms using their own spin-orbit multireference multistate 
perturbation theory.4

Recently Sun and Freed proposed another perturbation 
theory for spin-orbit coupling by extending the well known 
effective valence shell Hamiltonian (Hv) method which is 
based on quasidegenerate many-body perturbation theory.5 
The efficiency and accuracy of the non-relativistic Hv 
method has already been tested and demonstrated with 
numerous examples, and several studies of the convergence 
properties explain why these successes have been achieved.6-10 
The new effective valence shell spin-orbit Hamiltonian is 
defined by the projection of total Hamiltonian, which is a 
sum of the non-relativistic Hamiltonian (H) and the Breit- 
Pauli spin-orbit coupling operator (A), onto the prechosen 
valence space. Therefore the exact Breit-Pauli spin-orbit 
coupling operator is also projected onto the valence space, 
and, consequently, all diagonal and off-diagonal valence 
space matrix elements of the effective spin-orbit coupling 
operator (Av) are computed. In this way, Sun and Freed 
achieved that the influence of electron correlation is incorpo
rated perturbatively into the effective spin-orbit coupling 
operator Av, and off-diagonal spin-orbit coupling matrix 
elements automatically emerge along with the diagonal 
expectation values. In principle, the Av perturbation expansion 
is identical to the multireference, multistate perturbation 
treatment of Fedorov and Finley,4 but a large difference 
between the two methods arises because the effective 
valence shell Hamiltonian Hv (and Av) that is unambiguously 
defined within the full subspace, and the matrix elements of 
Hv (and Av) can be consistently used to describe any state 
within the valence space.

The use of Hv (and Av) has the following advantages: Once 
the matrix elements of Hv and Av are evaluated, all the spin
orbit coupled valence state energies for the low-lying states 
of interest are generated with balanced accuracies. This Av 
perturbation method converges in a practical sense provided 
the orbital energies of core, valence and excited orbitals are 
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well separated.10 The A effective operator is independent of 
the number of valence electrons, which implies that the 
states of the neutral and its ions are simultaneously 
calculated with one set of A matrix elements. The method is 
size-consistent, and the forced degeneracy approach used 
eliminates almost all problems from intruder states that 
plague many other multireference perturbative methods.

It is interesting to see how well the new effective valence 
shell spin-orbit Hamiltonian method produces the spin-orbit 
coupling energies of SiH species. The SiH is one of 
interesting systems in photodissociation study where spin
orbit coupling plays a crucial role in determining the product 
(Si or H) distributions.12 In the present computations, the 
valence state energies are calculated through second order 
Hv in the perturbation due to electron correlation, and the 
expectation values of the spin-orbit coupling operator is 
corrected through first order Av in electron correlation. Due 
to the characteristics of Hv method, all valence states of SiH+ 
and SiH2+ ions as well as the neutral SiH are simultaneously 
investigated. The theory behind the Hv and Av formalism is 
summarized in the next section and computational procedure 
and results are provided in the following sections.

Effective Valence Shell Spin-Orbit Hamiltonian

The non-relativistic effective valence shell Hamiltonian Hv 
is obtained by projecting the full Hamiltonian onto a valence 
space that is spanned by a pre-chosen set of valence orbitals. 
The projection can be accomplished with the aid of quasi
degenerate many-body perturbation theory. Perturbation 
theory decomposes the molecular electronic (non-relativistic) 
Hamiltonian H into a zeroth order part H0 and a perturbation 
V

H=Ho + V (1)

Quasidegenerate many-body perturbation theory (QDMBPT) 
transforms the full Schrodinger equation,

H%=E出 (2)

into the P space effective valence shell Schrodinger equation,

H侦=Ei% (3)

for the projection %v = P %. of the exact wave functions 
onto the valence space, where the Ei are the exact eigenvalues 
of full Hamiltonian H, i.e.,

E.=〈旳H %•〉= (%^\Hv\ %〉 (4)

The Hermitian form of Hv is

Hv = PHP + ! £
2人,人'

{ P(A) VQ [Ea - H0]-1QVP(人)+ h. c.} + ... (5)

where h.c. designates the Hermitian conjugate of the 
preceding term and P(A) = £ |A><A| designates the 
projector onto the zeroth valenceAspace function | A>, and P 

+ Q = 1. In applications of the method, the space spanned by 
P, the valence space, consists configurations with all core 
spin-orbitals doubly occupied, excited spin-orbitals vacant, 
and all possible occupancies of the valence spin-orbitals.

To compute a molecular property that is represented by the 
Hermitian operator A, the above theory may be applied using 
the perturbed Hamiltonian Htotai = H + A, where H is the 
non-relativistic Hamiltonian as in the above equations. Since 
we desire only the diagonal and off-diagonal matrix elements 
of the operator A between the exact normalized wave 
functions %, these matrix elements <% | A | % > may be 
transformed using QDMBPT into the matrix elements of an 
effective valence shell operator A between the orthonormal 
valence space eigenfunctions %i of the H operator,

<% | A | %> = <% | Av | %>. (6)

Again specifying that A be Hermitian and independent of 
the state % leads to the lowest nontrivial first order 
perturbative expansion,

A1 = PAP + ! £ (P(A) VQ[Ea - H()]-1 QAP(AZ)
2 A,A'

+ P(A)AQ[Ea -H。]-1 QAP(A) + h.c.}, (7) 

where h.c. designates the Hermitian conjugate of the 
preceding two terms. The first order approximation to the 
effective operator A in Eq. (7) is sufficiently accurate when 
A is small. Note that the matrix elements of the leading 
contribution PAP in Eq. (7) corresponds to the matrix A 
within the P valence space, while the remainder include 
“correlation” corrections involving configurations in the 
orthogonal Q space.

The energy independent form of Av can be decomposed as

N 1 N N
Av = Avc + £ A； + 2 £ £ AV

. 2 . j (择 i)

1 N N N

+ 3! £ £ £ Aijk + … (8)
3! i j(# i) k(w i 苛)

where Nv is the number of valence electrons, Acv is the 
constant contribution from the core, Aiv is a one-electron 
effective operator with matrix elements <v | Av | v> in the 
valence orbital basis set {v}, etc. For the spin-orbit operator, 
the first order expansion produces the effective spin-orbit 
operator Av with up to three-electron effective operators 
Aj. The projected H (or A) is called the effective valence 
shell Hamiltonian (or Av operator).

The Breit-Pauli spin-orbit coupling operator (Hso) is 
substituted as the perturbation operator A, i.e.,

°2ZA 三 Hso = a £ £ -N [氏 乂 p]. s
1 N rlN

“2_ _ 1 、 、 4 一
--2-£ £ T[启XPi].[S! + 2sj] (9)

2 I j( * I) rIJ 



Spin-Orbit Coupling of SiH Bull. Korean Chem. Soc. 2003, Vol. 24, No. 6 725

where the indices I, J designate the electrons, N denotes the 
nuclei, and a is the fine-structure constant. S is the spin 
operator for electron I,万N is the position vector of electron I 
from the nucleus N, p is the momentum vector of electron 
I,布 is the relative position vector of electron I with respect 
to electron J, rN is the distance between electron I and 
nucleus N, ru is the distance between electron I and J, Zn is 
the nuclear charge of nucleus N. The Breit-Pauli spin-orbit 
coupling operator is appropriate for describing systems with 
moderate or weak spin-orbit coupling.

The expectation values of H from (4) and A from (6) may 
be evaluated as a first approximation using the matrix 
elements of Hv and Av between the eigenfunctions K of H. 
An improved representation is generated when both matrices 
are added together to form the spin-orbit perturbed valence 
space configuration interaction (CI) matrix between the 
valence states. The diagonalization of the spin-orbit 
perturbed CI matrix yields the spin-orbit coupled energies of 
all valence states simultaneously from a single computation 
of Hv and A. The algebraic expressions for the A matrix 
elements in (8) are provided in the article by Sun and Freed.5

Computations and Results

The evaluation of the spin-orbit coupling energy using the 
Av formalism proceeds as follows: i) Choose a basis set. For 
convenience, real atomic radial functions are used. Calculate 
the necessary integrals between basis functions. We used the 
GAMES S package13 to calculate the orbital angular 
momentum (l =卞 x p) integrals over real atomic functions. 
ii) Self consistent-field (SCF) calculations are performed for 
the ground electronic state to generate an initial set of 
molecular orbitals and orbital energies. The SCF molecular 
orbitals are divided into three groups, the core, valence and 
excited orbitals. The collection of valence orbitals forms the 
valence space. iii) The non-relativistic Hamiltonian and 
spin-orbit coupling integrals in the atomic orbital basis are 
transformed to those over molecular spin-orbitals. iv) 
Evaluate the matrix elements of the effective Hamiltonian 
operator Hv and the effective spin-orbit operator A. v) 
Construct the spin-orbit symmetry adopted configuration 
state functions (linear combinations of Slater determinants 
corresponding to \AXQ > eigenfunctions for a linear 
molecule like SiH) within the valence space. vi) Set up the 
valence space CI matrices for Hv+Av using the second order 
approximation of Eq. (5) for H and the first order 
approximation of Eq. (7) for A. vii) The valence CI matrix is 
a real symmetric matrix because the matrix elements of A 
are evaluated in a spin-orbital basis and because the full 
spin-orbit symmetrized configuration state functions are 
used. Finally, diagonalize the CI matrix to generate the 
eigenvalues which are the spin-orbit perturbed energies of 
the valence states.

The basis set utilized is the correlation consistent aug-cc- 
pVTZ basis, e.g., for Si the primitive (15s,9p,2d,1f) 
Gaussian functions are contracted to [5s,시p,2d,1f| with 
diffuse (1s,1p,1d,1f) functions added and for H (5s,2p,1d) T 

[3s,2p,1d](1s,1p,1d).14-17 The core comprises the 1Q 2a, 3a, 
and 1n orbitals. The valence space consists of 4a, 5a, 2n, 
and 6a orbitals which have their origins in the 3s and 3p 
valence orbitals of Si and the 1s orbital of H. The rest of the 
higher lying orbitals are excited orbitals. Molecular orbitals 
are determined by performing self-consistent field (SCF) 
calculation for the ground Xn state of neutral SiH. The SCF 
calculations also produce the orbital energies, and in 
calculations of H and A the averaged value of the valence 
orbital energies is used to guarantee convergence. To 
understand the influence of basis set size, we have 
performed calculations at one internuclear distance with the 
slightly larger aug-cc-pVQZ basis. The fine structure 
splittings obtained from the aug-cc-pVQZ basis calculations 
differ only slightly (by less than 3%) from those of aug-cc- 
pVTZ basis calculations, indicating reasonable basis set 
convergence. Therefore the current aug-cc-pVTZ basis set is 
accurate enough for SiH system.

The present calculations follow the common approxi
mation of neglecting the two-electron contributions to the 
spin-orbit coupling operator (the second term in (9)), which 
describe the interaction between the spinning motion of an 
electron and the orbiting motions of other electrons. To 
compensate for the neglect of the two-electron term, an 
effective nuclear charge is introduced in the computations of 
the one-electron spin-orbit coupling integrals as is 
customary. The effective nuclear charges used are 1.0 au for 
H and 12.25 au for Si as obtained from the studies of Gordon 
and coworkers.18-21

Sun and Freed's test H calculations on SiH at a fixed 
internuclear distance shows that the introduction of the 
above effective nuclear charges recovers the most of 
contributions from the two-electron term.5

The effective valence shell wave functions and therefore 
the energies of valence states are evaluated using the H 
perturbation expansion through second order in correlation 
(V). Previous papers document the good accuracy of these 
energies for the potential energy curves of the monohydrides.22-25 
The matrix elements of A (spin-orbit) are evaluated in the 
basis of spin-orbitals through first order in the perturbation V 
due to electron correlation. The spin-orbit perturbed valence 
space CI matrix elements (diagonal and off-diagonal) are the 
sums of H and A matrix elements between the valence 
space eigenfunctions of H to include all spin-orbit 
interactions among the valence states in our calculations.

The spin-orbit coupling energy, of course, depends on the 
geometry of a molecule, e.g., the internuclear distance 
between two atoms in a diatom. The A calculations are 
performed at equilibrium internuclear distances (Re) of all
unperturbed (without spin-orbit coupling) bound or quasi
bound valence states of SiH, SiH+, and SiH2+. The repulsive 
states and singlet or X states that exhibit zero spin-orbit
coupling are not of interest in the present calculations. For
example, SiH has many bound states which are X2n, 시4X-,
A2A, B2X-, C2X+, D2X+, E2X+, c4X-, e4卩 f4A, etc.26 Omitting X
states, we have performed calculations for X2n, A2A, 
and f4A states only. For SiH+, the states of interest are

e4卩
시3n，
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Table 1. Fine structure splittings (cm-1) of bound and quasi-bound 
valence states of SiH, SiH+, and SiH2+ at the equilibrium inter- 
nuclear distance (Re) in au

State (Q) Re This work Others
SiH
X2n(1/2, 3/2) 2.87175시 144.24 146.68”, 142.39c,

142.83d
A2A(3/2, 5/2) 2.8719708e 8. 50 3.58f
”4n(1/2, 1/2, 3/2, 5/2) repulsiveg 60.86
en4(5/2, 3/2, 1/2, 1/2) 2.8501h 45.31
f4A(1/2, 3/2, 5/2, 7/2) 2.9376h 9.06

SiH+

시 3n(o+/o-, 1, 2) 2.906’ 98.07 95.95”
c3n(o+/o-, 1, 2) 3.539’ 101.62
13A(1,2, 3) 3.698’ 13.86
23A(1,2, 3) 3.144’ 10.66

SiH2+
A2n(1/2, 3/2) 3.507 224.97
시4n(1/2, 1/2, 3/2, 5/2) 4.067 86.81
aRef. 30. ”Theoretical MCSCF value. Effective nuclear charge (au) used 
=1.0(H), 3.60(C), 12.25(Si). Re(au) = 2.1163(CH), 2.1469(CH+), 
2.8724(SiH), 2.8724(SiH+). Ref. 18. cTheoretical MCSCF-ECP value. 
Effective nuclear charge (au) used = 1.0(H), 3.90(C), 168(Si), 1312(Ge). 
Re(au) = 2.1163(CH), 2.1469(CH+), 2.8726(SiH), 3.0009(GeH). Ref. 21. 
'Experimental value. Ref. 31. eRef. 32. ^Theoretical mRcI value. Ref. 
36. gRepulsive state. Splittings computed at R=2.8501au which is the 
equilibrium distance of the e4n state for the purpose of comparison. See 
the text. hRef. 26. Ref. 27.丿 Ref. 29.

c3n, 13A, and 23A.27,28 SiH2+ has two quasi-bound states of 
，2n and 시4n for which our calculations are peformed.29 For 
quasi-bound states, the equilibrium internuclear distance is 
the distance where the local minimum of potential energy 
curve is located.

The calculated fine structure splittings for the valence 
states of SiH, SiH+, and SiH2+ are presented in Table 1. As 
mentioned before, singlet (S=1) or X (A=1) states which 
have no fine structure splittings are not listed. The traditional 
definition of the fine structure splitting is the spacing 
between two adjacent Q fine structure states. Table 1 
presents the intervals between the Q fine structure levels in 
the order of increasing energy. For example, the entry (1/2, 
3/2) in the first row of the Table 1 means that the Q=1/2 state 
lies lower than the Q=3/2 state. For the a3n of SiH+, (0+/0-, 
1, 2) means that the Q=0+ and Q=0- states which are 
degenerate (but are not necessarily degenerate in general) lie 
lowest and the Q=1 state lies higher, while the Q=2 state lies 
highest. For each state, spin-orbit coupling produces various 
Q states but their intervals (equal to the fine structure 
splittings) always emerge as the same.

In SiH, the X2n state exhibits a larger fine structure 
splitting than that of，2A, as expected. The trend is the same 
for quartet states, e.g., e4n and f 4A. In SiH+, the splitting for 
n states is again much larger than that of A states. The 시4n 
state of SiH2+ has four fine structure levels of Q=1/2, 1/2, 
3/2, and 5/2. The two Q=1/2 states are not degenerate. 

However, Q=0+ and Q=0- are always degenerate, for 
example, see 시3n of SiH+. In Table 1 the splitting for the 胪 n 
state is also listed although this is a repulsive state. The fine 
structure splitting of ”4n is computed at the distance of 
2.8501au which is the equilibrium internuclear distance of 
e4H Obviously the two splittings are different because they 
are two different states. It is interesting to note that the 
ordering of Q sublevels of the two states is reversed. For 
atoms, when two states of the same symmetry interact with 
each other, the ordering of fine structure levels of two states 
are usually reversed.33 The energy gap between ”4n and e4n 
states is 0.031au so that the two states lie very closely in 
energy. We see the same phenomenon here in diatomic 
system. The 시3n and c3n of SiH+ have the same ordering of 
fine structure levels because the two states lie very far from 
each other (see the Re in Table 1).

Our calculated splitting of 144.24 cm-1 for the ground X2n 
state of SiH is in very good agreement with experimental 
value31 of 142.83 cm-1. Gordon and coworkers' MCSCF 
calculations18,21 produced similar values of 146.68 and 
142.39 cm-1. Baeck and Lee's four-component Dirac-Fock 
calculations34 also yielded a reasonable value of 148.6 cm-1. 
(For Dirac-Fock calculations, see Ref. 35). For the，2A state 
for which experiment is not available, our splitting is 8.50 
cm-1 while Marian and coworkers' theoretical splitting36 is 
3.58 cm-1. Marian's CI calculation is a totally different 
approach from the current A so that the direct comparison of 
two values may be meaningless. For the 시3n state of SiH+, 
the MCSCF calculations produce the splitting of 95.95 cm-1 
while our splitting is 98.07 cm-1. These two values coincide 
with each other very well. For the highly excited states of 
SiH and SiH+, experimental or theoretical data are not 
available. The A2n and 시4n states of SiH2+ for which we 
have first determined the fine structure splittings are quasi
bound states. These states are not experimentally found yet 
because their lifetime should be very short. Our splitting for 
the A2n state is 224.97 cm-1 which is amazingly large. This 
must be due to the lone pair electron in 5c orbital whose spin 
(s=1/2) produces a magnetic field coupled with its orbiting 
motion strongly. Overall our A calculated values are in good 
agreement with experiment and other theoretical values 
although scant experimental data are available.

Conclusions

The effective valence shell spin-orbit Hamiltonian method 
H has been applied to determine the fine structure splittings 
of all bound and quasi-bound valence states of SiH, SiH+, 
and SiH2+. For the low-lying states our calculated fine 
structure splittings agree very well with experiment or other 
theories. Our calculations provide fine structure splittings for 
a wide range of excited and ion states for which there are no 
prior experimental data or computations. Also the ordering 
of the fine structure Q sublevels are predicted for spin-orbit 
perturbed valence states for the first time. It is interesting to 
construct a composite picture of potential energy curves. We 
will report H calculations on potential energy curves for all 



Spin-Orbit Coupling of SiH Bull. Korean Chem. Soc. 2003, Vol. 24, No. 6 727

spin-orbit perturbed valence states of SiH species including 
repulsive states in the near future.

The present work verifies that the new Hv perturbation 
approach for calculating spin-orbit couplings properly include 
off-diagonal spin-orbit matrix elements that are important in 
predissociation and other non-adiabatic processes. This Hv 
approach shows how to deal with the complex problem 
arising from the fact that the perturbation due to electron 
correlation influences the effective spin-orbit operator. 
Though only the one-electron spin-orbit operator is used 
(with a proper effective nuclear charge) to calculate the fine 
structure splittings, the calculations show very satisfactory 
agreement with experiment. It suffices to demonstrate that 
the new effective valence shell spin-orbit Hamiltonian 
method performs very well.
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