Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U (Brain Korea 21 Project for Medical Sciences, Brain Research Institute and Department of Pharmacology, Yonsei University College of Medicine) ;
  • Kim, Chul-Hoon (Brain Korea 21 Project for Medical Sciences, Brain Research Institute and Department of Pharmacology, Yonsei University College of Medicine) ;
  • Shim, Kyu-Dae (Department of Anaesthesiology, Youngdong Severance Hospital, Yonsei University College of Medicine) ;
  • Ahn, Young-Soo (Brain Korea 21 Project for Medical Sciences, Brain Research Institute and Department of Pharmacology, Yonsei University College of Medicine)
  • Published : 2003.04.21

Abstract

Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

Keywords

References

  1. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell 87: 13-20, 1996 https://doi.org/10.1016/S0092-8674(00)81318-5
  2. Bereta J, Cohen MC, Bereta M. Stimulatory effect of ouabain on VCAM-1 and iNOS expression in murine endothelial cells: involvement of NF-kappa B. FEBS Lett 377: 21-25, 1995 https://doi.org/10.1016/0014-5793(95)01301-6
  3. Betz AL. Alterations in cerebral endothelial cell function in ischemia. Adv Neurol 71: 301-311, 1996
  4. Bulkley GB. Free radical-mediated reperfusion injury: a selective review. Br J Cancer Suppl 8: 66-73, 1987
  5. Carolei A, Prencipe M, Fiorelli M, Fieschi C. Severity of stroke and aspirin. Neurology 36: 1010-1011, 1986
  6. Clemens JA. Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radic Biol Med 28: 1526-1531, 2000 https://doi.org/10.1016/S0891-5849(00)00258-6
  7. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD. The blood-brain barrier in neuroinflammatory diseases. Pharmacol Rev 49: 143-155, 1997
  8. del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98: 73-81, 2000
  9. Grilli M, Pizzi M, Memo M, Spano P. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 274: 1383-1385, 1996 https://doi.org/10.1126/science.274.5291.1383
  10. Grotta JC, Lemak NA, Gary H, Fields WS, Vital D. Does platelet antiaggregant therapy lessen the severity of stroke? Neurology 35: 632-636, 1985 https://doi.org/10.1212/WNL.35.5.632
  11. Guarini L, Su ZZ, Zucker S, Lin J, Grunberger D, Fisher PB. Growth inhibition and modulation of antigenic phenotype in human melanoma and glioblastoma multiforme cells by caffeic acid phenethyl ester (CAPE). Cell Mol Biol 38: 513-527, 1992
  12. Hamann GF, del Zoppo GJ, von Kummer R. Hemorrhagic transformation of cerebral infarction-possible mechanisms. Thromb Haemost 82 Suppl 1: 92-94, 1999
  13. Heckman CA, Mehew JW, Boxer LM. NF-kappaB activates Bcl-2 expression in t(14;18) lymphoma cells. Oncogene 21: 3898-3908, 2002 https://doi.org/10.1038/sj.onc.1205483
  14. Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller- Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA, Peyron JF. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86: 787-798, 1996 https://doi.org/10.1016/S0092-8674(00)80153-1
  15. Johnson DR, Douglas I, Jahnke A, Ghosh S, Pober JS. A sustained reduction in IkappaB-beta may contribute to persistent NFkappaB activation in human endothelial cells. J Biol Chem 271: 16317-16322, 1996 https://doi.org/10.1074/jbc.271.27.16317
  16. Joseph R, Han E, Tsering C, Grunfeld S, Welch KM. Platelet activity and stroke severity. J Neurol Sci 108: 1-6, 1992 https://doi.org/10.1016/0022-510X(92)90180-S
  17. Karin M. The NF-kappa B activation pathway: its regulation and role in inflammation and cell survival. Cancer J Sci Am 4 Suppl 1: S92-S99, 1998
  18. Kim CH, Ahn YS. Nitric oxide prevents the bovine cerebral endothelial cell death induced by serum-deprivation. Korean J Physiol Pharmacol 1: 515-521, 1997
  19. Kim CH, Kim JH, Hsu CY, Ahn YS. Zinc is required in pyrrolidine dithiocarbamate inhibition of NF-kappaB activation. FEBS Lett 449: 28-32, 1999 https://doi.org/10.1016/S0014-5793(99)00390-7
  20. Koong AC, Chen EY, Mivechi NF, Denko NC, Stambrook P, Giaccia AJ. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res 54: 5273-5279, 1994
  21. Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265: 956-959, 1994 https://doi.org/10.1126/science.8052854
  22. Lee KA, Bindereif A, Green MR. A small-scale procedure for preparation of nuclear extracts that support efficient transcription and pre-mRNA splicing. Gene Anal Tech 5: 22-31, 1988 https://doi.org/10.1016/0735-0651(88)90023-4
  23. Matsushita H, Morishita R, Nata T, Aoki M, Nakagami H, Taniyama Y, Yamamoto K, Higaki J, Yasufumi K, Ogihara T. Hypoxia-induced endothelial apoptosis through nuclear factorkappaB (NF-kappaB)-mediated bcl-2 suppression: in vivo evidence of the importance of NF-kappaB in endothelial cell regulation. Circ Res 86: 974-981, 2000 https://doi.org/10.1161/01.RES.86.9.974
  24. Mattson MP, Culmsee C, Yu Z, Camandola S. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 74: 443-456, 2000 https://doi.org/10.1046/j.1471-4159.2000.740443.x
  25. Natarajan K, Singh S, Burke TR, Jr., Grunberger D, Aggarwal BB. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93: 9090-9095, 1996 https://doi.org/10.1073/pnas.93.17.9090
  26. Pedersen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N Engl J Med 311: 1206-1211, 1984 https://doi.org/10.1056/NEJM198411083111902
  27. Phillips RJ, Ghosh S. Regulation of IkappaB beta in WEHI 231 mature B cells. Mol Cell Biol 17: 4390-4396, 1997 https://doi.org/10.1128/MCB.17.8.4390
  28. Poulaki V, Mitsiades CS, Joussen AM, Lappas A, Kirchhof B, Mitsiades N. Constitutive Nuclear Factor-kappaB Activity Is Crucial for Human Retinoblastoma Cell Viability. Am J Pathol 161: 2229-2240, 2002 https://doi.org/10.1016/S0002-9440(10)64499-9
  29. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268: L699-L722, 1995
  30. Sappino AP, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, Vassalli JD. Extracellular proteolysis in the adult murine brain. J Clin Invest 92: 679-685, 1993 https://doi.org/10.1172/JCI116637
  31. Schmitz ML, Baeuerle PA. Multi-step activation of NF-kappa B/Rel transcription factors. Immunobiology 193: 116-127, 1995 https://doi.org/10.1016/S0171-2985(11)80534-6
  32. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705-716, 1986 https://doi.org/10.1016/0092-8674(86)90346-6
  33. Squadrito GL, Pryor WA. The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chem Biol Interact 96: 203- 206, 1995 https://doi.org/10.1016/0009-2797(94)03591-U
  34. Suschek CV, Krischel V, Bruch-Gerharz D, Berendji D, Krutmann J, Kroncke KD, Kolb-Bachofen V. Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation. J Biol Chem 274: 6130-6137, 1999 https://doi.org/10.1074/jbc.274.10.6130
  35. Xu J, He L, Ahmed SH, Chen SW, Goldberg MP, Beckman JS, Hsu CY. Oxygen-glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells. Stroke 31: 1744-1751, 2000 https://doi.org/10.1161/01.STR.31.7.1744
  36. Xu J, Wu Y, He L, Yang Y, Moore SA, Hsu CY. Regulation of cytokine-induced iNOS expression by a hairpin oligonucleotide in murine cerebral endothelial cells. Biochem Biophys Res Commun 235: 394-397, 1997 https://doi.org/10.1006/bbrc.1997.6800