Kinetic Study on the Color Deterioration of Crude Anthocyanin Extract from Schizandra Fruit (Schizandra chinensis fructus)

오미자 색소 추출물의 가열 변색에 대한 속도론적 연구

  • Published : 2003.02.01

Abstract

The effects of temperature and pH on color deterioration of anthocyanin in Schizandra fruit (Schizandra chinensis fructus) were determined with temperature range of $80{\sim}100^{\circ}C$ and pH range of $2.0{\sim}5.0$. Browning index was used as an index of color deterioration of crude anthocyanin extract from Schizandra fruit. As pH of crude anthocyanin extract was increased, color deterioration was accelerated, showing pH-dependency of thermal stability of anthocyanin extract from Schizandra fruit. Anthocyanin degradation could be modeled as a second-order rate reaction, with rate of $3.2{\times}10^{-3}\;h^{-1}\;(pH\;2.0){\sim}4.1{\times}10^{-3}\;h^{-1}\;(pH\;5.0)\;at\;100^{\circ}C$. Temperature dependence of deterioration was described by the Arrhenius relationship. Activation energies for pH $2.0{\sim}5.0$ ranged from $24.87{\sim}42.54\;kJ/mol^{-1}$.

건강기능성 식품소재로써 각광을 받고 있는 오미자의 특징적인 붉은 색소인 anthocyanin의 가열 변색에 대한 안정성을 연구하고자 오미자 조추출물(crude pigment extracts from Schizandra fructus)을 색소원으로 하여 가열 변색에 대한 지표로서 browning index(BI)를 이용하여 $80{\sim}100^{\circ}C$에서 kinetic parameter를 조사하였다. 그 결과 pH 2.0, 3.0, 4.0, 5.0 범위에서 pH가 높을수록 가열 변색 인자인 BI값이 감소하여 높은 pH에서 가열에 의한 변색이 활발하게 이루어졌음을 시사하였다. 지표인자인 BI와 가열시간의 관계를 분석한 결과 가열변색 반응은 2차 반응을 따랐으며 qinoidal base가 우세해지는 pH 5.0 구간을 제외하고는 pH가 높아짐에 따라 반응 속도상수(k)는 증가하여 높은 pH에서 가열 변색이 빠르게 이루어지고 있음을 나타내었다. Arrhenius식에 의해 계산된 오미자 anthocyanin 색소의 활성화 에너지(Ea)는 $24.87{\sim}42.54\;kJ/mol$이었으며, pH가 높아짐에 따라 활성화 에너지(Ea)값이 증가하여 온도 의존성이 커지는 것을 알 수 있었다. 또한 각 pH조건에서의 지수앞인자($k_0$)와 활성화 에너지(Ea)가 직선 상관관계를 보여 시험한 pH 범위에서 오미자 anthocyanin 색소의 가열 변색 기작은 모두 같은 것으로 나타났다.

Keywords

References

  1. Nomura, M., Nakachiyama, M., Hida, T., Ohtaki, Y., Sudo, K., Aizawa, T., Aburada, M. and Miyamoto, K. I. Gomisin A, a lignan component of Schizandrora fruits, inhibits development of preneoplastic lesions in rat liver by 3'-methyl-1,4-dimethylaminoazobenzene. Cancer Lett. 76: 11-18 (1994) https://doi.org/10.1016/0304-3835(94)90128-7
  2. Ohtaki, Y., Hida, T., Hiramatsu, K., Kanitani, M., Ohshima, T., Nomura, M., Wakita, H., Aburada, M. and Miyamoto, K.I. Deoxycholic acid as an endogenous risk factor for hepatocarcinogenesis and effects of gomisin A, a lignan component of Schizandra fruits. Anticancer Res. 16: 751-755 (1996) https://doi.org/10.1097/01.cad.0000171515.27439.de
  3. Nishiyama, N., Chu, P.J. and Saito, H. A herbal prescription, S113m, consisting of biota, ginseng and schizandra, improves learning performance in senescence accelerated mouse. Biol. Pharm. Bull. 19: 388-393 (1996) https://doi.org/10.1248/bpb.19.388
  4. Long, Z.Z. and Xie, S.S. Experimental study on the enhancement of the immunosuppresive effect of cortisone by wurenchun, an extract of Schizandra chinensis BAILL I. Isolation and structure determination of five new lignans gomisin A, B, C, F and G and the absolute structure of schzandrin. Chem. Pharmacol' Bull. 27: 1383-1394(1979) https://doi.org/10.1248/cpb.27.1383
  5. Li, X.J., Zhao, B.L., Liu, G.T. and Xin, W.J. Scavenging effects on active oygen radicals by schizandrins with different structures and configurations. Free Radical Bio. Med. 9: 99-104 (1990)
  6. Haglind, C. and Tengblad, J. Effects of caffeine containing energy drinks. Scand. J. Nutr. 43: 169-175 (1994)
  7. Tompsett, T. Herbal attraction. Soft Drinks Int. 23: 27 (1999)
  8. Farr, S. 2001 a soft drinks odyssey. Food Manufacture 69: 29-30 (1994)
  9. Lee, J.S. and Lee, S.W. Effect of water extract in fruit of Omija (Schizandra chinensis Bailon) on alcohol metabolism. Korean J. Dietry Culture 5: 259-262 (1990)
  10. Spayd, S.E. and Morris, J.R. Influence of immature fruits on strawberry jam quality and storage stability. J. Food Sci. 46: 414-418 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb04873.x
  11. Mok, C.K., Song, K.T., Lee, S.K., Na, Y.J., Park, J.H., Kwon, Y.A. and Lee, S.J. Optimization of roasting process as pre-treatment for extraction of Omija (Schizandra chinensis Bailon). Korean J. Food Sci. Technol. 33: 333-337 (2001)
  12. Fuleki, T. and Francis, F.J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 33: 72-77 (1968) https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  13. Rhim, J.W., Nunes, R.Y., Jones, Y.A. and Swartzel, K.R. Kinetics of color change of graph juice generated using linearly increasing temperature. J. Food Sci. 54: 776-777 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb04710.x
  14. Lee, L.S. and Rhim, J.W. Thermal kinetics of color changes of purple sweet potato anthocyanin pigment. Korean J. Food Sci. Technol. 29: 497-501 (1997)
  15. Stoneham, T.R. and Tong, C.H. Degradation kinetics of chlorophyll in peas as a function of pH. J. Food Sci. 65: 1296-1302 (2000) https://doi.org/10.1111/j.1365-2621.2000.tb10600.x
  16. Mazza, G. and Bruillard, R. Color stability and structural transformations of cyanidin-3,5-diglucoside and four 3-deoxyanthocyanins in aqueous solutions. J. Agric. Food Chem. 35: 422-426 (1987) https://doi.org/10.1021/jf00075a034
  17. Markakis, P. Anthocyanins and their stability in foods. Crit. Rev. Food Technol. 4: 437-456 (1974) https://doi.org/10.1080/10408397409527165
  18. Garzon, G.A. and Wrolstad, R.E. The stability of pelargonidinbased anthocyanins at varying water activity. Food Chem. 75: 185-196 (2001) https://doi.org/10.1016/S0308-8146(01)00196-0
  19. Romero, C. and Bakker, J. Anthocyanin and colour evolution during maturation of four port wines: effect of pyruvic acid addition. J. Sci. Food Agric. 81: 252-260 (2001) https://doi.org/10.1002/1097-0010(20010115)81:2<252::AID-JSFA810>3.0.CO;2-5
  20. Rhim, J.W. Kinetics of thermal degradation of anthocyanin pigment solutions driven from red flower cabbage. Food Sci. Biotechnol. 11: 361-364 (2002)
  21. Labuza, T.P. Enthalpy/entropy compensation in food reactions. Food Technol. 34: 67-77 (1980)