Physiological Activities of Commercial Instant Curry Powders and Individual Spices

시판 instant curry 및 curry 사용원료의 생리활성

  • 정명수 (오뚜기중앙연구소) ;
  • 정승현 (오뚜기중앙연구소) ;
  • 이진선 (성균관대학교 식품.생명자원학과) ;
  • 빅기문 (성균관대학교 식품.생명자원학과)
  • Published : 2003.02.01

Abstract

Physiological activities of hot water extracts of 10 commercial instant curry powders and 6 spices, were investigated. All spice extracts except ginger showed significant antioxidant activities on the autoxidation of linoleic curry acid (p<0.01). Antioxidant activities of clove and fennel were significantly higher than ${\alpha}-tocopherol$, instant curry powders, and other spices, Red pepper $(52.8{\pm}2.13%)$, clove, and coriander showed significant inhibitory activities against angiotensin-I-converting enzyme (p<0.001). Cytotoxic effects of instant curry powder and spices against human cancer cell lines were examined through MTT assay. Black pepper $(29.31{\pm}2.21%\;cytotoxic\;rate)$ and cardamon $(19.41{\pm}3.92%)$ were effective against MCF-7 (p<0.01), Clove $(42.92{\pm}5.57%)$ against HeLa (p<0.01). Ginger $(34.21{\pm}1.11%)$, cardamon, and black pepper against A172 (p<0.001), garlic $(82.88{\pm}0.53%)$ against SN12C (p<0.001), garlic $(71.63{\pm}0.38%)$, red pepper, ginger, fenugreek, SPC, cumin, and MPC against SNU-638 (p<0.001), and cassia $(82.84{\pm}16.92%)$ against A549 (p<0.001).

Instant curry 제품 및 원료로 사용되는 향신료의 열수추출물을 사용하여 생리활성을 실험하였다. Linoleic acid에 향신료 추출물을 첨가하여 자동산화를 측정한 결과 ginger 추출물을 제외한 모든 추출물이 자동산화를 억제하는 것으로 나타났다(p<0.01). 특히, clove 및 fennel의 경우 ${\alpha}-tocopherol$보다 강한 것으로 나타났다. 향신료를 혼합하여 제조하는 mild pure curry(MPC, p<0.001)와 spicy pure curry(SPC, p<0.01)도 항산화 활성이 있었으며, instant curry 제품에서도 linoleic acid의 자동산화를 억제하는 것으로 나타났다(p<0.05). Instant curry의 열수추출물이 angiotensin converting enzyme(ACE)의 활성억제작용은 없었으나, 원료로 사용되는 red pepper$(52.8{\pm}2.13%)$와 clove$(13.48{\pm}1.00%)$, coriander$(10.32{\pm}1.45%)$의 경우 ACE활성을 저해하였다(p<0.001). 향신료 열수추출물의 세포독성 실험에서 유방암세포 MCF-7의 증식억제에 black pepper$(29.31{\pm}2.12%)$와 cardamon$(19.41{\pm}3.92%)$이 유의차(p<0.01)있게 세포증식을 억제하였으며, celery seed$(28.20{\pm}5.98%)$도 억제효과를 나타냈다(p<0.05). 그러나 SPC는 증식을 촉진하는 것으로 나타났다(p<0.01). 자궁암세포 HeLa의 경우 clover$(42.92{\pm}5.57%)$는 p<0.01 수준에서, cassia$(26.14{\pm}7.41%)$는 p<0.05 수준에서 유의성있게 증식억제 효과가 나타냈다. 그러나 MPC 및 coriander, turmeric, SPC, nutmeg, cardamon, red pepper, celery seed는 증식을 촉진하는 것으로 나타났다. 뇌종양세포 A172의 경우 ginger$(34.21{\pm}1.11%)$ 및 cardamon$(31.89{\pm}3.13%)$, black pepper$(31.35{\pm}3.93%)$가 p<0.001 수준에서, 그리고 cumin 및 MPC, SPC, turmeric, celery seed에 의해서도 세포증식이 억제되었다(p<0.05). 그러나 clove 및 fenugreek, cassia에서는 A172세포의 증식을 촉진하는 것으로 나타났다(p<0.01). 신장암 세포 SN12C에 대해서는 garlic$(82.88{\pm}0.53%)$이 가장 높은 억제효과(p<0.001)를 나타냈으며, ginger 및 cumin, cardamon이 p<0.01 수준에서 증식억제를 나타내었다. 그러나 clove의 경우 증식을 촉진하는 것으로 나타났다(p<0.01). 위암 세포주 SNU-638의 경우 garlic$(71.63{\pm}0.38%)$이 가장 높은 억제효과를 보였으며, red pepper 및 ginger, fenugreek, SPC, cumin, MPC 등에서도 증식억제 효과를 보여주었다(p<0.001). 그러나 clove 및 nutmeg, turmeric, coriander는 증식을 촉진하는 것으로 나타났다(p<0.001). 폐암 세포 A549에 대한 세포독성 실험 결과 대부분의 원료에서 세포독성이 없었으나 cassia(82.84 16.92%)가 가장 강한 억제효과를 나타냈으나(p<0.001), clove 및 nutmeg, fennel, celery seed, fenugreek, black pepper는 증식을 촉진하는 것으로 나타났다(p<0.001). 또한, 신장암 세포 SN12C의 경우 MPC 열수 추출물의 첨가농도가 높아질수록 cytotoxicity가 증가하였으며, 폐암 세포주 A549의 경우 농도 증가에 따른 cytotoxicity 변화는 거의 없는 것으로 나타났다.

Keywords

References

  1. Nakatani, N. Antibacterial and antioxidative activity and utilization of food preservation of spice components. Tomato Sauce 6: 6-16 (1992)
  2. Kouchi, Y. Function of spice: The lastest study report. Up to date Food Proc. 32: 21-24 (1997)
  3. Troll, W., Frenkel, K. and Teebor, G. Free oxygen radicals: necessary contributors to tumor promotion and cocarcinogenesis. Princess Takamatsu Symp. 14: 207-218 (1983)
  4. Kouchi, Y. Physiological actions of spices. Food Sci. 11: 48-58 (1992)
  5. Ruby, A.J., Kuttan, G., Babu, D.R. and Kuttan, R. Anti-tumor and antioxidant activity of natural curcuminoids. Cancer Lett. 94: 79-83 (1995) https://doi.org/10.1016/0304-3835(95)03827-J
  6. Kim, J.H. and Park, K.M. Nitrite scavenging and superoxide dismutase-like activities of herbs, spices and curries. Korean J. Food Sci. Technol. 32: 706-712 (2000)
  7. Byers, T. and Perry, G. Dietary carotenes, vitamin C and vitamin E as protective antioxidants in human cancers. Ann. Rev. Nutr. 12: 135-159 (1992)
  8. Kyrtopoulos, S.A. N-nitroso compound formation in human gastric juice. Cancer Surv. 8: 423-442 (1989)
  9. Nagabhushan, M and Bhide, S.Y. Curcumin as an inhibitor of cancer. J. Am. Coll. Nutr. 11: 192-198 (1992)
  10. Puneet, S., James, A.H., Mirza, B., Rick, K. and Steven, H.S. Curcumin: a food spice with cytotoxic activity against urinary bladder cancer. J. Am. Coll, Surg., 191(4S): 94-95 (2000)
  11. Jiang, M.C., Yang-Yen, H.F., Yen, J.J. and Lin, J.K. Curcumin induced apoptosis in immortalized NIH 3T3 and malignant cancer cell line. Nutr. Cancer 26: 111-120 (1996) https://doi.org/10.1080/01635589609514468
  12. Hanif, R., Qiao, L., Shiff, S.J. and Rigas, B. Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independednt pathway. J. Lab. Clin. Med. 130: 576-584 (1997) https://doi.org/10.1016/S0022-2143(97)90107-4
  13. Singletary, K.W. and Rokusek, J.T. Tissue-specific enhancement of xenobiotic detoxification enzymes in mice by dietary rosemary extract. Plant Foods Human Nutr. 50: 47-53 (1997) https://doi.org/10.1007/BF02436042
  14. Keith, S., Christopher, M. and Matthew, W. Inhibition by rosemary and carnosol of 7,l2-dimethylbenz(a)anthracene(DMBA)induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 104: 43-48 (1996) https://doi.org/10.1016/0304-3835(96)04227-9
  15. Abdullaev, F.I. and Gonzalez, M.E. Antitumor activity of natural substances: lectins and saffron, Arch. Latinoamericanos de Nutr. 47: 195-202 (1977)
  16. Aruna, K., Sivaramakrishnan, V.M. Plant products as protective agents against cancer. Indian J. Exp. BioI. 28: 1008-1011 (1990)
  17. Suzuki, T., Ishikawa, N. and Meguro, H. Angiotensin-I converting enzyme inhibitory activity in foods. Nippon Nogeiogaku Kaishi 57: 1143-1146 (1983) https://doi.org/10.1271/nogeikagaku1924.57.1143
  18. Kiharn, I., Miho, I. and Toshimi, H. Major antioxidative substances in leaves of atsumi-kabu. Agric. Biol, Chem. 54: 1053-1055 (1990) https://doi.org/10.1271/bbb1961.54.1053
  19. Chushman, D.W. and Cheung, H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648 (1971) https://doi.org/10.1016/0006-2952(71)90292-9
  20. Carmichael, J.W.G., DeGraff, A., Gazdar, J.M. and Mitchell, J.B. Evaluation of a Tetrazolium-based semiautomated colorimetric assay. Assessment of chemosensitivity testing. Cancer Res. 47: 936-942 (1987)
  21. Chang, S.S., Ostric-Marijasevic, B., Hsieh, O.A.L. and Huang, C.L. Natural antioxidants from rosemary and sage. J. Food Sci. 42: 1102-1106 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb12676.x
  22. Wu, J.W., Lee, M.H., Ho, C.T. and Chang, S.S. Elucidation of the chemical structures of natural antioxidants isolated from rosemary. J. Am. Oil Chem. Soc. 59: 339-345 (1982) https://doi.org/10.1007/BF02541016
  23. Yoshihiro, K. Function of spice and its utilization. Food Sci. 220: 41-53 (1996)