Optimization of Microwave Extraction Conditions for Flammulina velutipes by Response Surface Methodology

반응표면분석에 의한 팽이버섯의 microwave 추출조건 최적화

  • Published : 2003.04.01

Abstract

Optimum extraction conditions for yield, browning color, electron-donating ability, nitrite-scavenging effect, total polyphenol content, and tyrosinase-inhibitory activity of Flammulina velutipes were determined using response surface methodology through central composite design. Yield of F. velutipes was affected by ethanol concentration, and browning color improved more with the increase of ethanol concentration than microwave power. Nitrite-scavenging effect was improved with increasing ethanol concentration and decreasing microwave power. Electron-donating ability and total polyphenol content were improved with increasing ethanol concentration and microwave power. Tyrosinase-inhibitory effect increased more with decrease in microwave power than with ethanol concentration. The optimal range of extraction conditions for effective component of F. velutipes were $47.21{\sim}76.05$ watt of microwave power, $10.25{\sim}43.56%$ of ethanol concentration, and 5.72 min of extraction time.

팽이버섯 추출물의 수율 및 전자공여작용, 총폴리페놀함량, tyrosinase 저해작용, 갈색도, 아질산염 소거작용에 대하여 반응표면분석에 의해 추출조건을 최적화 하였다. 팽이버섯 추출물의 수율변화는 에탄올 농도에 가장 큰 영향을 받았으며, 갈변도는 microwave power 보다는 에탄올 농도에 크게 영향을 받는 것으로 나타났으며, 아질산염 소거작용의 경우 에탄올 농도가 증가할수록, microwave power가 감소할수록 증가하는 경향을 나타내었다. 전자공여작용의 경우 에탄올 농도가 증가할수록 증가폭이 컸고, microwave가 증가할수록 조금씩 증가하는 경향을 보였다. 총 폴리페놀 함량의 경우 에탄올 농도가 증가할수록, microwave power가 클수록 추출물의 생리활성이 우수한 것으로 나타나 에탄올 농도가 추출시 중요한 공정인자임을 확인 할 수 있었다. 한편, tyrosinase 저해 작용의 경우 에탄올 농도보다는 microwave power에 영향을 받았는데 power가 작을수록 그 값은 크게 측정되었다. 따라서 팽이버섯의 최적 추출조건 범위는 microwave power $47.21{\sim}76.05$ watt, ethanol 농도 $10.25{\sim}43.56%$, 추출시간 5.72분으로 예측되었다.

Keywords

References

  1. Lin, J.Y., Lin, Y.J., Chen, C.C., Wu, H.L., Shi, G.Y. and Jeng, T.W. Cardiotoxic protein from edible mushrooms. Nature (London) 252: 235-239 (1974) https://doi.org/10.1038/252235a0
  2. Tonomura, H. Flammulina velutipes, p. 140. In: Biology and Cultivation of Edible Mushrooms. Chang, S.T. and Hayes, W.A. (eds.). Academic Press, NewYork,USA (1978)
  3. Chang, S.T. and Miles, P.G. Edible Mushrooms and Their Cultivation. CRC Press, Boca Raton, FL, USA (1989)
  4. Breene, W.M. Nutritional and medicinal value of specialty mushrooms. J. Food Prot. 53: 883-893 (1990) https://doi.org/10.4315/0362-028X-53.10.883
  5. Woo, M.S. Studies on antitumor components of Flammulina velutipes of Korea (I). Korean J. Mycol. 11: 69-77 (1983)
  6. Kataoka, H. and Ohnishi, N. Occurrence of taurine in plants. Agric. Biol. Chem. 50: 1887-1888 (1996)
  7. Lee, G.D., Chang, H.G. and Kim, H.K. Antioxidative and nitritescavenging activities of edible mushrooms. Korean J. Food Sci. Technol. 29: 432-436 (1997)
  8. Chung, D.O. Studies on antioxidative substances of Ganodenna lucidum. Korean J. Food Sci. Technol. 24: 497-503 (1992)
  9. Ma, S.J. Effects of the substances extracted from dried mushroom (Lentinus edodes) by several organic solvents on the stability of fat. Korean J. Food Sci. Technol. 15: 150-153 (1983)
  10. Cochran, W.G. and Cox, G.M. Experimental Design, pp. 335-375. John Wiley & Sons, Inc., New York, USA (1957)
  11. Box, G.E.P. and Hounter, J.S. Multifactor experimental design for exploring response surfaces. Ann. Math. Stat. 28: 195-242 (1957) https://doi.org/10.1214/aoms/1177707047
  12. SAS institute Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1990)
  13. Motycka, P.R., Devor, R.E. and Bechtel, P.J. Response surface methodology. J. Food Sci. 57: 190-196 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  14. Lee, G.D. and Jeong, Y.J. Optimization on organoleptic properties of red pepper jam by response surface methodology. J. Korean Soc. Food Sci. Nutr. 28: 1269-1274 (1999)
  15. Box, G.E.P. and Wilson, K.G. On the experimental attainment of optimum conditions. J. Royal Stat. Soc. 13: 1-45 (1951)
  16. Foline, O. and Denis, W. On phosphotungastic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-243 (1912)
  17. Kang, Y.H., Park, Y.K and Lee, G.D. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J. Food. Sci. Technol. 28: 232-239 (1996)
  18. Wong, T.C., Luh, B.S. and Whitaker, J.R. Isolation and characterization of polyphenol oxidase of clingstone peach. Plant Physiol. 48: 19-23 (1971) https://doi.org/10.1104/pp.48.1.19
  19. Gray, J.I. and Dugan, Jr. L.R. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 40: 981-984 (1975) https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  20. Park, N.J., Kwon, J.H. and Kim, H.K Optimization of extraction conditions for ethanol extracts from Chrysanthemum morifolium by response surface methodology. Korean J. Food Sci. Technol. 30: 1189-1196 (1998)